diff options
Diffstat (limited to 'vendor/github.com/golang/geo')
66 files changed, 0 insertions, 21547 deletions
diff --git a/vendor/github.com/golang/geo/LICENSE b/vendor/github.com/golang/geo/LICENSE deleted file mode 100644 index d64569567..000000000 --- a/vendor/github.com/golang/geo/LICENSE +++ /dev/null @@ -1,202 +0,0 @@ - -                                 Apache License -                           Version 2.0, January 2004 -                        http://www.apache.org/licenses/ - -   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - -   1. Definitions. - -      "License" shall mean the terms and conditions for use, reproduction, -      and distribution as defined by Sections 1 through 9 of this document. - -      "Licensor" shall mean the copyright owner or entity authorized by -      the copyright owner that is granting the License. - -      "Legal Entity" shall mean the union of the acting entity and all -      other entities that control, are controlled by, or are under common -      control with that entity. For the purposes of this definition, -      "control" means (i) the power, direct or indirect, to cause the -      direction or management of such entity, whether by contract or -      otherwise, or (ii) ownership of fifty percent (50%) or more of the -      outstanding shares, or (iii) beneficial ownership of such entity. - -      "You" (or "Your") shall mean an individual or Legal Entity -      exercising permissions granted by this License. - -      "Source" form shall mean the preferred form for making modifications, -      including but not limited to software source code, documentation -      source, and configuration files. - -      "Object" form shall mean any form resulting from mechanical -      transformation or translation of a Source form, including but -      not limited to compiled object code, generated documentation, -      and conversions to other media types. - -      "Work" shall mean the work of authorship, whether in Source or -      Object form, made available under the License, as indicated by a -      copyright notice that is included in or attached to the work -      (an example is provided in the Appendix below). - -      "Derivative Works" shall mean any work, whether in Source or Object -      form, that is based on (or derived from) the Work and for which the -      editorial revisions, annotations, elaborations, or other modifications -      represent, as a whole, an original work of authorship. For the purposes -      of this License, Derivative Works shall not include works that remain -      separable from, or merely link (or bind by name) to the interfaces of, -      the Work and Derivative Works thereof. - -      "Contribution" shall mean any work of authorship, including -      the original version of the Work and any modifications or additions -      to that Work or Derivative Works thereof, that is intentionally -      submitted to Licensor for inclusion in the Work by the copyright owner -      or by an individual or Legal Entity authorized to submit on behalf of -      the copyright owner. For the purposes of this definition, "submitted" -      means any form of electronic, verbal, or written communication sent -      to the Licensor or its representatives, including but not limited to -      communication on electronic mailing lists, source code control systems, -      and issue tracking systems that are managed by, or on behalf of, the -      Licensor for the purpose of discussing and improving the Work, but -      excluding communication that is conspicuously marked or otherwise -      designated in writing by the copyright owner as "Not a Contribution." - -      "Contributor" shall mean Licensor and any individual or Legal Entity -      on behalf of whom a Contribution has been received by Licensor and -      subsequently incorporated within the Work. - -   2. Grant of Copyright License. Subject to the terms and conditions of -      this License, each Contributor hereby grants to You a perpetual, -      worldwide, non-exclusive, no-charge, royalty-free, irrevocable -      copyright license to reproduce, prepare Derivative Works of, -      publicly display, publicly perform, sublicense, and distribute the -      Work and such Derivative Works in Source or Object form. - -   3. Grant of Patent License. Subject to the terms and conditions of -      this License, each Contributor hereby grants to You a perpetual, -      worldwide, non-exclusive, no-charge, royalty-free, irrevocable -      (except as stated in this section) patent license to make, have made, -      use, offer to sell, sell, import, and otherwise transfer the Work, -      where such license applies only to those patent claims licensable -      by such Contributor that are necessarily infringed by their -      Contribution(s) alone or by combination of their Contribution(s) -      with the Work to which such Contribution(s) was submitted. If You -      institute patent litigation against any entity (including a -      cross-claim or counterclaim in a lawsuit) alleging that the Work -      or a Contribution incorporated within the Work constitutes direct -      or contributory patent infringement, then any patent licenses -      granted to You under this License for that Work shall terminate -      as of the date such litigation is filed. - -   4. Redistribution. You may reproduce and distribute copies of the -      Work or Derivative Works thereof in any medium, with or without -      modifications, and in Source or Object form, provided that You -      meet the following conditions: - -      (a) You must give any other recipients of the Work or -          Derivative Works a copy of this License; and - -      (b) You must cause any modified files to carry prominent notices -          stating that You changed the files; and - -      (c) You must retain, in the Source form of any Derivative Works -          that You distribute, all copyright, patent, trademark, and -          attribution notices from the Source form of the Work, -          excluding those notices that do not pertain to any part of -          the Derivative Works; and - -      (d) If the Work includes a "NOTICE" text file as part of its -          distribution, then any Derivative Works that You distribute must -          include a readable copy of the attribution notices contained -          within such NOTICE file, excluding those notices that do not -          pertain to any part of the Derivative Works, in at least one -          of the following places: within a NOTICE text file distributed -          as part of the Derivative Works; within the Source form or -          documentation, if provided along with the Derivative Works; or, -          within a display generated by the Derivative Works, if and -          wherever such third-party notices normally appear. The contents -          of the NOTICE file are for informational purposes only and -          do not modify the License. You may add Your own attribution -          notices within Derivative Works that You distribute, alongside -          or as an addendum to the NOTICE text from the Work, provided -          that such additional attribution notices cannot be construed -          as modifying the License. - -      You may add Your own copyright statement to Your modifications and -      may provide additional or different license terms and conditions -      for use, reproduction, or distribution of Your modifications, or -      for any such Derivative Works as a whole, provided Your use, -      reproduction, and distribution of the Work otherwise complies with -      the conditions stated in this License. - -   5. Submission of Contributions. Unless You explicitly state otherwise, -      any Contribution intentionally submitted for inclusion in the Work -      by You to the Licensor shall be under the terms and conditions of -      this License, without any additional terms or conditions. -      Notwithstanding the above, nothing herein shall supersede or modify -      the terms of any separate license agreement you may have executed -      with Licensor regarding such Contributions. - -   6. Trademarks. This License does not grant permission to use the trade -      names, trademarks, service marks, or product names of the Licensor, -      except as required for reasonable and customary use in describing the -      origin of the Work and reproducing the content of the NOTICE file. - -   7. Disclaimer of Warranty. Unless required by applicable law or -      agreed to in writing, Licensor provides the Work (and each -      Contributor provides its Contributions) on an "AS IS" BASIS, -      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or -      implied, including, without limitation, any warranties or conditions -      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A -      PARTICULAR PURPOSE. You are solely responsible for determining the -      appropriateness of using or redistributing the Work and assume any -      risks associated with Your exercise of permissions under this License. - -   8. Limitation of Liability. In no event and under no legal theory, -      whether in tort (including negligence), contract, or otherwise, -      unless required by applicable law (such as deliberate and grossly -      negligent acts) or agreed to in writing, shall any Contributor be -      liable to You for damages, including any direct, indirect, special, -      incidental, or consequential damages of any character arising as a -      result of this License or out of the use or inability to use the -      Work (including but not limited to damages for loss of goodwill, -      work stoppage, computer failure or malfunction, or any and all -      other commercial damages or losses), even if such Contributor -      has been advised of the possibility of such damages. - -   9. Accepting Warranty or Additional Liability. While redistributing -      the Work or Derivative Works thereof, You may choose to offer, -      and charge a fee for, acceptance of support, warranty, indemnity, -      or other liability obligations and/or rights consistent with this -      License. However, in accepting such obligations, You may act only -      on Your own behalf and on Your sole responsibility, not on behalf -      of any other Contributor, and only if You agree to indemnify, -      defend, and hold each Contributor harmless for any liability -      incurred by, or claims asserted against, such Contributor by reason -      of your accepting any such warranty or additional liability. - -   END OF TERMS AND CONDITIONS - -   APPENDIX: How to apply the Apache License to your work. - -      To apply the Apache License to your work, attach the following -      boilerplate notice, with the fields enclosed by brackets "[]" -      replaced with your own identifying information. (Don't include -      the brackets!)  The text should be enclosed in the appropriate -      comment syntax for the file format. We also recommend that a -      file or class name and description of purpose be included on the -      same "printed page" as the copyright notice for easier -      identification within third-party archives. - -   Copyright [yyyy] [name of copyright owner] - -   Licensed under the Apache License, Version 2.0 (the "License"); -   you may not use this file except in compliance with the License. -   You may obtain a copy of the License at - -       http://www.apache.org/licenses/LICENSE-2.0 - -   Unless required by applicable law or agreed to in writing, software -   distributed under the License is distributed on an "AS IS" BASIS, -   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -   See the License for the specific language governing permissions and -   limitations under the License. diff --git a/vendor/github.com/golang/geo/r1/doc.go b/vendor/github.com/golang/geo/r1/doc.go deleted file mode 100644 index c6b65c0e0..000000000 --- a/vendor/github.com/golang/geo/r1/doc.go +++ /dev/null @@ -1,20 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/* -Package r1 implements types and functions for working with geometry in ℝ¹. - -See ../s2 for a more detailed overview. -*/ -package r1 diff --git a/vendor/github.com/golang/geo/r1/interval.go b/vendor/github.com/golang/geo/r1/interval.go deleted file mode 100644 index 48ea51982..000000000 --- a/vendor/github.com/golang/geo/r1/interval.go +++ /dev/null @@ -1,177 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package r1 - -import ( -	"fmt" -	"math" -) - -// Interval represents a closed interval on ℝ. -// Zero-length intervals (where Lo == Hi) represent single points. -// If Lo > Hi then the interval is empty. -type Interval struct { -	Lo, Hi float64 -} - -// EmptyInterval returns an empty interval. -func EmptyInterval() Interval { return Interval{1, 0} } - -// IntervalFromPoint returns an interval representing a single point. -func IntervalFromPoint(p float64) Interval { return Interval{p, p} } - -// IsEmpty reports whether the interval is empty. -func (i Interval) IsEmpty() bool { return i.Lo > i.Hi } - -// Equal returns true iff the interval contains the same points as oi. -func (i Interval) Equal(oi Interval) bool { -	return i == oi || i.IsEmpty() && oi.IsEmpty() -} - -// Center returns the midpoint of the interval. -// It is undefined for empty intervals. -func (i Interval) Center() float64 { return 0.5 * (i.Lo + i.Hi) } - -// Length returns the length of the interval. -// The length of an empty interval is negative. -func (i Interval) Length() float64 { return i.Hi - i.Lo } - -// Contains returns true iff the interval contains p. -func (i Interval) Contains(p float64) bool { return i.Lo <= p && p <= i.Hi } - -// ContainsInterval returns true iff the interval contains oi. -func (i Interval) ContainsInterval(oi Interval) bool { -	if oi.IsEmpty() { -		return true -	} -	return i.Lo <= oi.Lo && oi.Hi <= i.Hi -} - -// InteriorContains returns true iff the interval strictly contains p. -func (i Interval) InteriorContains(p float64) bool { -	return i.Lo < p && p < i.Hi -} - -// InteriorContainsInterval returns true iff the interval strictly contains oi. -func (i Interval) InteriorContainsInterval(oi Interval) bool { -	if oi.IsEmpty() { -		return true -	} -	return i.Lo < oi.Lo && oi.Hi < i.Hi -} - -// Intersects returns true iff the interval contains any points in common with oi. -func (i Interval) Intersects(oi Interval) bool { -	if i.Lo <= oi.Lo { -		return oi.Lo <= i.Hi && oi.Lo <= oi.Hi // oi.Lo ∈ i and oi is not empty -	} -	return i.Lo <= oi.Hi && i.Lo <= i.Hi // i.Lo ∈ oi and i is not empty -} - -// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary. -func (i Interval) InteriorIntersects(oi Interval) bool { -	return oi.Lo < i.Hi && i.Lo < oi.Hi && i.Lo < i.Hi && oi.Lo <= oi.Hi -} - -// Intersection returns the interval containing all points common to i and j. -func (i Interval) Intersection(j Interval) Interval { -	// Empty intervals do not need to be special-cased. -	return Interval{ -		Lo: math.Max(i.Lo, j.Lo), -		Hi: math.Min(i.Hi, j.Hi), -	} -} - -// AddPoint returns the interval expanded so that it contains the given point. -func (i Interval) AddPoint(p float64) Interval { -	if i.IsEmpty() { -		return Interval{p, p} -	} -	if p < i.Lo { -		return Interval{p, i.Hi} -	} -	if p > i.Hi { -		return Interval{i.Lo, p} -	} -	return i -} - -// ClampPoint returns the closest point in the interval to the given point "p". -// The interval must be non-empty. -func (i Interval) ClampPoint(p float64) float64 { -	return math.Max(i.Lo, math.Min(i.Hi, p)) -} - -// Expanded returns an interval that has been expanded on each side by margin. -// If margin is negative, then the function shrinks the interval on -// each side by margin instead. The resulting interval may be empty. Any -// expansion of an empty interval remains empty. -func (i Interval) Expanded(margin float64) Interval { -	if i.IsEmpty() { -		return i -	} -	return Interval{i.Lo - margin, i.Hi + margin} -} - -// Union returns the smallest interval that contains this interval and the given interval. -func (i Interval) Union(other Interval) Interval { -	if i.IsEmpty() { -		return other -	} -	if other.IsEmpty() { -		return i -	} -	return Interval{math.Min(i.Lo, other.Lo), math.Max(i.Hi, other.Hi)} -} - -func (i Interval) String() string { return fmt.Sprintf("[%.7f, %.7f]", i.Lo, i.Hi) } - -const ( -	// epsilon is a small number that represents a reasonable level of noise between two -	// values that can be considered to be equal. -	epsilon = 1e-15 -	// dblEpsilon is a smaller number for values that require more precision. -	// This is the C++ DBL_EPSILON equivalent. -	dblEpsilon = 2.220446049250313e-16 -) - -// ApproxEqual reports whether the interval can be transformed into the -// given interval by moving each endpoint a small distance. -// The empty interval is considered to be positioned arbitrarily on the -// real line, so any interval with a small enough length will match -// the empty interval. -func (i Interval) ApproxEqual(other Interval) bool { -	if i.IsEmpty() { -		return other.Length() <= 2*epsilon -	} -	if other.IsEmpty() { -		return i.Length() <= 2*epsilon -	} -	return math.Abs(other.Lo-i.Lo) <= epsilon && -		math.Abs(other.Hi-i.Hi) <= epsilon -} - -// DirectedHausdorffDistance returns the Hausdorff distance to the given interval. For two -// intervals x and y, this distance is defined as -//     h(x, y) = max_{p in x} min_{q in y} d(p, q). -func (i Interval) DirectedHausdorffDistance(other Interval) float64 { -	if i.IsEmpty() { -		return 0 -	} -	if other.IsEmpty() { -		return math.Inf(1) -	} -	return math.Max(0, math.Max(i.Hi-other.Hi, other.Lo-i.Lo)) -} diff --git a/vendor/github.com/golang/geo/r2/doc.go b/vendor/github.com/golang/geo/r2/doc.go deleted file mode 100644 index 05b155543..000000000 --- a/vendor/github.com/golang/geo/r2/doc.go +++ /dev/null @@ -1,20 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/* -Package r2 implements types and functions for working with geometry in ℝ². - -See package s2 for a more detailed overview. -*/ -package r2 diff --git a/vendor/github.com/golang/geo/r2/rect.go b/vendor/github.com/golang/geo/r2/rect.go deleted file mode 100644 index 495545bba..000000000 --- a/vendor/github.com/golang/geo/r2/rect.go +++ /dev/null @@ -1,255 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package r2 - -import ( -	"fmt" -	"math" - -	"github.com/golang/geo/r1" -) - -// Point represents a point in ℝ². -type Point struct { -	X, Y float64 -} - -// Add returns the sum of p and op. -func (p Point) Add(op Point) Point { return Point{p.X + op.X, p.Y + op.Y} } - -// Sub returns the difference of p and op. -func (p Point) Sub(op Point) Point { return Point{p.X - op.X, p.Y - op.Y} } - -// Mul returns the scalar product of p and m. -func (p Point) Mul(m float64) Point { return Point{m * p.X, m * p.Y} } - -// Ortho returns a counterclockwise orthogonal point with the same norm. -func (p Point) Ortho() Point { return Point{-p.Y, p.X} } - -// Dot returns the dot product between p and op. -func (p Point) Dot(op Point) float64 { return p.X*op.X + p.Y*op.Y } - -// Cross returns the cross product of p and op. -func (p Point) Cross(op Point) float64 { return p.X*op.Y - p.Y*op.X } - -// Norm returns the vector's norm. -func (p Point) Norm() float64 { return math.Hypot(p.X, p.Y) } - -// Normalize returns a unit point in the same direction as p. -func (p Point) Normalize() Point { -	if p.X == 0 && p.Y == 0 { -		return p -	} -	return p.Mul(1 / p.Norm()) -} - -func (p Point) String() string { return fmt.Sprintf("(%.12f, %.12f)", p.X, p.Y) } - -// Rect represents a closed axis-aligned rectangle in the (x,y) plane. -type Rect struct { -	X, Y r1.Interval -} - -// RectFromPoints constructs a rect that contains the given points. -func RectFromPoints(pts ...Point) Rect { -	// Because the default value on interval is 0,0, we need to manually -	// define the interval from the first point passed in as our starting -	// interval, otherwise we end up with the case of passing in -	// Point{0.2, 0.3} and getting the starting Rect of {0, 0.2}, {0, 0.3} -	// instead of the Rect {0.2, 0.2}, {0.3, 0.3} which is not correct. -	if len(pts) == 0 { -		return Rect{} -	} - -	r := Rect{ -		X: r1.Interval{Lo: pts[0].X, Hi: pts[0].X}, -		Y: r1.Interval{Lo: pts[0].Y, Hi: pts[0].Y}, -	} - -	for _, p := range pts[1:] { -		r = r.AddPoint(p) -	} -	return r -} - -// RectFromCenterSize constructs a rectangle with the given center and size. -// Both dimensions of size must be non-negative. -func RectFromCenterSize(center, size Point) Rect { -	return Rect{ -		r1.Interval{Lo: center.X - size.X/2, Hi: center.X + size.X/2}, -		r1.Interval{Lo: center.Y - size.Y/2, Hi: center.Y + size.Y/2}, -	} -} - -// EmptyRect constructs the canonical empty rectangle. Use IsEmpty() to test -// for empty rectangles, since they have more than one representation. A Rect{} -// is not the same as the EmptyRect. -func EmptyRect() Rect { -	return Rect{r1.EmptyInterval(), r1.EmptyInterval()} -} - -// IsValid reports whether the rectangle is valid. -// This requires the width to be empty iff the height is empty. -func (r Rect) IsValid() bool { -	return r.X.IsEmpty() == r.Y.IsEmpty() -} - -// IsEmpty reports whether the rectangle is empty. -func (r Rect) IsEmpty() bool { -	return r.X.IsEmpty() -} - -// Vertices returns all four vertices of the rectangle. Vertices are returned in -// CCW direction starting with the lower left corner. -func (r Rect) Vertices() [4]Point { -	return [4]Point{ -		{r.X.Lo, r.Y.Lo}, -		{r.X.Hi, r.Y.Lo}, -		{r.X.Hi, r.Y.Hi}, -		{r.X.Lo, r.Y.Hi}, -	} -} - -// VertexIJ returns the vertex in direction i along the X-axis (0=left, 1=right) and -// direction j along the Y-axis (0=down, 1=up). -func (r Rect) VertexIJ(i, j int) Point { -	x := r.X.Lo -	if i == 1 { -		x = r.X.Hi -	} -	y := r.Y.Lo -	if j == 1 { -		y = r.Y.Hi -	} -	return Point{x, y} -} - -// Lo returns the low corner of the rect. -func (r Rect) Lo() Point { -	return Point{r.X.Lo, r.Y.Lo} -} - -// Hi returns the high corner of the rect. -func (r Rect) Hi() Point { -	return Point{r.X.Hi, r.Y.Hi} -} - -// Center returns the center of the rectangle in (x,y)-space -func (r Rect) Center() Point { -	return Point{r.X.Center(), r.Y.Center()} -} - -// Size returns the width and height of this rectangle in (x,y)-space. Empty -// rectangles have a negative width and height. -func (r Rect) Size() Point { -	return Point{r.X.Length(), r.Y.Length()} -} - -// ContainsPoint reports whether the rectangle contains the given point. -// Rectangles are closed regions, i.e. they contain their boundary. -func (r Rect) ContainsPoint(p Point) bool { -	return r.X.Contains(p.X) && r.Y.Contains(p.Y) -} - -// InteriorContainsPoint returns true iff the given point is contained in the interior -// of the region (i.e. the region excluding its boundary). -func (r Rect) InteriorContainsPoint(p Point) bool { -	return r.X.InteriorContains(p.X) && r.Y.InteriorContains(p.Y) -} - -// Contains reports whether the rectangle contains the given rectangle. -func (r Rect) Contains(other Rect) bool { -	return r.X.ContainsInterval(other.X) && r.Y.ContainsInterval(other.Y) -} - -// InteriorContains reports whether the interior of this rectangle contains all of the -// points of the given other rectangle (including its boundary). -func (r Rect) InteriorContains(other Rect) bool { -	return r.X.InteriorContainsInterval(other.X) && r.Y.InteriorContainsInterval(other.Y) -} - -// Intersects reports whether this rectangle and the other rectangle have any points in common. -func (r Rect) Intersects(other Rect) bool { -	return r.X.Intersects(other.X) && r.Y.Intersects(other.Y) -} - -// InteriorIntersects reports whether the interior of this rectangle intersects -// any point (including the boundary) of the given other rectangle. -func (r Rect) InteriorIntersects(other Rect) bool { -	return r.X.InteriorIntersects(other.X) && r.Y.InteriorIntersects(other.Y) -} - -// AddPoint expands the rectangle to include the given point. The rectangle is -// expanded by the minimum amount possible. -func (r Rect) AddPoint(p Point) Rect { -	return Rect{r.X.AddPoint(p.X), r.Y.AddPoint(p.Y)} -} - -// AddRect expands the rectangle to include the given rectangle. This is the -// same as replacing the rectangle by the union of the two rectangles, but -// is more efficient. -func (r Rect) AddRect(other Rect) Rect { -	return Rect{r.X.Union(other.X), r.Y.Union(other.Y)} -} - -// ClampPoint returns the closest point in the rectangle to the given point. -// The rectangle must be non-empty. -func (r Rect) ClampPoint(p Point) Point { -	return Point{r.X.ClampPoint(p.X), r.Y.ClampPoint(p.Y)} -} - -// Expanded returns a rectangle that has been expanded in the x-direction -// by margin.X, and in y-direction by margin.Y. If either margin is empty, -// then shrink the interval on the corresponding sides instead. The resulting -// rectangle may be empty. Any expansion of an empty rectangle remains empty. -func (r Rect) Expanded(margin Point) Rect { -	xx := r.X.Expanded(margin.X) -	yy := r.Y.Expanded(margin.Y) -	if xx.IsEmpty() || yy.IsEmpty() { -		return EmptyRect() -	} -	return Rect{xx, yy} -} - -// ExpandedByMargin returns a Rect that has been expanded by the amount on all sides. -func (r Rect) ExpandedByMargin(margin float64) Rect { -	return r.Expanded(Point{margin, margin}) -} - -// Union returns the smallest rectangle containing the union of this rectangle and -// the given rectangle. -func (r Rect) Union(other Rect) Rect { -	return Rect{r.X.Union(other.X), r.Y.Union(other.Y)} -} - -// Intersection returns the smallest rectangle containing the intersection of this -// rectangle and the given rectangle. -func (r Rect) Intersection(other Rect) Rect { -	xx := r.X.Intersection(other.X) -	yy := r.Y.Intersection(other.Y) -	if xx.IsEmpty() || yy.IsEmpty() { -		return EmptyRect() -	} - -	return Rect{xx, yy} -} - -// ApproxEqual returns true if the x- and y-intervals of the two rectangles are -// the same up to the given tolerance. -func (r Rect) ApproxEqual(r2 Rect) bool { -	return r.X.ApproxEqual(r2.X) && r.Y.ApproxEqual(r2.Y) -} - -func (r Rect) String() string { return fmt.Sprintf("[Lo%s, Hi%s]", r.Lo(), r.Hi()) } diff --git a/vendor/github.com/golang/geo/r3/doc.go b/vendor/github.com/golang/geo/r3/doc.go deleted file mode 100644 index 1eb4710c8..000000000 --- a/vendor/github.com/golang/geo/r3/doc.go +++ /dev/null @@ -1,20 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/* -Package r3 implements types and functions for working with geometry in ℝ³. - -See ../s2 for a more detailed overview. -*/ -package r3 diff --git a/vendor/github.com/golang/geo/r3/precisevector.go b/vendor/github.com/golang/geo/r3/precisevector.go deleted file mode 100644 index b13393dbc..000000000 --- a/vendor/github.com/golang/geo/r3/precisevector.go +++ /dev/null @@ -1,198 +0,0 @@ -// Copyright 2016 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package r3 - -import ( -	"fmt" -	"math/big" -) - -const ( -	// prec is the number of bits of precision to use for the Float values. -	// To keep things simple, we use the maximum allowable precision on big -	// values. This allows us to handle all values we expect in the s2 library. -	prec = big.MaxPrec -) - -// define some commonly referenced values. -var ( -	precise0 = precInt(0) -	precise1 = precInt(1) -) - -// precStr wraps the conversion from a string into a big.Float. For results that -// actually can be represented exactly, this should only be used on values that -// are integer multiples of integer powers of 2. -func precStr(s string) *big.Float { -	// Explicitly ignoring the bool return for this usage. -	f, _ := new(big.Float).SetPrec(prec).SetString(s) -	return f -} - -func precInt(i int64) *big.Float { -	return new(big.Float).SetPrec(prec).SetInt64(i) -} - -func precFloat(f float64) *big.Float { -	return new(big.Float).SetPrec(prec).SetFloat64(f) -} - -func precAdd(a, b *big.Float) *big.Float { -	return new(big.Float).SetPrec(prec).Add(a, b) -} - -func precSub(a, b *big.Float) *big.Float { -	return new(big.Float).SetPrec(prec).Sub(a, b) -} - -func precMul(a, b *big.Float) *big.Float { -	return new(big.Float).SetPrec(prec).Mul(a, b) -} - -// PreciseVector represents a point in ℝ³ using high-precision values. -// Note that this is NOT a complete implementation because there are some -// operations that Vector supports that are not feasible with arbitrary precision -// math. (e.g., methods that need division like Normalize, or methods needing a -// square root operation such as Norm) -type PreciseVector struct { -	X, Y, Z *big.Float -} - -// PreciseVectorFromVector creates a high precision vector from the given Vector. -func PreciseVectorFromVector(v Vector) PreciseVector { -	return NewPreciseVector(v.X, v.Y, v.Z) -} - -// NewPreciseVector creates a high precision vector from the given floating point values. -func NewPreciseVector(x, y, z float64) PreciseVector { -	return PreciseVector{ -		X: precFloat(x), -		Y: precFloat(y), -		Z: precFloat(z), -	} -} - -// Vector returns this precise vector converted to a Vector. -func (v PreciseVector) Vector() Vector { -	// The accuracy flag is ignored on these conversions back to float64. -	x, _ := v.X.Float64() -	y, _ := v.Y.Float64() -	z, _ := v.Z.Float64() -	return Vector{x, y, z}.Normalize() -} - -// Equal reports whether v and ov are equal. -func (v PreciseVector) Equal(ov PreciseVector) bool { -	return v.X.Cmp(ov.X) == 0 && v.Y.Cmp(ov.Y) == 0 && v.Z.Cmp(ov.Z) == 0 -} - -func (v PreciseVector) String() string { -	return fmt.Sprintf("(%10g, %10g, %10g)", v.X, v.Y, v.Z) -} - -// Norm2 returns the square of the norm. -func (v PreciseVector) Norm2() *big.Float { return v.Dot(v) } - -// IsUnit reports whether this vector is of unit length. -func (v PreciseVector) IsUnit() bool { -	return v.Norm2().Cmp(precise1) == 0 -} - -// Abs returns the vector with nonnegative components. -func (v PreciseVector) Abs() PreciseVector { -	return PreciseVector{ -		X: new(big.Float).Abs(v.X), -		Y: new(big.Float).Abs(v.Y), -		Z: new(big.Float).Abs(v.Z), -	} -} - -// Add returns the standard vector sum of v and ov. -func (v PreciseVector) Add(ov PreciseVector) PreciseVector { -	return PreciseVector{ -		X: precAdd(v.X, ov.X), -		Y: precAdd(v.Y, ov.Y), -		Z: precAdd(v.Z, ov.Z), -	} -} - -// Sub returns the standard vector difference of v and ov. -func (v PreciseVector) Sub(ov PreciseVector) PreciseVector { -	return PreciseVector{ -		X: precSub(v.X, ov.X), -		Y: precSub(v.Y, ov.Y), -		Z: precSub(v.Z, ov.Z), -	} -} - -// Mul returns the standard scalar product of v and f. -func (v PreciseVector) Mul(f *big.Float) PreciseVector { -	return PreciseVector{ -		X: precMul(v.X, f), -		Y: precMul(v.Y, f), -		Z: precMul(v.Z, f), -	} -} - -// MulByFloat64 returns the standard scalar product of v and f. -func (v PreciseVector) MulByFloat64(f float64) PreciseVector { -	return v.Mul(precFloat(f)) -} - -// Dot returns the standard dot product of v and ov. -func (v PreciseVector) Dot(ov PreciseVector) *big.Float { -	return precAdd(precMul(v.X, ov.X), precAdd(precMul(v.Y, ov.Y), precMul(v.Z, ov.Z))) -} - -// Cross returns the standard cross product of v and ov. -func (v PreciseVector) Cross(ov PreciseVector) PreciseVector { -	return PreciseVector{ -		X: precSub(precMul(v.Y, ov.Z), precMul(v.Z, ov.Y)), -		Y: precSub(precMul(v.Z, ov.X), precMul(v.X, ov.Z)), -		Z: precSub(precMul(v.X, ov.Y), precMul(v.Y, ov.X)), -	} -} - -// LargestComponent returns the axis that represents the largest component in this vector. -func (v PreciseVector) LargestComponent() Axis { -	t := v.Abs() - -	if t.X.Cmp(t.Y) > 0 { -		if t.X.Cmp(t.Z) > 0 { -			return XAxis -		} -		return ZAxis -	} -	if t.Y.Cmp(t.Z) > 0 { -		return YAxis -	} -	return ZAxis -} - -// SmallestComponent returns the axis that represents the smallest component in this vector. -func (v PreciseVector) SmallestComponent() Axis { -	t := v.Abs() - -	if t.X.Cmp(t.Y) < 0 { -		if t.X.Cmp(t.Z) < 0 { -			return XAxis -		} -		return ZAxis -	} -	if t.Y.Cmp(t.Z) < 0 { -		return YAxis -	} -	return ZAxis -} diff --git a/vendor/github.com/golang/geo/r3/vector.go b/vendor/github.com/golang/geo/r3/vector.go deleted file mode 100644 index ccda622f4..000000000 --- a/vendor/github.com/golang/geo/r3/vector.go +++ /dev/null @@ -1,183 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package r3 - -import ( -	"fmt" -	"math" - -	"github.com/golang/geo/s1" -) - -// Vector represents a point in ℝ³. -type Vector struct { -	X, Y, Z float64 -} - -// ApproxEqual reports whether v and ov are equal within a small epsilon. -func (v Vector) ApproxEqual(ov Vector) bool { -	const epsilon = 1e-16 -	return math.Abs(v.X-ov.X) < epsilon && math.Abs(v.Y-ov.Y) < epsilon && math.Abs(v.Z-ov.Z) < epsilon -} - -func (v Vector) String() string { return fmt.Sprintf("(%0.24f, %0.24f, %0.24f)", v.X, v.Y, v.Z) } - -// Norm returns the vector's norm. -func (v Vector) Norm() float64 { return math.Sqrt(v.Dot(v)) } - -// Norm2 returns the square of the norm. -func (v Vector) Norm2() float64 { return v.Dot(v) } - -// Normalize returns a unit vector in the same direction as v. -func (v Vector) Normalize() Vector { -	n2 := v.Norm2() -	if n2 == 0 { -		return Vector{0, 0, 0} -	} -	return v.Mul(1 / math.Sqrt(n2)) -} - -// IsUnit returns whether this vector is of approximately unit length. -func (v Vector) IsUnit() bool { -	const epsilon = 5e-14 -	return math.Abs(v.Norm2()-1) <= epsilon -} - -// Abs returns the vector with nonnegative components. -func (v Vector) Abs() Vector { return Vector{math.Abs(v.X), math.Abs(v.Y), math.Abs(v.Z)} } - -// Add returns the standard vector sum of v and ov. -func (v Vector) Add(ov Vector) Vector { return Vector{v.X + ov.X, v.Y + ov.Y, v.Z + ov.Z} } - -// Sub returns the standard vector difference of v and ov. -func (v Vector) Sub(ov Vector) Vector { return Vector{v.X - ov.X, v.Y - ov.Y, v.Z - ov.Z} } - -// Mul returns the standard scalar product of v and m. -func (v Vector) Mul(m float64) Vector { return Vector{m * v.X, m * v.Y, m * v.Z} } - -// Dot returns the standard dot product of v and ov. -func (v Vector) Dot(ov Vector) float64 { return v.X*ov.X + v.Y*ov.Y + v.Z*ov.Z } - -// Cross returns the standard cross product of v and ov. -func (v Vector) Cross(ov Vector) Vector { -	return Vector{ -		v.Y*ov.Z - v.Z*ov.Y, -		v.Z*ov.X - v.X*ov.Z, -		v.X*ov.Y - v.Y*ov.X, -	} -} - -// Distance returns the Euclidean distance between v and ov. -func (v Vector) Distance(ov Vector) float64 { return v.Sub(ov).Norm() } - -// Angle returns the angle between v and ov. -func (v Vector) Angle(ov Vector) s1.Angle { -	return s1.Angle(math.Atan2(v.Cross(ov).Norm(), v.Dot(ov))) * s1.Radian -} - -// Axis enumerates the 3 axes of ℝ³. -type Axis int - -// The three axes of ℝ³. -const ( -	XAxis Axis = iota -	YAxis -	ZAxis -) - -// Ortho returns a unit vector that is orthogonal to v. -// Ortho(-v) = -Ortho(v) for all v. -func (v Vector) Ortho() Vector { -	ov := Vector{0.012, 0.0053, 0.00457} -	switch v.LargestComponent() { -	case XAxis: -		ov.Z = 1 -	case YAxis: -		ov.X = 1 -	default: -		ov.Y = 1 -	} -	return v.Cross(ov).Normalize() -} - -// LargestComponent returns the axis that represents the largest component in this vector. -func (v Vector) LargestComponent() Axis { -	t := v.Abs() - -	if t.X > t.Y { -		if t.X > t.Z { -			return XAxis -		} -		return ZAxis -	} -	if t.Y > t.Z { -		return YAxis -	} -	return ZAxis -} - -// SmallestComponent returns the axis that represents the smallest component in this vector. -func (v Vector) SmallestComponent() Axis { -	t := v.Abs() - -	if t.X < t.Y { -		if t.X < t.Z { -			return XAxis -		} -		return ZAxis -	} -	if t.Y < t.Z { -		return YAxis -	} -	return ZAxis -} - -// Cmp compares v and ov lexicographically and returns: -// -//   -1 if v <  ov -//    0 if v == ov -//   +1 if v >  ov -// -// This method is based on C++'s std::lexicographical_compare. Two entities -// are compared element by element with the given operator. The first mismatch -// defines which is less (or greater) than the other. If both have equivalent -// values they are lexicographically equal. -func (v Vector) Cmp(ov Vector) int { -	if v.X < ov.X { -		return -1 -	} -	if v.X > ov.X { -		return 1 -	} - -	// First elements were the same, try the next. -	if v.Y < ov.Y { -		return -1 -	} -	if v.Y > ov.Y { -		return 1 -	} - -	// Second elements were the same return the final compare. -	if v.Z < ov.Z { -		return -1 -	} -	if v.Z > ov.Z { -		return 1 -	} - -	// Both are equal -	return 0 -} diff --git a/vendor/github.com/golang/geo/s1/angle.go b/vendor/github.com/golang/geo/s1/angle.go deleted file mode 100644 index 747b23dea..000000000 --- a/vendor/github.com/golang/geo/s1/angle.go +++ /dev/null @@ -1,120 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s1 - -import ( -	"math" -	"strconv" -) - -// Angle represents a 1D angle. The internal representation is a double precision -// value in radians, so conversion to and from radians is exact. -// Conversions between E5, E6, E7, and Degrees are not always -// exact. For example, Degrees(3.1) is different from E6(3100000) or E7(31000000). -// -// The following conversions between degrees and radians are exact: -// -//       Degree*180 == Radian*math.Pi -//   Degree*(180/n) == Radian*(math.Pi/n)     for n == 0..8 -// -// These identities hold when the arguments are scaled up or down by any power -// of 2. Some similar identities are also true, for example, -// -//   Degree*60 == Radian*(math.Pi/3) -// -// But be aware that this type of identity does not hold in general. For example, -// -//   Degree*3 != Radian*(math.Pi/60) -// -// Similarly, the conversion to radians means that (Angle(x)*Degree).Degrees() -// does not always equal x. For example, -// -//   (Angle(45*n)*Degree).Degrees() == 45*n     for n == 0..8 -// -// but -// -//   (60*Degree).Degrees() != 60 -// -// When testing for equality, you should allow for numerical errors (ApproxEqual) -// or convert to discrete E5/E6/E7 values first. -type Angle float64 - -// Angle units. -const ( -	Radian Angle = 1 -	Degree       = (math.Pi / 180) * Radian - -	E5 = 1e-5 * Degree -	E6 = 1e-6 * Degree -	E7 = 1e-7 * Degree -) - -// Radians returns the angle in radians. -func (a Angle) Radians() float64 { return float64(a) } - -// Degrees returns the angle in degrees. -func (a Angle) Degrees() float64 { return float64(a / Degree) } - -// round returns the value rounded to nearest as an int32. -// This does not match C++ exactly for the case of x.5. -func round(val float64) int32 { -	if val < 0 { -		return int32(val - 0.5) -	} -	return int32(val + 0.5) -} - -// InfAngle returns an angle larger than any finite angle. -func InfAngle() Angle { -	return Angle(math.Inf(1)) -} - -// isInf reports whether this Angle is infinite. -func (a Angle) isInf() bool { -	return math.IsInf(float64(a), 0) -} - -// E5 returns the angle in hundred thousandths of degrees. -func (a Angle) E5() int32 { return round(a.Degrees() * 1e5) } - -// E6 returns the angle in millionths of degrees. -func (a Angle) E6() int32 { return round(a.Degrees() * 1e6) } - -// E7 returns the angle in ten millionths of degrees. -func (a Angle) E7() int32 { return round(a.Degrees() * 1e7) } - -// Abs returns the absolute value of the angle. -func (a Angle) Abs() Angle { return Angle(math.Abs(float64(a))) } - -// Normalized returns an equivalent angle in (-π, π]. -func (a Angle) Normalized() Angle { -	rad := math.Remainder(float64(a), 2*math.Pi) -	if rad <= -math.Pi { -		rad = math.Pi -	} -	return Angle(rad) -} - -func (a Angle) String() string { -	return strconv.FormatFloat(a.Degrees(), 'f', 7, 64) // like "%.7f" -} - -// ApproxEqual reports whether the two angles are the same up to a small tolerance. -func (a Angle) ApproxEqual(other Angle) bool { -	return math.Abs(float64(a)-float64(other)) <= epsilon -} - -// BUG(dsymonds): The major differences from the C++ version are: -//   - no unsigned E5/E6/E7 methods diff --git a/vendor/github.com/golang/geo/s1/chordangle.go b/vendor/github.com/golang/geo/s1/chordangle.go deleted file mode 100644 index 77d71648f..000000000 --- a/vendor/github.com/golang/geo/s1/chordangle.go +++ /dev/null @@ -1,320 +0,0 @@ -// Copyright 2015 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s1 - -import ( -	"math" -) - -// ChordAngle represents the angle subtended by a chord (i.e., the straight -// line segment connecting two points on the sphere). Its representation -// makes it very efficient for computing and comparing distances, but unlike -// Angle it is only capable of representing angles between 0 and π radians. -// Generally, ChordAngle should only be used in loops where many angles need -// to be calculated and compared. Otherwise it is simpler to use Angle. -// -// ChordAngle loses some accuracy as the angle approaches π radians. -// There are several different ways to measure this error, including the -// representational error (i.e., how accurately ChordAngle can represent -// angles near π radians), the conversion error (i.e., how much precision is -// lost when an Angle is converted to an ChordAngle), and the measurement -// error (i.e., how accurate the ChordAngle(a, b) constructor is when the -// points A and B are separated by angles close to π radians). All of these -// errors differ by a small constant factor. -// -// For the measurement error (which is the largest of these errors and also -// the most important in practice), let the angle between A and B be (π - x) -// radians, i.e. A and B are within "x" radians of being antipodal. The -// corresponding chord length is -// -//    r = 2 * sin((π - x) / 2) = 2 * cos(x / 2) -// -// For values of x not close to π the relative error in the squared chord -// length is at most 4.5 * dblEpsilon (see MaxPointError below). -// The relative error in "r" is thus at most 2.25 * dblEpsilon ~= 5e-16. To -// convert this error into an equivalent angle, we have -// -//    |dr / dx| = sin(x / 2) -// -// and therefore -// -//    |dx| = dr / sin(x / 2) -//         = 5e-16 * (2 * cos(x / 2)) / sin(x / 2) -//         = 1e-15 / tan(x / 2) -// -// The maximum error is attained when -// -//    x  = |dx| -//       = 1e-15 / tan(x / 2) -//      ~= 1e-15 / (x / 2) -//      ~= sqrt(2e-15) -// -// In summary, the measurement error for an angle (π - x) is at most -// -//    dx  = min(1e-15 / tan(x / 2), sqrt(2e-15)) -//      (~= min(2e-15 / x, sqrt(2e-15)) when x is small) -// -// On the Earth's surface (assuming a radius of 6371km), this corresponds to -// the following worst-case measurement errors: -// -//     Accuracy:             Unless antipodal to within: -//     ---------             --------------------------- -//     6.4 nanometers        10,000 km (90 degrees) -//     1 micrometer          81.2 kilometers -//     1 millimeter          81.2 meters -//     1 centimeter          8.12 meters -//     28.5 centimeters      28.5 centimeters -// -// The representational and conversion errors referred to earlier are somewhat -// smaller than this. For example, maximum distance between adjacent -// representable ChordAngle values is only 13.5 cm rather than 28.5 cm. To -// see this, observe that the closest representable value to r^2 = 4 is -// r^2 =  4 * (1 - dblEpsilon / 2). Thus r = 2 * (1 - dblEpsilon / 4) and -// the angle between these two representable values is -// -//    x  = 2 * acos(r / 2) -//       = 2 * acos(1 - dblEpsilon / 4) -//      ~= 2 * asin(sqrt(dblEpsilon / 2) -//      ~= sqrt(2 * dblEpsilon) -//      ~= 2.1e-8 -// -// which is 13.5 cm on the Earth's surface. -// -// The worst case rounding error occurs when the value halfway between these -// two representable values is rounded up to 4. This halfway value is -// r^2 = (4 * (1 - dblEpsilon / 4)), thus r = 2 * (1 - dblEpsilon / 8) and -// the worst case rounding error is -// -//    x  = 2 * acos(r / 2) -//       = 2 * acos(1 - dblEpsilon / 8) -//      ~= 2 * asin(sqrt(dblEpsilon / 4) -//      ~= sqrt(dblEpsilon) -//      ~= 1.5e-8 -// -// which is 9.5 cm on the Earth's surface. -type ChordAngle float64 - -const ( -	// NegativeChordAngle represents a chord angle smaller than the zero angle. -	// The only valid operations on a NegativeChordAngle are comparisons, -	// Angle conversions, and Successor/Predecessor. -	NegativeChordAngle = ChordAngle(-1) - -	// RightChordAngle represents a chord angle of 90 degrees (a "right angle"). -	RightChordAngle = ChordAngle(2) - -	// StraightChordAngle represents a chord angle of 180 degrees (a "straight angle"). -	// This is the maximum finite chord angle. -	StraightChordAngle = ChordAngle(4) - -	// maxLength2 is the square of the maximum length allowed in a ChordAngle. -	maxLength2 = 4.0 -) - -// ChordAngleFromAngle returns a ChordAngle from the given Angle. -func ChordAngleFromAngle(a Angle) ChordAngle { -	if a < 0 { -		return NegativeChordAngle -	} -	if a.isInf() { -		return InfChordAngle() -	} -	l := 2 * math.Sin(0.5*math.Min(math.Pi, a.Radians())) -	return ChordAngle(l * l) -} - -// ChordAngleFromSquaredLength returns a ChordAngle from the squared chord length. -// Note that the argument is automatically clamped to a maximum of 4 to -// handle possible roundoff errors. The argument must be non-negative. -func ChordAngleFromSquaredLength(length2 float64) ChordAngle { -	if length2 > maxLength2 { -		return StraightChordAngle -	} -	return ChordAngle(length2) -} - -// Expanded returns a new ChordAngle that has been adjusted by the given error -// bound (which can be positive or negative). Error should be the value -// returned by either MaxPointError or MaxAngleError. For example: -//    a := ChordAngleFromPoints(x, y) -//    a1 := a.Expanded(a.MaxPointError()) -func (c ChordAngle) Expanded(e float64) ChordAngle { -	// If the angle is special, don't change it. Otherwise clamp it to the valid range. -	if c.isSpecial() { -		return c -	} -	return ChordAngle(math.Max(0.0, math.Min(maxLength2, float64(c)+e))) -} - -// Angle converts this ChordAngle to an Angle. -func (c ChordAngle) Angle() Angle { -	if c < 0 { -		return -1 * Radian -	} -	if c.isInf() { -		return InfAngle() -	} -	return Angle(2 * math.Asin(0.5*math.Sqrt(float64(c)))) -} - -// InfChordAngle returns a chord angle larger than any finite chord angle. -// The only valid operations on an InfChordAngle are comparisons, Angle -// conversions, and Successor/Predecessor. -func InfChordAngle() ChordAngle { -	return ChordAngle(math.Inf(1)) -} - -// isInf reports whether this ChordAngle is infinite. -func (c ChordAngle) isInf() bool { -	return math.IsInf(float64(c), 1) -} - -// isSpecial reports whether this ChordAngle is one of the special cases. -func (c ChordAngle) isSpecial() bool { -	return c < 0 || c.isInf() -} - -// isValid reports whether this ChordAngle is valid or not. -func (c ChordAngle) isValid() bool { -	return (c >= 0 && c <= maxLength2) || c.isSpecial() -} - -// Successor returns the smallest representable ChordAngle larger than this one. -// This can be used to convert a "<" comparison to a "<=" comparison. -// -// Note the following special cases: -//   NegativeChordAngle.Successor == 0 -//   StraightChordAngle.Successor == InfChordAngle -//   InfChordAngle.Successor == InfChordAngle -func (c ChordAngle) Successor() ChordAngle { -	if c >= maxLength2 { -		return InfChordAngle() -	} -	if c < 0 { -		return 0 -	} -	return ChordAngle(math.Nextafter(float64(c), 10.0)) -} - -// Predecessor returns the largest representable ChordAngle less than this one. -// -// Note the following special cases: -//   InfChordAngle.Predecessor == StraightChordAngle -//   ChordAngle(0).Predecessor == NegativeChordAngle -//   NegativeChordAngle.Predecessor == NegativeChordAngle -func (c ChordAngle) Predecessor() ChordAngle { -	if c <= 0 { -		return NegativeChordAngle -	} -	if c > maxLength2 { -		return StraightChordAngle -	} - -	return ChordAngle(math.Nextafter(float64(c), -10.0)) -} - -// MaxPointError returns the maximum error size for a ChordAngle constructed -// from 2 Points x and y, assuming that x and y are normalized to within the -// bounds guaranteed by s2.Point.Normalize. The error is defined with respect to -// the true distance after the points are projected to lie exactly on the sphere. -func (c ChordAngle) MaxPointError() float64 { -	// There is a relative error of (2.5*dblEpsilon) when computing the squared -	// distance, plus a relative error of 2 * dblEpsilon, plus an absolute error -	// of (16 * dblEpsilon**2) because the lengths of the input points may differ -	// from 1 by up to (2*dblEpsilon) each. (This is the maximum error in Normalize). -	return 4.5*dblEpsilon*float64(c) + 16*dblEpsilon*dblEpsilon -} - -// MaxAngleError returns the maximum error for a ChordAngle constructed -// as an Angle distance. -func (c ChordAngle) MaxAngleError() float64 { -	return dblEpsilon * float64(c) -} - -// Add adds the other ChordAngle to this one and returns the resulting value. -// This method assumes the ChordAngles are not special. -func (c ChordAngle) Add(other ChordAngle) ChordAngle { -	// Note that this method (and Sub) is much more efficient than converting -	// the ChordAngle to an Angle and adding those and converting back. It -	// requires only one square root plus a few additions and multiplications. - -	// Optimization for the common case where b is an error tolerance -	// parameter that happens to be set to zero. -	if other == 0 { -		return c -	} - -	// Clamp the angle sum to at most 180 degrees. -	if c+other >= maxLength2 { -		return StraightChordAngle -	} - -	// Let a and b be the (non-squared) chord lengths, and let c = a+b. -	// Let A, B, and C be the corresponding half-angles (a = 2*sin(A), etc). -	// Then the formula below can be derived from c = 2 * sin(A+B) and the -	// relationships   sin(A+B) = sin(A)*cos(B) + sin(B)*cos(A) -	//                 cos(X) = sqrt(1 - sin^2(X)) -	x := float64(c * (1 - 0.25*other)) -	y := float64(other * (1 - 0.25*c)) -	return ChordAngle(math.Min(maxLength2, x+y+2*math.Sqrt(x*y))) -} - -// Sub subtracts the other ChordAngle from this one and returns the resulting -// value. This method assumes the ChordAngles are not special. -func (c ChordAngle) Sub(other ChordAngle) ChordAngle { -	if other == 0 { -		return c -	} -	if c <= other { -		return 0 -	} -	x := float64(c * (1 - 0.25*other)) -	y := float64(other * (1 - 0.25*c)) -	return ChordAngle(math.Max(0.0, x+y-2*math.Sqrt(x*y))) -} - -// Sin returns the sine of this chord angle. This method is more efficient -// than converting to Angle and performing the computation. -func (c ChordAngle) Sin() float64 { -	return math.Sqrt(c.Sin2()) -} - -// Sin2 returns the square of the sine of this chord angle. -// It is more efficient than Sin. -func (c ChordAngle) Sin2() float64 { -	// Let a be the (non-squared) chord length, and let A be the corresponding -	// half-angle (a = 2*sin(A)). The formula below can be derived from: -	//   sin(2*A) = 2 * sin(A) * cos(A) -	//   cos^2(A) = 1 - sin^2(A) -	// This is much faster than converting to an angle and computing its sine. -	return float64(c * (1 - 0.25*c)) -} - -// Cos returns the cosine of this chord angle. This method is more efficient -// than converting to Angle and performing the computation. -func (c ChordAngle) Cos() float64 { -	// cos(2*A) = cos^2(A) - sin^2(A) = 1 - 2*sin^2(A) -	return float64(1 - 0.5*c) -} - -// Tan returns the tangent of this chord angle. -func (c ChordAngle) Tan() float64 { -	return c.Sin() / c.Cos() -} - -// TODO(roberts): Differences from C++: -//   Helpers to/from E5/E6/E7 -//   Helpers to/from degrees and radians directly. -//   FastUpperBoundFrom(angle Angle) diff --git a/vendor/github.com/golang/geo/s1/doc.go b/vendor/github.com/golang/geo/s1/doc.go deleted file mode 100644 index 52a2c526d..000000000 --- a/vendor/github.com/golang/geo/s1/doc.go +++ /dev/null @@ -1,20 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/* -Package s1 implements types and functions for working with geometry in S¹ (circular geometry). - -See ../s2 for a more detailed overview. -*/ -package s1 diff --git a/vendor/github.com/golang/geo/s1/interval.go b/vendor/github.com/golang/geo/s1/interval.go deleted file mode 100644 index 6fea5221f..000000000 --- a/vendor/github.com/golang/geo/s1/interval.go +++ /dev/null @@ -1,462 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s1 - -import ( -	"math" -	"strconv" -) - -// An Interval represents a closed interval on a unit circle (also known -// as a 1-dimensional sphere). It is capable of representing the empty -// interval (containing no points), the full interval (containing all -// points), and zero-length intervals (containing a single point). -// -// Points are represented by the angle they make with the positive x-axis in -// the range [-π, π]. An interval is represented by its lower and upper -// bounds (both inclusive, since the interval is closed). The lower bound may -// be greater than the upper bound, in which case the interval is "inverted" -// (i.e. it passes through the point (-1, 0)). -// -// The point (-1, 0) has two valid representations, π and -π. The -// normalized representation of this point is π, so that endpoints -// of normal intervals are in the range (-π, π]. We normalize the latter to -// the former in IntervalFromEndpoints. However, we take advantage of the point -// -π to construct two special intervals: -//   The full interval is [-π, π] -//   The empty interval is [π, -π]. -// -// Treat the exported fields as read-only. -type Interval struct { -	Lo, Hi float64 -} - -// IntervalFromEndpoints constructs a new interval from endpoints. -// Both arguments must be in the range [-π,π]. This function allows inverted intervals -// to be created. -func IntervalFromEndpoints(lo, hi float64) Interval { -	i := Interval{lo, hi} -	if lo == -math.Pi && hi != math.Pi { -		i.Lo = math.Pi -	} -	if hi == -math.Pi && lo != math.Pi { -		i.Hi = math.Pi -	} -	return i -} - -// IntervalFromPointPair returns the minimal interval containing the two given points. -// Both arguments must be in [-π,π]. -func IntervalFromPointPair(a, b float64) Interval { -	if a == -math.Pi { -		a = math.Pi -	} -	if b == -math.Pi { -		b = math.Pi -	} -	if positiveDistance(a, b) <= math.Pi { -		return Interval{a, b} -	} -	return Interval{b, a} -} - -// EmptyInterval returns an empty interval. -func EmptyInterval() Interval { return Interval{math.Pi, -math.Pi} } - -// FullInterval returns a full interval. -func FullInterval() Interval { return Interval{-math.Pi, math.Pi} } - -// IsValid reports whether the interval is valid. -func (i Interval) IsValid() bool { -	return (math.Abs(i.Lo) <= math.Pi && math.Abs(i.Hi) <= math.Pi && -		!(i.Lo == -math.Pi && i.Hi != math.Pi) && -		!(i.Hi == -math.Pi && i.Lo != math.Pi)) -} - -// IsFull reports whether the interval is full. -func (i Interval) IsFull() bool { return i.Lo == -math.Pi && i.Hi == math.Pi } - -// IsEmpty reports whether the interval is empty. -func (i Interval) IsEmpty() bool { return i.Lo == math.Pi && i.Hi == -math.Pi } - -// IsInverted reports whether the interval is inverted; that is, whether Lo > Hi. -func (i Interval) IsInverted() bool { return i.Lo > i.Hi } - -// Invert returns the interval with endpoints swapped. -func (i Interval) Invert() Interval { -	return Interval{i.Hi, i.Lo} -} - -// Center returns the midpoint of the interval. -// It is undefined for full and empty intervals. -func (i Interval) Center() float64 { -	c := 0.5 * (i.Lo + i.Hi) -	if !i.IsInverted() { -		return c -	} -	if c <= 0 { -		return c + math.Pi -	} -	return c - math.Pi -} - -// Length returns the length of the interval. -// The length of an empty interval is negative. -func (i Interval) Length() float64 { -	l := i.Hi - i.Lo -	if l >= 0 { -		return l -	} -	l += 2 * math.Pi -	if l > 0 { -		return l -	} -	return -1 -} - -// Assumes p ∈ (-π,π]. -func (i Interval) fastContains(p float64) bool { -	if i.IsInverted() { -		return (p >= i.Lo || p <= i.Hi) && !i.IsEmpty() -	} -	return p >= i.Lo && p <= i.Hi -} - -// Contains returns true iff the interval contains p. -// Assumes p ∈ [-π,π]. -func (i Interval) Contains(p float64) bool { -	if p == -math.Pi { -		p = math.Pi -	} -	return i.fastContains(p) -} - -// ContainsInterval returns true iff the interval contains oi. -func (i Interval) ContainsInterval(oi Interval) bool { -	if i.IsInverted() { -		if oi.IsInverted() { -			return oi.Lo >= i.Lo && oi.Hi <= i.Hi -		} -		return (oi.Lo >= i.Lo || oi.Hi <= i.Hi) && !i.IsEmpty() -	} -	if oi.IsInverted() { -		return i.IsFull() || oi.IsEmpty() -	} -	return oi.Lo >= i.Lo && oi.Hi <= i.Hi -} - -// InteriorContains returns true iff the interior of the interval contains p. -// Assumes p ∈ [-π,π]. -func (i Interval) InteriorContains(p float64) bool { -	if p == -math.Pi { -		p = math.Pi -	} -	if i.IsInverted() { -		return p > i.Lo || p < i.Hi -	} -	return (p > i.Lo && p < i.Hi) || i.IsFull() -} - -// InteriorContainsInterval returns true iff the interior of the interval contains oi. -func (i Interval) InteriorContainsInterval(oi Interval) bool { -	if i.IsInverted() { -		if oi.IsInverted() { -			return (oi.Lo > i.Lo && oi.Hi < i.Hi) || oi.IsEmpty() -		} -		return oi.Lo > i.Lo || oi.Hi < i.Hi -	} -	if oi.IsInverted() { -		return i.IsFull() || oi.IsEmpty() -	} -	return (oi.Lo > i.Lo && oi.Hi < i.Hi) || i.IsFull() -} - -// Intersects returns true iff the interval contains any points in common with oi. -func (i Interval) Intersects(oi Interval) bool { -	if i.IsEmpty() || oi.IsEmpty() { -		return false -	} -	if i.IsInverted() { -		return oi.IsInverted() || oi.Lo <= i.Hi || oi.Hi >= i.Lo -	} -	if oi.IsInverted() { -		return oi.Lo <= i.Hi || oi.Hi >= i.Lo -	} -	return oi.Lo <= i.Hi && oi.Hi >= i.Lo -} - -// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary. -func (i Interval) InteriorIntersects(oi Interval) bool { -	if i.IsEmpty() || oi.IsEmpty() || i.Lo == i.Hi { -		return false -	} -	if i.IsInverted() { -		return oi.IsInverted() || oi.Lo < i.Hi || oi.Hi > i.Lo -	} -	if oi.IsInverted() { -		return oi.Lo < i.Hi || oi.Hi > i.Lo -	} -	return (oi.Lo < i.Hi && oi.Hi > i.Lo) || i.IsFull() -} - -// Compute distance from a to b in [0,2π], in a numerically stable way. -func positiveDistance(a, b float64) float64 { -	d := b - a -	if d >= 0 { -		return d -	} -	return (b + math.Pi) - (a - math.Pi) -} - -// Union returns the smallest interval that contains both the interval and oi. -func (i Interval) Union(oi Interval) Interval { -	if oi.IsEmpty() { -		return i -	} -	if i.fastContains(oi.Lo) { -		if i.fastContains(oi.Hi) { -			// Either oi ⊂ i, or i ∪ oi is the full interval. -			if i.ContainsInterval(oi) { -				return i -			} -			return FullInterval() -		} -		return Interval{i.Lo, oi.Hi} -	} -	if i.fastContains(oi.Hi) { -		return Interval{oi.Lo, i.Hi} -	} - -	// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint. -	if i.IsEmpty() || oi.fastContains(i.Lo) { -		return oi -	} - -	// This is the only hard case where we need to find the closest pair of endpoints. -	if positiveDistance(oi.Hi, i.Lo) < positiveDistance(i.Hi, oi.Lo) { -		return Interval{oi.Lo, i.Hi} -	} -	return Interval{i.Lo, oi.Hi} -} - -// Intersection returns the smallest interval that contains the intersection of the interval and oi. -func (i Interval) Intersection(oi Interval) Interval { -	if oi.IsEmpty() { -		return EmptyInterval() -	} -	if i.fastContains(oi.Lo) { -		if i.fastContains(oi.Hi) { -			// Either oi ⊂ i, or i and oi intersect twice. Neither are empty. -			// In the first case we want to return i (which is shorter than oi). -			// In the second case one of them is inverted, and the smallest interval -			// that covers the two disjoint pieces is the shorter of i and oi. -			// We thus want to pick the shorter of i and oi in both cases. -			if oi.Length() < i.Length() { -				return oi -			} -			return i -		} -		return Interval{oi.Lo, i.Hi} -	} -	if i.fastContains(oi.Hi) { -		return Interval{i.Lo, oi.Hi} -	} - -	// Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint. -	if oi.fastContains(i.Lo) { -		return i -	} -	return EmptyInterval() -} - -// AddPoint returns the interval expanded by the minimum amount necessary such -// that it contains the given point "p" (an angle in the range [-π, π]). -func (i Interval) AddPoint(p float64) Interval { -	if math.Abs(p) > math.Pi { -		return i -	} -	if p == -math.Pi { -		p = math.Pi -	} -	if i.fastContains(p) { -		return i -	} -	if i.IsEmpty() { -		return Interval{p, p} -	} -	if positiveDistance(p, i.Lo) < positiveDistance(i.Hi, p) { -		return Interval{p, i.Hi} -	} -	return Interval{i.Lo, p} -} - -// Define the maximum rounding error for arithmetic operations. Depending on the -// platform the mantissa precision may be different than others, so we choose to -// use specific values to be consistent across all. -// The values come from the C++ implementation. -var ( -	// epsilon is a small number that represents a reasonable level of noise between two -	// values that can be considered to be equal. -	epsilon = 1e-15 -	// dblEpsilon is a smaller number for values that require more precision. -	dblEpsilon = 2.220446049e-16 -) - -// Expanded returns an interval that has been expanded on each side by margin. -// If margin is negative, then the function shrinks the interval on -// each side by margin instead. The resulting interval may be empty or -// full. Any expansion (positive or negative) of a full interval remains -// full, and any expansion of an empty interval remains empty. -func (i Interval) Expanded(margin float64) Interval { -	if margin >= 0 { -		if i.IsEmpty() { -			return i -		} -		// Check whether this interval will be full after expansion, allowing -		// for a rounding error when computing each endpoint. -		if i.Length()+2*margin+2*dblEpsilon >= 2*math.Pi { -			return FullInterval() -		} -	} else { -		if i.IsFull() { -			return i -		} -		// Check whether this interval will be empty after expansion, allowing -		// for a rounding error when computing each endpoint. -		if i.Length()+2*margin-2*dblEpsilon <= 0 { -			return EmptyInterval() -		} -	} -	result := IntervalFromEndpoints( -		math.Remainder(i.Lo-margin, 2*math.Pi), -		math.Remainder(i.Hi+margin, 2*math.Pi), -	) -	if result.Lo <= -math.Pi { -		result.Lo = math.Pi -	} -	return result -} - -// ApproxEqual reports whether this interval can be transformed into the given -// interval by moving each endpoint by at most ε, without the -// endpoints crossing (which would invert the interval). Empty and full -// intervals are considered to start at an arbitrary point on the unit circle, -// so any interval with (length <= 2*ε) matches the empty interval, and -// any interval with (length >= 2*π - 2*ε) matches the full interval. -func (i Interval) ApproxEqual(other Interval) bool { -	// Full and empty intervals require special cases because the endpoints -	// are considered to be positioned arbitrarily. -	if i.IsEmpty() { -		return other.Length() <= 2*epsilon -	} -	if other.IsEmpty() { -		return i.Length() <= 2*epsilon -	} -	if i.IsFull() { -		return other.Length() >= 2*(math.Pi-epsilon) -	} -	if other.IsFull() { -		return i.Length() >= 2*(math.Pi-epsilon) -	} - -	// The purpose of the last test below is to verify that moving the endpoints -	// does not invert the interval, e.g. [-1e20, 1e20] vs. [1e20, -1e20]. -	return (math.Abs(math.Remainder(other.Lo-i.Lo, 2*math.Pi)) <= epsilon && -		math.Abs(math.Remainder(other.Hi-i.Hi, 2*math.Pi)) <= epsilon && -		math.Abs(i.Length()-other.Length()) <= 2*epsilon) - -} - -func (i Interval) String() string { -	// like "[%.7f, %.7f]" -	return "[" + strconv.FormatFloat(i.Lo, 'f', 7, 64) + ", " + strconv.FormatFloat(i.Hi, 'f', 7, 64) + "]" -} - -// Complement returns the complement of the interior of the interval. An interval and -// its complement have the same boundary but do not share any interior -// values. The complement operator is not a bijection, since the complement -// of a singleton interval (containing a single value) is the same as the -// complement of an empty interval. -func (i Interval) Complement() Interval { -	if i.Lo == i.Hi { -		// Singleton. The interval just contains a single point. -		return FullInterval() -	} -	// Handles empty and full. -	return Interval{i.Hi, i.Lo} -} - -// ComplementCenter returns the midpoint of the complement of the interval. For full and empty -// intervals, the result is arbitrary. For a singleton interval (containing a -// single point), the result is its antipodal point on S1. -func (i Interval) ComplementCenter() float64 { -	if i.Lo != i.Hi { -		return i.Complement().Center() -	} -	// Singleton. The interval just contains a single point. -	if i.Hi <= 0 { -		return i.Hi + math.Pi -	} -	return i.Hi - math.Pi -} - -// DirectedHausdorffDistance returns the Hausdorff distance to the given interval. -// For two intervals i and y, this distance is defined by -//     h(i, y) = max_{p in i} min_{q in y} d(p, q), -// where d(.,.) is measured along S1. -func (i Interval) DirectedHausdorffDistance(y Interval) Angle { -	if y.ContainsInterval(i) { -		return 0 // This includes the case i is empty. -	} -	if y.IsEmpty() { -		return Angle(math.Pi) // maximum possible distance on s1. -	} -	yComplementCenter := y.ComplementCenter() -	if i.Contains(yComplementCenter) { -		return Angle(positiveDistance(y.Hi, yComplementCenter)) -	} - -	// The Hausdorff distance is realized by either two i.Hi endpoints or two -	// i.Lo endpoints, whichever is farther apart. -	hiHi := 0.0 -	if IntervalFromEndpoints(y.Hi, yComplementCenter).Contains(i.Hi) { -		hiHi = positiveDistance(y.Hi, i.Hi) -	} - -	loLo := 0.0 -	if IntervalFromEndpoints(yComplementCenter, y.Lo).Contains(i.Lo) { -		loLo = positiveDistance(i.Lo, y.Lo) -	} - -	return Angle(math.Max(hiHi, loLo)) -} - -// Project returns the closest point in the interval to the given point p. -// The interval must be non-empty. -func (i Interval) Project(p float64) float64 { -	if p == -math.Pi { -		p = math.Pi -	} -	if i.fastContains(p) { -		return p -	} -	// Compute distance from p to each endpoint. -	dlo := positiveDistance(p, i.Lo) -	dhi := positiveDistance(i.Hi, p) -	if dlo < dhi { -		return i.Lo -	} -	return i.Hi -} diff --git a/vendor/github.com/golang/geo/s2/bits_go18.go b/vendor/github.com/golang/geo/s2/bits_go18.go deleted file mode 100644 index 10a674da5..000000000 --- a/vendor/github.com/golang/geo/s2/bits_go18.go +++ /dev/null @@ -1,53 +0,0 @@ -// Copyright 2018 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -// +build !go1.9 - -package s2 - -// This file is for the bit manipulation code pre-Go 1.9. - -// findMSBSetNonZero64 returns the index (between 0 and 63) of the most -// significant set bit. Passing zero to this function returns zero. -func findMSBSetNonZero64(x uint64) int { -	val := []uint64{0x2, 0xC, 0xF0, 0xFF00, 0xFFFF0000, 0xFFFFFFFF00000000} -	shift := []uint64{1, 2, 4, 8, 16, 32} -	var msbPos uint64 -	for i := 5; i >= 0; i-- { -		if x&val[i] != 0 { -			x >>= shift[i] -			msbPos |= shift[i] -		} -	} -	return int(msbPos) -} - -const deBruijn64 = 0x03f79d71b4ca8b09 -const digitMask = uint64(1<<64 - 1) - -var deBruijn64Lookup = []byte{ -	0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, -	62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, -	63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, -	54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, -} - -// findLSBSetNonZero64 returns the index (between 0 and 63) of the least -// significant set bit. Passing zero to this function returns zero. -// -// This code comes from trailingZeroBits in https://golang.org/src/math/big/nat.go -// which references (Knuth, volume 4, section 7.3.1). -func findLSBSetNonZero64(x uint64) int { -	return int(deBruijn64Lookup[((x&-x)*(deBruijn64&digitMask))>>58]) -} diff --git a/vendor/github.com/golang/geo/s2/bits_go19.go b/vendor/github.com/golang/geo/s2/bits_go19.go deleted file mode 100644 index 9532b377d..000000000 --- a/vendor/github.com/golang/geo/s2/bits_go19.go +++ /dev/null @@ -1,39 +0,0 @@ -// Copyright 2018 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -// +build go1.9 - -package s2 - -// This file is for the bit manipulation code post-Go 1.9. - -import "math/bits" - -// findMSBSetNonZero64 returns the index (between 0 and 63) of the most -// significant set bit. Passing zero to this function return zero. -func findMSBSetNonZero64(x uint64) int { -	if x == 0 { -		return 0 -	} -	return 63 - bits.LeadingZeros64(x) -} - -// findLSBSetNonZero64 returns the index (between 0 and 63) of the least -// significant set bit. Passing zero to this function return zero. -func findLSBSetNonZero64(x uint64) int { -	if x == 0 { -		return 0 -	} -	return bits.TrailingZeros64(x) -} diff --git a/vendor/github.com/golang/geo/s2/cap.go b/vendor/github.com/golang/geo/s2/cap.go deleted file mode 100644 index c4fb2e1e0..000000000 --- a/vendor/github.com/golang/geo/s2/cap.go +++ /dev/null @@ -1,519 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" -	"io" -	"math" - -	"github.com/golang/geo/r1" -	"github.com/golang/geo/s1" -) - -var ( -	// centerPoint is the default center for Caps -	centerPoint = PointFromCoords(1.0, 0, 0) -) - -// Cap represents a disc-shaped region defined by a center and radius. -// Technically this shape is called a "spherical cap" (rather than disc) -// because it is not planar; the cap represents a portion of the sphere that -// has been cut off by a plane. The boundary of the cap is the circle defined -// by the intersection of the sphere and the plane. For containment purposes, -// the cap is a closed set, i.e. it contains its boundary. -// -// For the most part, you can use a spherical cap wherever you would use a -// disc in planar geometry. The radius of the cap is measured along the -// surface of the sphere (rather than the straight-line distance through the -// interior). Thus a cap of radius π/2 is a hemisphere, and a cap of radius -// π covers the entire sphere. -// -// The center is a point on the surface of the unit sphere. (Hence the need for -// it to be of unit length.) -// -// A cap can also be defined by its center point and height. The height is the -// distance from the center point to the cutoff plane. There is also support for -// "empty" and "full" caps, which contain no points and all points respectively. -// -// Here are some useful relationships between the cap height (h), the cap -// radius (r), the maximum chord length from the cap's center (d), and the -// radius of cap's base (a). -// -//     h = 1 - cos(r) -//       = 2 * sin^2(r/2) -//   d^2 = 2 * h -//       = a^2 + h^2 -// -// The zero value of Cap is an invalid cap. Use EmptyCap to get a valid empty cap. -type Cap struct { -	center Point -	radius s1.ChordAngle -} - -// CapFromPoint constructs a cap containing a single point. -func CapFromPoint(p Point) Cap { -	return CapFromCenterChordAngle(p, 0) -} - -// CapFromCenterAngle constructs a cap with the given center and angle. -func CapFromCenterAngle(center Point, angle s1.Angle) Cap { -	return CapFromCenterChordAngle(center, s1.ChordAngleFromAngle(angle)) -} - -// CapFromCenterChordAngle constructs a cap where the angle is expressed as an -// s1.ChordAngle. This constructor is more efficient than using an s1.Angle. -func CapFromCenterChordAngle(center Point, radius s1.ChordAngle) Cap { -	return Cap{ -		center: center, -		radius: radius, -	} -} - -// CapFromCenterHeight constructs a cap with the given center and height. A -// negative height yields an empty cap; a height of 2 or more yields a full cap. -// The center should be unit length. -func CapFromCenterHeight(center Point, height float64) Cap { -	return CapFromCenterChordAngle(center, s1.ChordAngleFromSquaredLength(2*height)) -} - -// CapFromCenterArea constructs a cap with the given center and surface area. -// Note that the area can also be interpreted as the solid angle subtended by the -// cap (because the sphere has unit radius). A negative area yields an empty cap; -// an area of 4*π or more yields a full cap. -func CapFromCenterArea(center Point, area float64) Cap { -	return CapFromCenterChordAngle(center, s1.ChordAngleFromSquaredLength(area/math.Pi)) -} - -// EmptyCap returns a cap that contains no points. -func EmptyCap() Cap { -	return CapFromCenterChordAngle(centerPoint, s1.NegativeChordAngle) -} - -// FullCap returns a cap that contains all points. -func FullCap() Cap { -	return CapFromCenterChordAngle(centerPoint, s1.StraightChordAngle) -} - -// IsValid reports whether the Cap is considered valid. -func (c Cap) IsValid() bool { -	return c.center.Vector.IsUnit() && c.radius <= s1.StraightChordAngle -} - -// IsEmpty reports whether the cap is empty, i.e. it contains no points. -func (c Cap) IsEmpty() bool { -	return c.radius < 0 -} - -// IsFull reports whether the cap is full, i.e. it contains all points. -func (c Cap) IsFull() bool { -	return c.radius == s1.StraightChordAngle -} - -// Center returns the cap's center point. -func (c Cap) Center() Point { -	return c.center -} - -// Height returns the height of the cap. This is the distance from the center -// point to the cutoff plane. -func (c Cap) Height() float64 { -	return float64(0.5 * c.radius) -} - -// Radius returns the cap radius as an s1.Angle. (Note that the cap angle -// is stored internally as a ChordAngle, so this method requires a trigonometric -// operation and may yield a slightly different result than the value passed -// to CapFromCenterAngle). -func (c Cap) Radius() s1.Angle { -	return c.radius.Angle() -} - -// Area returns the surface area of the Cap on the unit sphere. -func (c Cap) Area() float64 { -	return 2.0 * math.Pi * math.Max(0, c.Height()) -} - -// Contains reports whether this cap contains the other. -func (c Cap) Contains(other Cap) bool { -	// In a set containment sense, every cap contains the empty cap. -	if c.IsFull() || other.IsEmpty() { -		return true -	} -	return c.radius >= ChordAngleBetweenPoints(c.center, other.center).Add(other.radius) -} - -// Intersects reports whether this cap intersects the other cap. -// i.e. whether they have any points in common. -func (c Cap) Intersects(other Cap) bool { -	if c.IsEmpty() || other.IsEmpty() { -		return false -	} - -	return c.radius.Add(other.radius) >= ChordAngleBetweenPoints(c.center, other.center) -} - -// InteriorIntersects reports whether this caps interior intersects the other cap. -func (c Cap) InteriorIntersects(other Cap) bool { -	// Make sure this cap has an interior and the other cap is non-empty. -	if c.radius <= 0 || other.IsEmpty() { -		return false -	} - -	return c.radius.Add(other.radius) > ChordAngleBetweenPoints(c.center, other.center) -} - -// ContainsPoint reports whether this cap contains the point. -func (c Cap) ContainsPoint(p Point) bool { -	return ChordAngleBetweenPoints(c.center, p) <= c.radius -} - -// InteriorContainsPoint reports whether the point is within the interior of this cap. -func (c Cap) InteriorContainsPoint(p Point) bool { -	return c.IsFull() || ChordAngleBetweenPoints(c.center, p) < c.radius -} - -// Complement returns the complement of the interior of the cap. A cap and its -// complement have the same boundary but do not share any interior points. -// The complement operator is not a bijection because the complement of a -// singleton cap (containing a single point) is the same as the complement -// of an empty cap. -func (c Cap) Complement() Cap { -	if c.IsFull() { -		return EmptyCap() -	} -	if c.IsEmpty() { -		return FullCap() -	} - -	return CapFromCenterChordAngle(Point{c.center.Mul(-1)}, s1.StraightChordAngle.Sub(c.radius)) -} - -// CapBound returns a bounding spherical cap. This is not guaranteed to be exact. -func (c Cap) CapBound() Cap { -	return c -} - -// RectBound returns a bounding latitude-longitude rectangle. -// The bounds are not guaranteed to be tight. -func (c Cap) RectBound() Rect { -	if c.IsEmpty() { -		return EmptyRect() -	} - -	capAngle := c.Radius().Radians() -	allLongitudes := false -	lat := r1.Interval{ -		Lo: latitude(c.center).Radians() - capAngle, -		Hi: latitude(c.center).Radians() + capAngle, -	} -	lng := s1.FullInterval() - -	// Check whether cap includes the south pole. -	if lat.Lo <= -math.Pi/2 { -		lat.Lo = -math.Pi / 2 -		allLongitudes = true -	} - -	// Check whether cap includes the north pole. -	if lat.Hi >= math.Pi/2 { -		lat.Hi = math.Pi / 2 -		allLongitudes = true -	} - -	if !allLongitudes { -		// Compute the range of longitudes covered by the cap. We use the law -		// of sines for spherical triangles. Consider the triangle ABC where -		// A is the north pole, B is the center of the cap, and C is the point -		// of tangency between the cap boundary and a line of longitude. Then -		// C is a right angle, and letting a,b,c denote the sides opposite A,B,C, -		// we have sin(a)/sin(A) = sin(c)/sin(C), or sin(A) = sin(a)/sin(c). -		// Here "a" is the cap angle, and "c" is the colatitude (90 degrees -		// minus the latitude). This formula also works for negative latitudes. -		// -		// The formula for sin(a) follows from the relationship h = 1 - cos(a). -		sinA := c.radius.Sin() -		sinC := math.Cos(latitude(c.center).Radians()) -		if sinA <= sinC { -			angleA := math.Asin(sinA / sinC) -			lng.Lo = math.Remainder(longitude(c.center).Radians()-angleA, math.Pi*2) -			lng.Hi = math.Remainder(longitude(c.center).Radians()+angleA, math.Pi*2) -		} -	} -	return Rect{lat, lng} -} - -// Equal reports whether this cap is equal to the other cap. -func (c Cap) Equal(other Cap) bool { -	return (c.radius == other.radius && c.center == other.center) || -		(c.IsEmpty() && other.IsEmpty()) || -		(c.IsFull() && other.IsFull()) -} - -// ApproxEqual reports whether this cap is equal to the other cap within the given tolerance. -func (c Cap) ApproxEqual(other Cap) bool { -	const epsilon = 1e-14 -	r2 := float64(c.radius) -	otherR2 := float64(other.radius) -	return c.center.ApproxEqual(other.center) && -		math.Abs(r2-otherR2) <= epsilon || -		c.IsEmpty() && otherR2 <= epsilon || -		other.IsEmpty() && r2 <= epsilon || -		c.IsFull() && otherR2 >= 2-epsilon || -		other.IsFull() && r2 >= 2-epsilon -} - -// AddPoint increases the cap if necessary to include the given point. If this cap is empty, -// then the center is set to the point with a zero height. p must be unit-length. -func (c Cap) AddPoint(p Point) Cap { -	if c.IsEmpty() { -		c.center = p -		c.radius = 0 -		return c -	} - -	// After calling cap.AddPoint(p), cap.Contains(p) must be true. However -	// we don't need to do anything special to achieve this because Contains() -	// does exactly the same distance calculation that we do here. -	if newRad := ChordAngleBetweenPoints(c.center, p); newRad > c.radius { -		c.radius = newRad -	} -	return c -} - -// AddCap increases the cap height if necessary to include the other cap. If this cap is empty, -// it is set to the other cap. -func (c Cap) AddCap(other Cap) Cap { -	if c.IsEmpty() { -		return other -	} -	if other.IsEmpty() { -		return c -	} - -	// We round up the distance to ensure that the cap is actually contained. -	// TODO(roberts): Do some error analysis in order to guarantee this. -	dist := ChordAngleBetweenPoints(c.center, other.center).Add(other.radius) -	if newRad := dist.Expanded(dblEpsilon * float64(dist)); newRad > c.radius { -		c.radius = newRad -	} -	return c -} - -// Expanded returns a new cap expanded by the given angle. If the cap is empty, -// it returns an empty cap. -func (c Cap) Expanded(distance s1.Angle) Cap { -	if c.IsEmpty() { -		return EmptyCap() -	} -	return CapFromCenterChordAngle(c.center, c.radius.Add(s1.ChordAngleFromAngle(distance))) -} - -func (c Cap) String() string { -	return fmt.Sprintf("[Center=%v, Radius=%f]", c.center.Vector, c.Radius().Degrees()) -} - -// radiusToHeight converts an s1.Angle into the height of the cap. -func radiusToHeight(r s1.Angle) float64 { -	if r.Radians() < 0 { -		return float64(s1.NegativeChordAngle) -	} -	if r.Radians() >= math.Pi { -		return float64(s1.RightChordAngle) -	} -	return float64(0.5 * s1.ChordAngleFromAngle(r)) - -} - -// ContainsCell reports whether the cap contains the given cell. -func (c Cap) ContainsCell(cell Cell) bool { -	// If the cap does not contain all cell vertices, return false. -	var vertices [4]Point -	for k := 0; k < 4; k++ { -		vertices[k] = cell.Vertex(k) -		if !c.ContainsPoint(vertices[k]) { -			return false -		} -	} -	// Otherwise, return true if the complement of the cap does not intersect the cell. -	return !c.Complement().intersects(cell, vertices) -} - -// IntersectsCell reports whether the cap intersects the cell. -func (c Cap) IntersectsCell(cell Cell) bool { -	// If the cap contains any cell vertex, return true. -	var vertices [4]Point -	for k := 0; k < 4; k++ { -		vertices[k] = cell.Vertex(k) -		if c.ContainsPoint(vertices[k]) { -			return true -		} -	} -	return c.intersects(cell, vertices) -} - -// intersects reports whether the cap intersects any point of the cell excluding -// its vertices (which are assumed to already have been checked). -func (c Cap) intersects(cell Cell, vertices [4]Point) bool { -	// If the cap is a hemisphere or larger, the cell and the complement of the cap -	// are both convex. Therefore since no vertex of the cell is contained, no other -	// interior point of the cell is contained either. -	if c.radius >= s1.RightChordAngle { -		return false -	} - -	// We need to check for empty caps due to the center check just below. -	if c.IsEmpty() { -		return false -	} - -	// Optimization: return true if the cell contains the cap center. This allows half -	// of the edge checks below to be skipped. -	if cell.ContainsPoint(c.center) { -		return true -	} - -	// At this point we know that the cell does not contain the cap center, and the cap -	// does not contain any cell vertex. The only way that they can intersect is if the -	// cap intersects the interior of some edge. -	sin2Angle := c.radius.Sin2() -	for k := 0; k < 4; k++ { -		edge := cell.Edge(k).Vector -		dot := c.center.Vector.Dot(edge) -		if dot > 0 { -			// The center is in the interior half-space defined by the edge. We do not need -			// to consider these edges, since if the cap intersects this edge then it also -			// intersects the edge on the opposite side of the cell, because the center is -			// not contained with the cell. -			continue -		} - -		// The Norm2() factor is necessary because "edge" is not normalized. -		if dot*dot > sin2Angle*edge.Norm2() { -			return false -		} - -		// Otherwise, the great circle containing this edge intersects the interior of the cap. We just -		// need to check whether the point of closest approach occurs between the two edge endpoints. -		dir := edge.Cross(c.center.Vector) -		if dir.Dot(vertices[k].Vector) < 0 && dir.Dot(vertices[(k+1)&3].Vector) > 0 { -			return true -		} -	} -	return false -} - -// CellUnionBound computes a covering of the Cap. In general the covering -// consists of at most 4 cells except for very large caps, which may need -// up to 6 cells. The output is not sorted. -func (c Cap) CellUnionBound() []CellID { -	// TODO(roberts): The covering could be made quite a bit tighter by mapping -	// the cap to a rectangle in (i,j)-space and finding a covering for that. - -	// Find the maximum level such that the cap contains at most one cell vertex -	// and such that CellID.AppendVertexNeighbors() can be called. -	level := MinWidthMetric.MaxLevel(c.Radius().Radians()) - 1 - -	// If level < 0, more than three face cells are required. -	if level < 0 { -		cellIDs := make([]CellID, 6) -		for face := 0; face < 6; face++ { -			cellIDs[face] = CellIDFromFace(face) -		} -		return cellIDs -	} -	// The covering consists of the 4 cells at the given level that share the -	// cell vertex that is closest to the cap center. -	return cellIDFromPoint(c.center).VertexNeighbors(level) -} - -// Centroid returns the true centroid of the cap multiplied by its surface area -// The result lies on the ray from the origin through the cap's center, but it -// is not unit length. Note that if you just want the "surface centroid", i.e. -// the normalized result, then it is simpler to call Center. -// -// The reason for multiplying the result by the cap area is to make it -// easier to compute the centroid of more complicated shapes. The centroid -// of a union of disjoint regions can be computed simply by adding their -// Centroid() results. Caveat: for caps that contain a single point -// (i.e., zero radius), this method always returns the origin (0, 0, 0). -// This is because shapes with no area don't affect the centroid of a -// union whose total area is positive. -func (c Cap) Centroid() Point { -	// From symmetry, the centroid of the cap must be somewhere on the line -	// from the origin to the center of the cap on the surface of the sphere. -	// When a sphere is divided into slices of constant thickness by a set of -	// parallel planes, all slices have the same surface area. This implies -	// that the radial component of the centroid is simply the midpoint of the -	// range of radial distances spanned by the cap. That is easily computed -	// from the cap height. -	if c.IsEmpty() { -		return Point{} -	} -	r := 1 - 0.5*c.Height() -	return Point{c.center.Mul(r * c.Area())} -} - -// Union returns the smallest cap which encloses this cap and other. -func (c Cap) Union(other Cap) Cap { -	// If the other cap is larger, swap c and other for the rest of the computations. -	if c.radius < other.radius { -		c, other = other, c -	} - -	if c.IsFull() || other.IsEmpty() { -		return c -	} - -	// TODO: This calculation would be more efficient using s1.ChordAngles. -	cRadius := c.Radius() -	otherRadius := other.Radius() -	distance := c.center.Distance(other.center) -	if cRadius >= distance+otherRadius { -		return c -	} - -	resRadius := 0.5 * (distance + cRadius + otherRadius) -	resCenter := InterpolateAtDistance(0.5*(distance-cRadius+otherRadius), c.center, other.center) -	return CapFromCenterAngle(resCenter, resRadius) -} - -// Encode encodes the Cap. -func (c Cap) Encode(w io.Writer) error { -	e := &encoder{w: w} -	c.encode(e) -	return e.err -} - -func (c Cap) encode(e *encoder) { -	e.writeFloat64(c.center.X) -	e.writeFloat64(c.center.Y) -	e.writeFloat64(c.center.Z) -	e.writeFloat64(float64(c.radius)) -} - -// Decode decodes the Cap. -func (c *Cap) Decode(r io.Reader) error { -	d := &decoder{r: asByteReader(r)} -	c.decode(d) -	return d.err -} - -func (c *Cap) decode(d *decoder) { -	c.center.X = d.readFloat64() -	c.center.Y = d.readFloat64() -	c.center.Z = d.readFloat64() -	c.radius = s1.ChordAngle(d.readFloat64()) -} diff --git a/vendor/github.com/golang/geo/s2/cell.go b/vendor/github.com/golang/geo/s2/cell.go deleted file mode 100644 index 0a01a4f1f..000000000 --- a/vendor/github.com/golang/geo/s2/cell.go +++ /dev/null @@ -1,698 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"io" -	"math" - -	"github.com/golang/geo/r1" -	"github.com/golang/geo/r2" -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -// Cell is an S2 region object that represents a cell. Unlike CellIDs, -// it supports efficient containment and intersection tests. However, it is -// also a more expensive representation. -type Cell struct { -	face        int8 -	level       int8 -	orientation int8 -	id          CellID -	uv          r2.Rect -} - -// CellFromCellID constructs a Cell corresponding to the given CellID. -func CellFromCellID(id CellID) Cell { -	c := Cell{} -	c.id = id -	f, i, j, o := c.id.faceIJOrientation() -	c.face = int8(f) -	c.level = int8(c.id.Level()) -	c.orientation = int8(o) -	c.uv = ijLevelToBoundUV(i, j, int(c.level)) -	return c -} - -// CellFromPoint constructs a cell for the given Point. -func CellFromPoint(p Point) Cell { -	return CellFromCellID(cellIDFromPoint(p)) -} - -// CellFromLatLng constructs a cell for the given LatLng. -func CellFromLatLng(ll LatLng) Cell { -	return CellFromCellID(CellIDFromLatLng(ll)) -} - -// Face returns the face this cell is on. -func (c Cell) Face() int { -	return int(c.face) -} - -// oppositeFace returns the face opposite the given face. -func oppositeFace(face int) int { -	return (face + 3) % 6 -} - -// Level returns the level of this cell. -func (c Cell) Level() int { -	return int(c.level) -} - -// ID returns the CellID this cell represents. -func (c Cell) ID() CellID { -	return c.id -} - -// IsLeaf returns whether this Cell is a leaf or not. -func (c Cell) IsLeaf() bool { -	return c.level == maxLevel -} - -// SizeIJ returns the edge length of this cell in (i,j)-space. -func (c Cell) SizeIJ() int { -	return sizeIJ(int(c.level)) -} - -// SizeST returns the edge length of this cell in (s,t)-space. -func (c Cell) SizeST() float64 { -	return c.id.sizeST(int(c.level)) -} - -// Vertex returns the k-th vertex of the cell (k = 0,1,2,3) in CCW order -// (lower left, lower right, upper right, upper left in the UV plane). -func (c Cell) Vertex(k int) Point { -	return Point{faceUVToXYZ(int(c.face), c.uv.Vertices()[k].X, c.uv.Vertices()[k].Y).Normalize()} -} - -// Edge returns the inward-facing normal of the great circle passing through -// the CCW ordered edge from vertex k to vertex k+1 (mod 4) (for k = 0,1,2,3). -func (c Cell) Edge(k int) Point { -	switch k { -	case 0: -		return Point{vNorm(int(c.face), c.uv.Y.Lo).Normalize()} // Bottom -	case 1: -		return Point{uNorm(int(c.face), c.uv.X.Hi).Normalize()} // Right -	case 2: -		return Point{vNorm(int(c.face), c.uv.Y.Hi).Mul(-1.0).Normalize()} // Top -	default: -		return Point{uNorm(int(c.face), c.uv.X.Lo).Mul(-1.0).Normalize()} // Left -	} -} - -// BoundUV returns the bounds of this cell in (u,v)-space. -func (c Cell) BoundUV() r2.Rect { -	return c.uv -} - -// Center returns the direction vector corresponding to the center in -// (s,t)-space of the given cell. This is the point at which the cell is -// divided into four subcells; it is not necessarily the centroid of the -// cell in (u,v)-space or (x,y,z)-space -func (c Cell) Center() Point { -	return Point{c.id.rawPoint().Normalize()} -} - -// Children returns the four direct children of this cell in traversal order -// and returns true. If this is a leaf cell, or the children could not be created, -// false is returned. -// The C++ method is called Subdivide. -func (c Cell) Children() ([4]Cell, bool) { -	var children [4]Cell - -	if c.id.IsLeaf() { -		return children, false -	} - -	// Compute the cell midpoint in uv-space. -	uvMid := c.id.centerUV() - -	// Create four children with the appropriate bounds. -	cid := c.id.ChildBegin() -	for pos := 0; pos < 4; pos++ { -		children[pos] = Cell{ -			face:        c.face, -			level:       c.level + 1, -			orientation: c.orientation ^ int8(posToOrientation[pos]), -			id:          cid, -		} - -		// We want to split the cell in half in u and v. To decide which -		// side to set equal to the midpoint value, we look at cell's (i,j) -		// position within its parent. The index for i is in bit 1 of ij. -		ij := posToIJ[c.orientation][pos] -		i := ij >> 1 -		j := ij & 1 -		if i == 1 { -			children[pos].uv.X.Hi = c.uv.X.Hi -			children[pos].uv.X.Lo = uvMid.X -		} else { -			children[pos].uv.X.Lo = c.uv.X.Lo -			children[pos].uv.X.Hi = uvMid.X -		} -		if j == 1 { -			children[pos].uv.Y.Hi = c.uv.Y.Hi -			children[pos].uv.Y.Lo = uvMid.Y -		} else { -			children[pos].uv.Y.Lo = c.uv.Y.Lo -			children[pos].uv.Y.Hi = uvMid.Y -		} -		cid = cid.Next() -	} -	return children, true -} - -// ExactArea returns the area of this cell as accurately as possible. -func (c Cell) ExactArea() float64 { -	v0, v1, v2, v3 := c.Vertex(0), c.Vertex(1), c.Vertex(2), c.Vertex(3) -	return PointArea(v0, v1, v2) + PointArea(v0, v2, v3) -} - -// ApproxArea returns the approximate area of this cell. This method is accurate -// to within 3% percent for all cell sizes and accurate to within 0.1% for cells -// at level 5 or higher (i.e. squares 350km to a side or smaller on the Earth's -// surface). It is moderately cheap to compute. -func (c Cell) ApproxArea() float64 { -	// All cells at the first two levels have the same area. -	if c.level < 2 { -		return c.AverageArea() -	} - -	// First, compute the approximate area of the cell when projected -	// perpendicular to its normal. The cross product of its diagonals gives -	// the normal, and the length of the normal is twice the projected area. -	flatArea := 0.5 * (c.Vertex(2).Sub(c.Vertex(0).Vector). -		Cross(c.Vertex(3).Sub(c.Vertex(1).Vector)).Norm()) - -	// Now, compensate for the curvature of the cell surface by pretending -	// that the cell is shaped like a spherical cap. The ratio of the -	// area of a spherical cap to the area of its projected disc turns out -	// to be 2 / (1 + sqrt(1 - r*r)) where r is the radius of the disc. -	// For example, when r=0 the ratio is 1, and when r=1 the ratio is 2. -	// Here we set Pi*r*r == flatArea to find the equivalent disc. -	return flatArea * 2 / (1 + math.Sqrt(1-math.Min(1/math.Pi*flatArea, 1))) -} - -// AverageArea returns the average area of cells at the level of this cell. -// This is accurate to within a factor of 1.7. -func (c Cell) AverageArea() float64 { -	return AvgAreaMetric.Value(int(c.level)) -} - -// IntersectsCell reports whether the intersection of this cell and the other cell is not nil. -func (c Cell) IntersectsCell(oc Cell) bool { -	return c.id.Intersects(oc.id) -} - -// ContainsCell reports whether this cell contains the other cell. -func (c Cell) ContainsCell(oc Cell) bool { -	return c.id.Contains(oc.id) -} - -// CellUnionBound computes a covering of the Cell. -func (c Cell) CellUnionBound() []CellID { -	return c.CapBound().CellUnionBound() -} - -// latitude returns the latitude of the cell vertex in radians given by (i,j), -// where i and j indicate the Hi (1) or Lo (0) corner. -func (c Cell) latitude(i, j int) float64 { -	var u, v float64 -	switch { -	case i == 0 && j == 0: -		u = c.uv.X.Lo -		v = c.uv.Y.Lo -	case i == 0 && j == 1: -		u = c.uv.X.Lo -		v = c.uv.Y.Hi -	case i == 1 && j == 0: -		u = c.uv.X.Hi -		v = c.uv.Y.Lo -	case i == 1 && j == 1: -		u = c.uv.X.Hi -		v = c.uv.Y.Hi -	default: -		panic("i and/or j is out of bounds") -	} -	return latitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians() -} - -// longitude returns the longitude of the cell vertex in radians given by (i,j), -// where i and j indicate the Hi (1) or Lo (0) corner. -func (c Cell) longitude(i, j int) float64 { -	var u, v float64 -	switch { -	case i == 0 && j == 0: -		u = c.uv.X.Lo -		v = c.uv.Y.Lo -	case i == 0 && j == 1: -		u = c.uv.X.Lo -		v = c.uv.Y.Hi -	case i == 1 && j == 0: -		u = c.uv.X.Hi -		v = c.uv.Y.Lo -	case i == 1 && j == 1: -		u = c.uv.X.Hi -		v = c.uv.Y.Hi -	default: -		panic("i and/or j is out of bounds") -	} -	return longitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians() -} - -var ( -	poleMinLat = math.Asin(math.Sqrt(1.0/3)) - 0.5*dblEpsilon -) - -// RectBound returns the bounding rectangle of this cell. -func (c Cell) RectBound() Rect { -	if c.level > 0 { -		// Except for cells at level 0, the latitude and longitude extremes are -		// attained at the vertices.  Furthermore, the latitude range is -		// determined by one pair of diagonally opposite vertices and the -		// longitude range is determined by the other pair. -		// -		// We first determine which corner (i,j) of the cell has the largest -		// absolute latitude.  To maximize latitude, we want to find the point in -		// the cell that has the largest absolute z-coordinate and the smallest -		// absolute x- and y-coordinates.  To do this we look at each coordinate -		// (u and v), and determine whether we want to minimize or maximize that -		// coordinate based on the axis direction and the cell's (u,v) quadrant. -		u := c.uv.X.Lo + c.uv.X.Hi -		v := c.uv.Y.Lo + c.uv.Y.Hi -		var i, j int -		if uAxis(int(c.face)).Z == 0 { -			if u < 0 { -				i = 1 -			} -		} else if u > 0 { -			i = 1 -		} -		if vAxis(int(c.face)).Z == 0 { -			if v < 0 { -				j = 1 -			} -		} else if v > 0 { -			j = 1 -		} -		lat := r1.IntervalFromPoint(c.latitude(i, j)).AddPoint(c.latitude(1-i, 1-j)) -		lng := s1.EmptyInterval().AddPoint(c.longitude(i, 1-j)).AddPoint(c.longitude(1-i, j)) - -		// We grow the bounds slightly to make sure that the bounding rectangle -		// contains LatLngFromPoint(P) for any point P inside the loop L defined by the -		// four *normalized* vertices.  Note that normalization of a vector can -		// change its direction by up to 0.5 * dblEpsilon radians, and it is not -		// enough just to add Normalize calls to the code above because the -		// latitude/longitude ranges are not necessarily determined by diagonally -		// opposite vertex pairs after normalization. -		// -		// We would like to bound the amount by which the latitude/longitude of a -		// contained point P can exceed the bounds computed above.  In the case of -		// longitude, the normalization error can change the direction of rounding -		// leading to a maximum difference in longitude of 2 * dblEpsilon.  In -		// the case of latitude, the normalization error can shift the latitude by -		// up to 0.5 * dblEpsilon and the other sources of error can cause the -		// two latitudes to differ by up to another 1.5 * dblEpsilon, which also -		// leads to a maximum difference of 2 * dblEpsilon. -		return Rect{lat, lng}.expanded(LatLng{s1.Angle(2 * dblEpsilon), s1.Angle(2 * dblEpsilon)}).PolarClosure() -	} - -	// The 4 cells around the equator extend to +/-45 degrees latitude at the -	// midpoints of their top and bottom edges.  The two cells covering the -	// poles extend down to +/-35.26 degrees at their vertices.  The maximum -	// error in this calculation is 0.5 * dblEpsilon. -	var bound Rect -	switch c.face { -	case 0: -		bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-math.Pi / 4, math.Pi / 4}} -	case 1: -		bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{math.Pi / 4, 3 * math.Pi / 4}} -	case 2: -		bound = Rect{r1.Interval{poleMinLat, math.Pi / 2}, s1.FullInterval()} -	case 3: -		bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{3 * math.Pi / 4, -3 * math.Pi / 4}} -	case 4: -		bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-3 * math.Pi / 4, -math.Pi / 4}} -	default: -		bound = Rect{r1.Interval{-math.Pi / 2, -poleMinLat}, s1.FullInterval()} -	} - -	// Finally, we expand the bound to account for the error when a point P is -	// converted to an LatLng to test for containment. (The bound should be -	// large enough so that it contains the computed LatLng of any contained -	// point, not just the infinite-precision version.) We don't need to expand -	// longitude because longitude is calculated via a single call to math.Atan2, -	// which is guaranteed to be semi-monotonic. -	return bound.expanded(LatLng{s1.Angle(dblEpsilon), s1.Angle(0)}) -} - -// CapBound returns the bounding cap of this cell. -func (c Cell) CapBound() Cap { -	// We use the cell center in (u,v)-space as the cap axis.  This vector is very close -	// to GetCenter() and faster to compute.  Neither one of these vectors yields the -	// bounding cap with minimal surface area, but they are both pretty close. -	cap := CapFromPoint(Point{faceUVToXYZ(int(c.face), c.uv.Center().X, c.uv.Center().Y).Normalize()}) -	for k := 0; k < 4; k++ { -		cap = cap.AddPoint(c.Vertex(k)) -	} -	return cap -} - -// ContainsPoint reports whether this cell contains the given point. Note that -// unlike Loop/Polygon, a Cell is considered to be a closed set. This means -// that a point on a Cell's edge or vertex belong to the Cell and the relevant -// adjacent Cells too. -// -// If you want every point to be contained by exactly one Cell, -// you will need to convert the Cell to a Loop. -func (c Cell) ContainsPoint(p Point) bool { -	var uv r2.Point -	var ok bool -	if uv.X, uv.Y, ok = faceXYZToUV(int(c.face), p); !ok { -		return false -	} - -	// Expand the (u,v) bound to ensure that -	// -	//   CellFromPoint(p).ContainsPoint(p) -	// -	// is always true. To do this, we need to account for the error when -	// converting from (u,v) coordinates to (s,t) coordinates. In the -	// normal case the total error is at most dblEpsilon. -	return c.uv.ExpandedByMargin(dblEpsilon).ContainsPoint(uv) -} - -// Encode encodes the Cell. -func (c Cell) Encode(w io.Writer) error { -	e := &encoder{w: w} -	c.encode(e) -	return e.err -} - -func (c Cell) encode(e *encoder) { -	c.id.encode(e) -} - -// Decode decodes the Cell. -func (c *Cell) Decode(r io.Reader) error { -	d := &decoder{r: asByteReader(r)} -	c.decode(d) -	return d.err -} - -func (c *Cell) decode(d *decoder) { -	c.id.decode(d) -	*c = CellFromCellID(c.id) -} - -// vertexChordDist2 returns the squared chord distance from point P to the -// given corner vertex specified by the Hi or Lo values of each. -func (c Cell) vertexChordDist2(p Point, xHi, yHi bool) s1.ChordAngle { -	x := c.uv.X.Lo -	y := c.uv.Y.Lo -	if xHi { -		x = c.uv.X.Hi -	} -	if yHi { -		y = c.uv.Y.Hi -	} - -	return ChordAngleBetweenPoints(p, PointFromCoords(x, y, 1)) -} - -// uEdgeIsClosest reports whether a point P is closer to the interior of the specified -// Cell edge (either the lower or upper edge of the Cell) or to the endpoints. -func (c Cell) uEdgeIsClosest(p Point, vHi bool) bool { -	u0 := c.uv.X.Lo -	u1 := c.uv.X.Hi -	v := c.uv.Y.Lo -	if vHi { -		v = c.uv.Y.Hi -	} -	// These are the normals to the planes that are perpendicular to the edge -	// and pass through one of its two endpoints. -	dir0 := r3.Vector{v*v + 1, -u0 * v, -u0} -	dir1 := r3.Vector{v*v + 1, -u1 * v, -u1} -	return p.Dot(dir0) > 0 && p.Dot(dir1) < 0 -} - -// vEdgeIsClosest reports whether a point P is closer to the interior of the specified -// Cell edge (either the right or left edge of the Cell) or to the endpoints. -func (c Cell) vEdgeIsClosest(p Point, uHi bool) bool { -	v0 := c.uv.Y.Lo -	v1 := c.uv.Y.Hi -	u := c.uv.X.Lo -	if uHi { -		u = c.uv.X.Hi -	} -	dir0 := r3.Vector{-u * v0, u*u + 1, -v0} -	dir1 := r3.Vector{-u * v1, u*u + 1, -v1} -	return p.Dot(dir0) > 0 && p.Dot(dir1) < 0 -} - -// edgeDistance reports the distance from a Point P to a given Cell edge. The point -// P is given by its dot product, and the uv edge by its normal in the -// given coordinate value. -func edgeDistance(ij, uv float64) s1.ChordAngle { -	// Let P by the target point and let R be the closest point on the given -	// edge AB.  The desired distance PR can be expressed as PR^2 = PQ^2 + QR^2 -	// where Q is the point P projected onto the plane through the great circle -	// through AB.  We can compute the distance PQ^2 perpendicular to the plane -	// from "dirIJ" (the dot product of the target point P with the edge -	// normal) and the squared length the edge normal (1 + uv**2). -	pq2 := (ij * ij) / (1 + uv*uv) - -	// We can compute the distance QR as (1 - OQ) where O is the sphere origin, -	// and we can compute OQ^2 = 1 - PQ^2 using the Pythagorean theorem. -	// (This calculation loses accuracy as angle POQ approaches Pi/2.) -	qr := 1 - math.Sqrt(1-pq2) -	return s1.ChordAngleFromSquaredLength(pq2 + qr*qr) -} - -// distanceInternal reports the distance from the given point to the interior of -// the cell if toInterior is true or to the boundary of the cell otherwise. -func (c Cell) distanceInternal(targetXYZ Point, toInterior bool) s1.ChordAngle { -	// All calculations are done in the (u,v,w) coordinates of this cell's face. -	target := faceXYZtoUVW(int(c.face), targetXYZ) - -	// Compute dot products with all four upward or rightward-facing edge -	// normals. dirIJ is the dot product for the edge corresponding to axis -	// I, endpoint J. For example, dir01 is the right edge of the Cell -	// (corresponding to the upper endpoint of the u-axis). -	dir00 := target.X - target.Z*c.uv.X.Lo -	dir01 := target.X - target.Z*c.uv.X.Hi -	dir10 := target.Y - target.Z*c.uv.Y.Lo -	dir11 := target.Y - target.Z*c.uv.Y.Hi -	inside := true -	if dir00 < 0 { -		inside = false // Target is to the left of the cell -		if c.vEdgeIsClosest(target, false) { -			return edgeDistance(-dir00, c.uv.X.Lo) -		} -	} -	if dir01 > 0 { -		inside = false // Target is to the right of the cell -		if c.vEdgeIsClosest(target, true) { -			return edgeDistance(dir01, c.uv.X.Hi) -		} -	} -	if dir10 < 0 { -		inside = false // Target is below the cell -		if c.uEdgeIsClosest(target, false) { -			return edgeDistance(-dir10, c.uv.Y.Lo) -		} -	} -	if dir11 > 0 { -		inside = false // Target is above the cell -		if c.uEdgeIsClosest(target, true) { -			return edgeDistance(dir11, c.uv.Y.Hi) -		} -	} -	if inside { -		if toInterior { -			return s1.ChordAngle(0) -		} -		// Although you might think of Cells as rectangles, they are actually -		// arbitrary quadrilaterals after they are projected onto the sphere. -		// Therefore the simplest approach is just to find the minimum distance to -		// any of the four edges. -		return minChordAngle(edgeDistance(-dir00, c.uv.X.Lo), -			edgeDistance(dir01, c.uv.X.Hi), -			edgeDistance(-dir10, c.uv.Y.Lo), -			edgeDistance(dir11, c.uv.Y.Hi)) -	} - -	// Otherwise, the closest point is one of the four cell vertices. Note that -	// it is *not* trivial to narrow down the candidates based on the edge sign -	// tests above, because (1) the edges don't meet at right angles and (2) -	// there are points on the far side of the sphere that are both above *and* -	// below the cell, etc. -	return minChordAngle(c.vertexChordDist2(target, false, false), -		c.vertexChordDist2(target, true, false), -		c.vertexChordDist2(target, false, true), -		c.vertexChordDist2(target, true, true)) -} - -// Distance reports the distance from the cell to the given point. Returns zero if -// the point is inside the cell. -func (c Cell) Distance(target Point) s1.ChordAngle { -	return c.distanceInternal(target, true) -} - -// MaxDistance reports the maximum distance from the cell (including its interior) to the -// given point. -func (c Cell) MaxDistance(target Point) s1.ChordAngle { -	// First check the 4 cell vertices.  If all are within the hemisphere -	// centered around target, the max distance will be to one of these vertices. -	targetUVW := faceXYZtoUVW(int(c.face), target) -	maxDist := maxChordAngle(c.vertexChordDist2(targetUVW, false, false), -		c.vertexChordDist2(targetUVW, true, false), -		c.vertexChordDist2(targetUVW, false, true), -		c.vertexChordDist2(targetUVW, true, true)) - -	if maxDist <= s1.RightChordAngle { -		return maxDist -	} - -	// Otherwise, find the minimum distance dMin to the antipodal point and the -	// maximum distance will be pi - dMin. -	return s1.StraightChordAngle - c.BoundaryDistance(Point{target.Mul(-1)}) -} - -// BoundaryDistance reports the distance from the cell boundary to the given point. -func (c Cell) BoundaryDistance(target Point) s1.ChordAngle { -	return c.distanceInternal(target, false) -} - -// DistanceToEdge returns the minimum distance from the cell to the given edge AB. Returns -// zero if the edge intersects the cell interior. -func (c Cell) DistanceToEdge(a, b Point) s1.ChordAngle { -	// Possible optimizations: -	//  - Currently the (cell vertex, edge endpoint) distances are computed -	//    twice each, and the length of AB is computed 4 times. -	//  - To fix this, refactor GetDistance(target) so that it skips calculating -	//    the distance to each cell vertex. Instead, compute the cell vertices -	//    and distances in this function, and add a low-level UpdateMinDistance -	//    that allows the XA, XB, and AB distances to be passed in. -	//  - It might also be more efficient to do all calculations in UVW-space, -	//    since this would involve transforming 2 points rather than 4. - -	// First, check the minimum distance to the edge endpoints A and B. -	// (This also detects whether either endpoint is inside the cell.) -	minDist := minChordAngle(c.Distance(a), c.Distance(b)) -	if minDist == 0 { -		return minDist -	} - -	// Otherwise, check whether the edge crosses the cell boundary. -	crosser := NewChainEdgeCrosser(a, b, c.Vertex(3)) -	for i := 0; i < 4; i++ { -		if crosser.ChainCrossingSign(c.Vertex(i)) != DoNotCross { -			return 0 -		} -	} - -	// Finally, check whether the minimum distance occurs between a cell vertex -	// and the interior of the edge AB. (Some of this work is redundant, since -	// it also checks the distance to the endpoints A and B again.) -	// -	// Note that we don't need to check the distance from the interior of AB to -	// the interior of a cell edge, because the only way that this distance can -	// be minimal is if the two edges cross (already checked above). -	for i := 0; i < 4; i++ { -		minDist, _ = UpdateMinDistance(c.Vertex(i), a, b, minDist) -	} -	return minDist -} - -// MaxDistanceToEdge returns the maximum distance from the cell (including its interior) -// to the given edge AB. -func (c Cell) MaxDistanceToEdge(a, b Point) s1.ChordAngle { -	// If the maximum distance from both endpoints to the cell is less than π/2 -	// then the maximum distance from the edge to the cell is the maximum of the -	// two endpoint distances. -	maxDist := maxChordAngle(c.MaxDistance(a), c.MaxDistance(b)) -	if maxDist <= s1.RightChordAngle { -		return maxDist -	} - -	return s1.StraightChordAngle - c.DistanceToEdge(Point{a.Mul(-1)}, Point{b.Mul(-1)}) -} - -// DistanceToCell returns the minimum distance from this cell to the given cell. -// It returns zero if one cell contains the other. -func (c Cell) DistanceToCell(target Cell) s1.ChordAngle { -	// If the cells intersect, the distance is zero.  We use the (u,v) ranges -	// rather than CellID intersects so that cells that share a partial edge or -	// corner are considered to intersect. -	if c.face == target.face && c.uv.Intersects(target.uv) { -		return 0 -	} - -	// Otherwise, the minimum distance always occurs between a vertex of one -	// cell and an edge of the other cell (including the edge endpoints).  This -	// represents a total of 32 possible (vertex, edge) pairs. -	// -	// TODO(roberts): This could be optimized to be at least 5x faster by pruning -	// the set of possible closest vertex/edge pairs using the faces and (u,v) -	// ranges of both cells. -	var va, vb [4]Point -	for i := 0; i < 4; i++ { -		va[i] = c.Vertex(i) -		vb[i] = target.Vertex(i) -	} -	minDist := s1.InfChordAngle() -	for i := 0; i < 4; i++ { -		for j := 0; j < 4; j++ { -			minDist, _ = UpdateMinDistance(va[i], vb[j], vb[(j+1)&3], minDist) -			minDist, _ = UpdateMinDistance(vb[i], va[j], va[(j+1)&3], minDist) -		} -	} -	return minDist -} - -// MaxDistanceToCell returns the maximum distance from the cell (including its -// interior) to the given target cell. -func (c Cell) MaxDistanceToCell(target Cell) s1.ChordAngle { -	// Need to check the antipodal target for intersection with the cell. If it -	// intersects, the distance is the straight ChordAngle. -	// antipodalUV is the transpose of the original UV, interpreted within the opposite face. -	antipodalUV := r2.Rect{target.uv.Y, target.uv.X} -	if int(c.face) == oppositeFace(int(target.face)) && c.uv.Intersects(antipodalUV) { -		return s1.StraightChordAngle -	} - -	// Otherwise, the maximum distance always occurs between a vertex of one -	// cell and an edge of the other cell (including the edge endpoints).  This -	// represents a total of 32 possible (vertex, edge) pairs. -	// -	// TODO(roberts): When the maximum distance is at most π/2, the maximum is -	// always attained between a pair of vertices, and this could be made much -	// faster by testing each vertex pair once rather than the current 4 times. -	var va, vb [4]Point -	for i := 0; i < 4; i++ { -		va[i] = c.Vertex(i) -		vb[i] = target.Vertex(i) -	} -	maxDist := s1.NegativeChordAngle -	for i := 0; i < 4; i++ { -		for j := 0; j < 4; j++ { -			maxDist, _ = UpdateMaxDistance(va[i], vb[j], vb[(j+1)&3], maxDist) -			maxDist, _ = UpdateMaxDistance(vb[i], va[j], va[(j+1)&3], maxDist) -		} -	} -	return maxDist -} diff --git a/vendor/github.com/golang/geo/s2/cell_index.go b/vendor/github.com/golang/geo/s2/cell_index.go deleted file mode 100644 index ef16d0895..000000000 --- a/vendor/github.com/golang/geo/s2/cell_index.go +++ /dev/null @@ -1,498 +0,0 @@ -// Copyright 2020 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"sort" -) - -const ( -	// A special label indicating that the ContentsIterator done is true. -	cellIndexDoneContents = -1 -) - -// cellIndexNode represents a node in the CellIndex. Cells are organized in a -// tree such that the ancestors of a given node contain that node. -type cellIndexNode struct { -	cellID CellID -	label  int32 -	parent int32 -} - -// newCellIndexNode returns a node with the appropriate default values. -func newCellIndexNode() cellIndexNode { -	return cellIndexNode{ -		cellID: 0, -		label:  cellIndexDoneContents, -		parent: -1, -	} -} - -// A rangeNode represents a range of leaf CellIDs. The range starts at -// startID (a leaf cell) and ends at the startID field of the next -// rangeNode. contents points to the node of the CellIndex cellTree -// representing the cells that overlap this range. -type rangeNode struct { -	startID  CellID // First leaf cell contained by this range. -	contents int32  // Contents of this node (an index within the cell tree). -} - -// CellIndexIterator is an iterator that visits the entire set of indexed -// (CellID, label) pairs in an unspecified order. -type CellIndexIterator struct { -	// TODO(roberts): Implement -} - -// NewCellIndexIterator creates an iterator for the given CellIndex. -func NewCellIndexIterator(index *CellIndex) *CellIndexIterator { -	return &CellIndexIterator{} -} - -// CellIndexRangeIterator is an iterator that seeks and iterates over a set of -// non-overlapping leaf cell ranges that cover the entire sphere. The indexed -// (CellID, label) pairs that intersect the current leaf cell range can be -// visited using CellIndexContentsIterator (see below). -type CellIndexRangeIterator struct { -	rangeNodes []rangeNode -	pos        int -	nonEmpty   bool -} - -// NewCellIndexRangeIterator creates an iterator for the given CellIndex. -// The iterator is initially *unpositioned*; you must call a positioning method -// such as Begin() or Seek() before accessing its contents. -func NewCellIndexRangeIterator(index *CellIndex) *CellIndexRangeIterator { -	return &CellIndexRangeIterator{ -		rangeNodes: index.rangeNodes, -	} -} - -// NewCellIndexNonEmptyRangeIterator creates an iterator for the given CellIndex. -// The iterator is initially *unpositioned*; you must call a positioning method such as -// Begin() or Seek() before accessing its contents. -func NewCellIndexNonEmptyRangeIterator(index *CellIndex) *CellIndexRangeIterator { -	return &CellIndexRangeIterator{ -		rangeNodes: index.rangeNodes, -		nonEmpty:   true, -	} -} - -// StartID reports the CellID of the start of the current range of leaf CellIDs. -// -// If done is true, this returns the last possible CellID. This property means -// that most loops do not need to test done explicitly. -func (c *CellIndexRangeIterator) StartID() CellID { -	return c.rangeNodes[c.pos].startID -} - -// LimitID reports the non-inclusive end of the current range of leaf CellIDs. -// -// This assumes the iterator is not done. -func (c *CellIndexRangeIterator) LimitID() CellID { -	return c.rangeNodes[c.pos+1].startID -} - -// IsEmpty reports if no (CellID, label) pairs intersect this range. -// Also returns true if done() is true. -func (c *CellIndexRangeIterator) IsEmpty() bool { -	return c.rangeNodes[c.pos].contents == cellIndexDoneContents -} - -// Begin positions the iterator at the first range of leaf cells (if any). -func (c *CellIndexRangeIterator) Begin() { -	c.pos = 0 -	for c.nonEmpty && c.IsEmpty() && !c.Done() { -		c.pos++ -	} -} - -// Prev positions the iterator at the previous entry and reports whether it was not -// already positioned at the beginning. -func (c *CellIndexRangeIterator) Prev() bool { -	if c.nonEmpty { -		return c.nonEmptyPrev() -	} -	return c.prev() -} - -// prev is used to position the iterator at the previous entry without checking -// if nonEmpty is true to prevent unwanted recursion. -func (c *CellIndexRangeIterator) prev() bool { -	if c.pos == 0 { -		return false -	} - -	c.pos-- -	return true -} - -// Prev positions the iterator at the previous entry, and reports whether it was -// already positioned at the beginning. -func (c *CellIndexRangeIterator) nonEmptyPrev() bool { -	for c.prev() { -		if !c.IsEmpty() { -			return true -		} -	} - -	// Return the iterator to its original position. -	if c.IsEmpty() && !c.Done() { -		c.Next() -	} -	return false -} - -// Next advances the iterator to the next range of leaf cells. -// -// This assumes the iterator is not done. -func (c *CellIndexRangeIterator) Next() { -	c.pos++ -	for c.nonEmpty && c.IsEmpty() && !c.Done() { -		c.pos++ -	} -} - -// Advance reports if advancing would leave it positioned on a valid range. If -// the value would not be valid, the positioning is not changed. -func (c *CellIndexRangeIterator) Advance(n int) bool { -	// Note that the last element of rangeNodes is a sentinel value. -	if n >= len(c.rangeNodes)-1-c.pos { -		return false -	} -	c.pos += n -	return true -} - -// Finish positions the iterator so that done is true. -func (c *CellIndexRangeIterator) Finish() { -	// Note that the last element of rangeNodes is a sentinel value. -	c.pos = len(c.rangeNodes) - 1 -} - -// Done reports if the iterator is positioned beyond the last valid range. -func (c *CellIndexRangeIterator) Done() bool { -	return c.pos >= len(c.rangeNodes)-1 -} - -// Seek positions the iterator at the first range with startID >= target. -// Such an entry always exists as long as "target" is a valid leaf cell. -// -// Note that it is valid to access startID even when done is true. -func (c *CellIndexRangeIterator) Seek(target CellID) { -	c.pos = sort.Search(len(c.rangeNodes), func(i int) bool { -		return c.rangeNodes[i].startID > target -	}) - 1 - -	// Ensure we don't go beyond the beginning. -	if c.pos < 0 { -		c.pos = 0 -	} - -	// Nonempty needs to find the next non-empty entry. -	for c.nonEmpty && c.IsEmpty() && !c.Done() { -		// c.Next() -		c.pos++ -	} -} - -// CellIndexContentsIterator is an iterator that visits the (CellID, label) pairs -// that cover a set of leaf cell ranges (see CellIndexRangeIterator). Note that -// when multiple leaf cell ranges are visited, this iterator only guarantees that -// each result will be reported at least once, i.e. duplicate values may be -// suppressed. If you want duplicate values to be reported again, be sure to call -// Clear first. -// -// In particular, the implementation guarantees that when multiple leaf -// cell ranges are visited in monotonically increasing order, then each -// (CellID, label) pair is reported exactly once. -type CellIndexContentsIterator struct { -	// The maximum index within the cellTree slice visited during the -	// previous call to StartUnion. This is used to eliminate duplicate -	// values when StartUnion is called multiple times. -	nodeCutoff int32 - -	// The maximum index within the cellTree visited during the -	// current call to StartUnion. This is used to update nodeCutoff. -	nextNodeCutoff int32 - -	// The value of startID from the previous call to StartUnion. -	// This is used to check whether these values are monotonically -	// increasing. -	prevStartID CellID - -	// The cell tree from CellIndex -	cellTree []cellIndexNode - -	// A copy of the current node in the cell tree. -	node cellIndexNode -} - -// NewCellIndexContentsIterator returns a new contents iterator. -// -// Note that the iterator needs to be positioned using StartUnion before -// it can be safely used. -func NewCellIndexContentsIterator(index *CellIndex) *CellIndexContentsIterator { -	it := &CellIndexContentsIterator{ -		cellTree:       index.cellTree, -		prevStartID:    0, -		nodeCutoff:     -1, -		nextNodeCutoff: -1, -		node:           cellIndexNode{label: cellIndexDoneContents}, -	} -	return it -} - -// Clear clears all state with respect to which range(s) have been visited. -func (c *CellIndexContentsIterator) Clear() { -	c.prevStartID = 0 -	c.nodeCutoff = -1 -	c.nextNodeCutoff = -1 -	c.node.label = cellIndexDoneContents -} - -// CellID returns the current CellID. -func (c *CellIndexContentsIterator) CellID() CellID { -	return c.node.cellID -} - -// Label returns the current Label. -func (c *CellIndexContentsIterator) Label() int32 { -	return c.node.label -} - -// Next advances the iterator to the next (CellID, label) pair covered by the -// current leaf cell range. -// -// This requires the iterator to not be done. -func (c *CellIndexContentsIterator) Next() { -	if c.node.parent <= c.nodeCutoff { -		// We have already processed this node and its ancestors. -		c.nodeCutoff = c.nextNodeCutoff -		c.node.label = cellIndexDoneContents -	} else { -		c.node = c.cellTree[c.node.parent] -	} -} - -// Done reports if all (CellID, label) pairs have been visited. -func (c *CellIndexContentsIterator) Done() bool { -	return c.node.label == cellIndexDoneContents -} - -// StartUnion positions the ContentsIterator at the first (cell_id, label) pair -// that covers the given leaf cell range. Note that when multiple leaf cell -// ranges are visited using the same ContentsIterator, duplicate values -// may be suppressed. If you don't want this behavior, call Reset() first. -func (c *CellIndexContentsIterator) StartUnion(r *CellIndexRangeIterator) { -	if r.StartID() < c.prevStartID { -		c.nodeCutoff = -1 // Can't automatically eliminate duplicates. -	} -	c.prevStartID = r.StartID() - -	contents := r.rangeNodes[r.pos].contents -	if contents <= c.nodeCutoff { -		c.node.label = cellIndexDoneContents -	} else { -		c.node = c.cellTree[contents] -	} - -	// When visiting ancestors, we can stop as soon as the node index is smaller -	// than any previously visited node index. Because indexes are assigned -	// using a preorder traversal, such nodes are guaranteed to have already -	// been reported. -	c.nextNodeCutoff = contents -} - -// CellIndex stores a collection of (CellID, label) pairs. -// -// The CellIDs may be overlapping or contain duplicate values. For example, a -// CellIndex could store a collection of CellUnions, where each CellUnion -// gets its own non-negative int32 label. -// -// Similar to ShapeIndex and PointIndex which map each stored element to an -// identifier, CellIndex stores a label that is typically used to map the -// results of queries back to client's specific data. -// -// The zero value for a CellIndex is sufficient when constructing a CellIndex. -// -// To build a CellIndex where each Cell has a distinct label, call Add for each -// (CellID, label) pair, and then Build the index. For example: -// -//	// contents is a mapping of an identifier in my system (restaurantID, -//	// vehicleID, etc) to a CellID -//	var contents = map[int32]CellID{...} -// -//	for key, val := range contents { -//		index.Add(val, key) -//	} -// -//	index.Build() -// -// There is also a helper method that adds all elements of CellUnion with the -// same label: -// -//     index.AddCellUnion(cellUnion, label) -// -// Note that the index is not dynamic; the contents of the index cannot be -// changed once it has been built. Adding more after calling Build results in -// undefined behavior of the index. -// -// There are several options for retrieving data from the index. The simplest -// is to use a built-in method such as IntersectingLabels (which returns -// the labels of all cells that intersect a given target CellUnion): -// -//   labels := index.IntersectingLabels(targetUnion); -// -// Alternatively, you can use a ClosestCellQuery which computes the cell(s) -// that are closest to a given target geometry. -// -// For example, here is how to find all cells that are closer than -// distanceLimit to a given target point: -// -//	query := NewClosestCellQuery(cellIndex, opts) -//	target := NewMinDistanceToPointTarget(targetPoint); -//	for result := range query.FindCells(target) { -//		// result.Distance() is the distance to the target. -//		// result.CellID() is the indexed CellID. -//		// result.Label() is the label associated with the CellID. -//		DoSomething(targetPoint, result); -//	} -// -// Internally, the index consists of a set of non-overlapping leaf cell ranges -// that subdivide the sphere and such that each range intersects a particular -// set of (cellID, label) pairs. -// -// Most clients should use either the methods such as VisitIntersectingCells -// and IntersectingLabels, or a helper such as ClosestCellQuery. -type CellIndex struct { -	// A tree of (cellID, label) pairs such that if X is an ancestor of Y, then -	// X.cellID contains Y.cellID. The contents of a given range of leaf -	// cells can be represented by pointing to a node of this tree. -	cellTree []cellIndexNode - -	// The last element of rangeNodes is a sentinel value, which is necessary -	// in order to represent the range covered by the previous element. -	rangeNodes []rangeNode -} - -// Add adds the given CellID and Label to the index. -func (c *CellIndex) Add(id CellID, label int32) { -	if label < 0 { -		panic("labels must be non-negative") -	} -	c.cellTree = append(c.cellTree, cellIndexNode{cellID: id, label: label, parent: -1}) -} - -// AddCellUnion adds all of the elements of the given CellUnion to the index with the same label. -func (c *CellIndex) AddCellUnion(cu CellUnion, label int32) { -	if label < 0 { -		panic("labels must be non-negative") -	} -	for _, cell := range cu { -		c.Add(cell, label) -	} -} - -// Build builds the index for use. This method should only be called once. -func (c *CellIndex) Build() { -	// To build the cell tree and leaf cell ranges, we maintain a stack of -	// (CellID, label) pairs that contain the current leaf cell. This struct -	// represents an instruction to push or pop a (cellID, label) pair. -	// -	// If label >= 0, the (cellID, label) pair is pushed on the stack. -	// If CellID == SentinelCellID, a pair is popped from the stack. -	// Otherwise the stack is unchanged but a rangeNode is still emitted. - -	// delta represents an entry in a stack of (CellID, label) pairs used in the -	// construction of the CellIndex structure. -	type delta struct { -		startID CellID -		cellID  CellID -		label   int32 -	} - -	deltas := make([]delta, 0, 2*len(c.cellTree)+2) - -	// Create two deltas for each (cellID, label) pair: one to add the pair to -	// the stack (at the start of its leaf cell range), and one to remove it from -	// the stack (at the end of its leaf cell range). -	for _, node := range c.cellTree { -		deltas = append(deltas, delta{ -			startID: node.cellID.RangeMin(), -			cellID:  node.cellID, -			label:   node.label, -		}) -		deltas = append(deltas, delta{ -			startID: node.cellID.RangeMax().Next(), -			cellID:  SentinelCellID, -			label:   -1, -		}) -	} - -	// We also create two special deltas to ensure that a RangeNode is emitted at -	// the beginning and end of the CellID range. -	deltas = append(deltas, delta{ -		startID: CellIDFromFace(0).ChildBeginAtLevel(maxLevel), -		cellID:  CellID(0), -		label:   -1, -	}) -	deltas = append(deltas, delta{ -		startID: CellIDFromFace(5).ChildEndAtLevel(maxLevel), -		cellID:  CellID(0), -		label:   -1, -	}) - -	sort.Slice(deltas, func(i, j int) bool { -		// deltas are sorted first by startID, then in reverse order by cellID, -		// and then by label. This is necessary to ensure that (1) larger cells -		// are pushed on the stack before smaller cells, and (2) cells are popped -		// off the stack before any new cells are added. - -		if si, sj := deltas[i].startID, deltas[j].startID; si != sj { -			return si < sj -		} -		if si, sj := deltas[i].cellID, deltas[j].cellID; si != sj { -			return si > sj -		} -		return deltas[i].label < deltas[j].label -	}) - -	// Now walk through the deltas to build the leaf cell ranges and cell tree -	// (which is essentially a permanent form of the "stack" described above). -	c.cellTree = nil -	c.rangeNodes = nil -	contents := int32(-1) -	for i := 0; i < len(deltas); { -		startID := deltas[i].startID -		// Process all the deltas associated with the current startID. -		for ; i < len(deltas) && deltas[i].startID == startID; i++ { -			if deltas[i].label >= 0 { -				c.cellTree = append(c.cellTree, cellIndexNode{ -					cellID: deltas[i].cellID, -					label:  deltas[i].label, -					parent: contents}) -				contents = int32(len(c.cellTree) - 1) -			} else if deltas[i].cellID == SentinelCellID { -				contents = c.cellTree[contents].parent -			} -		} -		c.rangeNodes = append(c.rangeNodes, rangeNode{startID, contents}) -	} -} - -// TODO(roberts): Differences from C++ -// IntersectingLabels -// VisitIntersectingCells -// CellIndexIterator diff --git a/vendor/github.com/golang/geo/s2/cellid.go b/vendor/github.com/golang/geo/s2/cellid.go deleted file mode 100644 index c6cbaf2db..000000000 --- a/vendor/github.com/golang/geo/s2/cellid.go +++ /dev/null @@ -1,944 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"bytes" -	"fmt" -	"io" -	"math" -	"sort" -	"strconv" -	"strings" - -	"github.com/golang/geo/r1" -	"github.com/golang/geo/r2" -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -// CellID uniquely identifies a cell in the S2 cell decomposition. -// The most significant 3 bits encode the face number (0-5). The -// remaining 61 bits encode the position of the center of this cell -// along the Hilbert curve on that face. The zero value and the value -// (1<<64)-1 are invalid cell IDs. The first compares less than any -// valid cell ID, the second as greater than any valid cell ID. -// -// Sequentially increasing cell IDs follow a continuous space-filling curve -// over the entire sphere. They have the following properties: -// -//  - The ID of a cell at level k consists of a 3-bit face number followed -//    by k bit pairs that recursively select one of the four children of -//    each cell. The next bit is always 1, and all other bits are 0. -//    Therefore, the level of a cell is determined by the position of its -//    lowest-numbered bit that is turned on (for a cell at level k, this -//    position is 2 * (maxLevel - k)). -// -//  - The ID of a parent cell is at the midpoint of the range of IDs spanned -//    by its children (or by its descendants at any level). -// -// Leaf cells are often used to represent points on the unit sphere, and -// this type provides methods for converting directly between these two -// representations. For cells that represent 2D regions rather than -// discrete point, it is better to use Cells. -type CellID uint64 - -// SentinelCellID is an invalid cell ID guaranteed to be larger than any -// valid cell ID. It is used primarily by ShapeIndex. The value is also used -// by some S2 types when encoding data. -// Note that the sentinel's RangeMin == RangeMax == itself. -const SentinelCellID = CellID(^uint64(0)) - -// sortCellIDs sorts the slice of CellIDs in place. -func sortCellIDs(ci []CellID) { -	sort.Sort(cellIDs(ci)) -} - -// cellIDs implements the Sort interface for slices of CellIDs. -type cellIDs []CellID - -func (c cellIDs) Len() int           { return len(c) } -func (c cellIDs) Swap(i, j int)      { c[i], c[j] = c[j], c[i] } -func (c cellIDs) Less(i, j int) bool { return c[i] < c[j] } - -// TODO(dsymonds): Some of these constants should probably be exported. -const ( -	faceBits = 3 -	numFaces = 6 - -	// This is the number of levels needed to specify a leaf cell. -	maxLevel = 30 - -	// The extra position bit (61 rather than 60) lets us encode each cell as its -	// Hilbert curve position at the cell center (which is halfway along the -	// portion of the Hilbert curve that fills that cell). -	posBits = 2*maxLevel + 1 - -	// The maximum index of a valid leaf cell plus one. The range of valid leaf -	// cell indices is [0..maxSize-1]. -	maxSize = 1 << maxLevel - -	wrapOffset = uint64(numFaces) << posBits -) - -// CellIDFromFacePosLevel returns a cell given its face in the range -// [0,5], the 61-bit Hilbert curve position pos within that face, and -// the level in the range [0,maxLevel]. The position in the cell ID -// will be truncated to correspond to the Hilbert curve position at -// the center of the returned cell. -func CellIDFromFacePosLevel(face int, pos uint64, level int) CellID { -	return CellID(uint64(face)<<posBits + pos | 1).Parent(level) -} - -// CellIDFromFace returns the cell corresponding to a given S2 cube face. -func CellIDFromFace(face int) CellID { -	return CellID((uint64(face) << posBits) + lsbForLevel(0)) -} - -// CellIDFromLatLng returns the leaf cell containing ll. -func CellIDFromLatLng(ll LatLng) CellID { -	return cellIDFromPoint(PointFromLatLng(ll)) -} - -// CellIDFromToken returns a cell given a hex-encoded string of its uint64 ID. -func CellIDFromToken(s string) CellID { -	if len(s) > 16 { -		return CellID(0) -	} -	n, err := strconv.ParseUint(s, 16, 64) -	if err != nil { -		return CellID(0) -	} -	// Equivalent to right-padding string with zeros to 16 characters. -	if len(s) < 16 { -		n = n << (4 * uint(16-len(s))) -	} -	return CellID(n) -} - -// ToToken returns a hex-encoded string of the uint64 cell id, with leading -// zeros included but trailing zeros stripped. -func (ci CellID) ToToken() string { -	s := strings.TrimRight(fmt.Sprintf("%016x", uint64(ci)), "0") -	if len(s) == 0 { -		return "X" -	} -	return s -} - -// IsValid reports whether ci represents a valid cell. -func (ci CellID) IsValid() bool { -	return ci.Face() < numFaces && (ci.lsb()&0x1555555555555555 != 0) -} - -// Face returns the cube face for this cell ID, in the range [0,5]. -func (ci CellID) Face() int { return int(uint64(ci) >> posBits) } - -// Pos returns the position along the Hilbert curve of this cell ID, in the range [0,2^posBits-1]. -func (ci CellID) Pos() uint64 { return uint64(ci) & (^uint64(0) >> faceBits) } - -// Level returns the subdivision level of this cell ID, in the range [0, maxLevel]. -func (ci CellID) Level() int { -	return maxLevel - findLSBSetNonZero64(uint64(ci))>>1 -} - -// IsLeaf returns whether this cell ID is at the deepest level; -// that is, the level at which the cells are smallest. -func (ci CellID) IsLeaf() bool { return uint64(ci)&1 != 0 } - -// ChildPosition returns the child position (0..3) of this cell's -// ancestor at the given level, relative to its parent.  The argument -// should be in the range 1..kMaxLevel.  For example, -// ChildPosition(1) returns the position of this cell's level-1 -// ancestor within its top-level face cell. -func (ci CellID) ChildPosition(level int) int { -	return int(uint64(ci)>>uint64(2*(maxLevel-level)+1)) & 3 -} - -// lsbForLevel returns the lowest-numbered bit that is on for cells at the given level. -func lsbForLevel(level int) uint64 { return 1 << uint64(2*(maxLevel-level)) } - -// Parent returns the cell at the given level, which must be no greater than the current level. -func (ci CellID) Parent(level int) CellID { -	lsb := lsbForLevel(level) -	return CellID((uint64(ci) & -lsb) | lsb) -} - -// immediateParent is cheaper than Parent, but assumes !ci.isFace(). -func (ci CellID) immediateParent() CellID { -	nlsb := CellID(ci.lsb() << 2) -	return (ci & -nlsb) | nlsb -} - -// isFace returns whether this is a top-level (face) cell. -func (ci CellID) isFace() bool { return uint64(ci)&(lsbForLevel(0)-1) == 0 } - -// lsb returns the least significant bit that is set. -func (ci CellID) lsb() uint64 { return uint64(ci) & -uint64(ci) } - -// Children returns the four immediate children of this cell. -// If ci is a leaf cell, it returns four identical cells that are not the children. -func (ci CellID) Children() [4]CellID { -	var ch [4]CellID -	lsb := CellID(ci.lsb()) -	ch[0] = ci - lsb + lsb>>2 -	lsb >>= 1 -	ch[1] = ch[0] + lsb -	ch[2] = ch[1] + lsb -	ch[3] = ch[2] + lsb -	return ch -} - -func sizeIJ(level int) int { -	return 1 << uint(maxLevel-level) -} - -// EdgeNeighbors returns the four cells that are adjacent across the cell's four edges. -// Edges 0, 1, 2, 3 are in the down, right, up, left directions in the face space. -// All neighbors are guaranteed to be distinct. -func (ci CellID) EdgeNeighbors() [4]CellID { -	level := ci.Level() -	size := sizeIJ(level) -	f, i, j, _ := ci.faceIJOrientation() -	return [4]CellID{ -		cellIDFromFaceIJWrap(f, i, j-size).Parent(level), -		cellIDFromFaceIJWrap(f, i+size, j).Parent(level), -		cellIDFromFaceIJWrap(f, i, j+size).Parent(level), -		cellIDFromFaceIJWrap(f, i-size, j).Parent(level), -	} -} - -// VertexNeighbors returns the neighboring cellIDs with vertex closest to this cell at the given level. -// (Normally there are four neighbors, but the closest vertex may only have three neighbors if it is one of -// the 8 cube vertices.) -func (ci CellID) VertexNeighbors(level int) []CellID { -	halfSize := sizeIJ(level + 1) -	size := halfSize << 1 -	f, i, j, _ := ci.faceIJOrientation() - -	var isame, jsame bool -	var ioffset, joffset int -	if i&halfSize != 0 { -		ioffset = size -		isame = (i + size) < maxSize -	} else { -		ioffset = -size -		isame = (i - size) >= 0 -	} -	if j&halfSize != 0 { -		joffset = size -		jsame = (j + size) < maxSize -	} else { -		joffset = -size -		jsame = (j - size) >= 0 -	} - -	results := []CellID{ -		ci.Parent(level), -		cellIDFromFaceIJSame(f, i+ioffset, j, isame).Parent(level), -		cellIDFromFaceIJSame(f, i, j+joffset, jsame).Parent(level), -	} - -	if isame || jsame { -		results = append(results, cellIDFromFaceIJSame(f, i+ioffset, j+joffset, isame && jsame).Parent(level)) -	} - -	return results -} - -// AllNeighbors returns all neighbors of this cell at the given level. Two -// cells X and Y are neighbors if their boundaries intersect but their -// interiors do not. In particular, two cells that intersect at a single -// point are neighbors. Note that for cells adjacent to a face vertex, the -// same neighbor may be returned more than once. There could be up to eight -// neighbors including the diagonal ones that share the vertex. -// -// This requires level >= ci.Level(). -func (ci CellID) AllNeighbors(level int) []CellID { -	var neighbors []CellID - -	face, i, j, _ := ci.faceIJOrientation() - -	// Find the coordinates of the lower left-hand leaf cell. We need to -	// normalize (i,j) to a known position within the cell because level -	// may be larger than this cell's level. -	size := sizeIJ(ci.Level()) -	i &= -size -	j &= -size - -	nbrSize := sizeIJ(level) - -	// We compute the top-bottom, left-right, and diagonal neighbors in one -	// pass. The loop test is at the end of the loop to avoid 32-bit overflow. -	for k := -nbrSize; ; k += nbrSize { -		var sameFace bool -		if k < 0 { -			sameFace = (j+k >= 0) -		} else if k >= size { -			sameFace = (j+k < maxSize) -		} else { -			sameFace = true -			// Top and bottom neighbors. -			neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j-nbrSize, -				j-size >= 0).Parent(level)) -			neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j+size, -				j+size < maxSize).Parent(level)) -		} - -		// Left, right, and diagonal neighbors. -		neighbors = append(neighbors, cellIDFromFaceIJSame(face, i-nbrSize, j+k, -			sameFace && i-size >= 0).Parent(level)) -		neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+size, j+k, -			sameFace && i+size < maxSize).Parent(level)) - -		if k >= size { -			break -		} -	} - -	return neighbors -} - -// RangeMin returns the minimum CellID that is contained within this cell. -func (ci CellID) RangeMin() CellID { return CellID(uint64(ci) - (ci.lsb() - 1)) } - -// RangeMax returns the maximum CellID that is contained within this cell. -func (ci CellID) RangeMax() CellID { return CellID(uint64(ci) + (ci.lsb() - 1)) } - -// Contains returns true iff the CellID contains oci. -func (ci CellID) Contains(oci CellID) bool { -	return uint64(ci.RangeMin()) <= uint64(oci) && uint64(oci) <= uint64(ci.RangeMax()) -} - -// Intersects returns true iff the CellID intersects oci. -func (ci CellID) Intersects(oci CellID) bool { -	return uint64(oci.RangeMin()) <= uint64(ci.RangeMax()) && uint64(oci.RangeMax()) >= uint64(ci.RangeMin()) -} - -// String returns the string representation of the cell ID in the form "1/3210". -func (ci CellID) String() string { -	if !ci.IsValid() { -		return "Invalid: " + strconv.FormatInt(int64(ci), 16) -	} -	var b bytes.Buffer -	b.WriteByte("012345"[ci.Face()]) // values > 5 will have been picked off by !IsValid above -	b.WriteByte('/') -	for level := 1; level <= ci.Level(); level++ { -		b.WriteByte("0123"[ci.ChildPosition(level)]) -	} -	return b.String() -} - -// cellIDFromString returns a CellID from a string in the form "1/3210". -func cellIDFromString(s string) CellID { -	level := len(s) - 2 -	if level < 0 || level > maxLevel { -		return CellID(0) -	} -	face := int(s[0] - '0') -	if face < 0 || face > 5 || s[1] != '/' { -		return CellID(0) -	} -	id := CellIDFromFace(face) -	for i := 2; i < len(s); i++ { -		childPos := s[i] - '0' -		if childPos < 0 || childPos > 3 { -			return CellID(0) -		} -		id = id.Children()[childPos] -	} -	return id -} - -// Point returns the center of the s2 cell on the sphere as a Point. -// The maximum directional error in Point (compared to the exact -// mathematical result) is 1.5 * dblEpsilon radians, and the maximum length -// error is 2 * dblEpsilon (the same as Normalize). -func (ci CellID) Point() Point { return Point{ci.rawPoint().Normalize()} } - -// LatLng returns the center of the s2 cell on the sphere as a LatLng. -func (ci CellID) LatLng() LatLng { return LatLngFromPoint(Point{ci.rawPoint()}) } - -// ChildBegin returns the first child in a traversal of the children of this cell, in Hilbert curve order. -// -//    for ci := c.ChildBegin(); ci != c.ChildEnd(); ci = ci.Next() { -//        ... -//    } -func (ci CellID) ChildBegin() CellID { -	ol := ci.lsb() -	return CellID(uint64(ci) - ol + ol>>2) -} - -// ChildBeginAtLevel returns the first cell in a traversal of children a given level deeper than this cell, in -// Hilbert curve order. The given level must be no smaller than the cell's level. -// See ChildBegin for example use. -func (ci CellID) ChildBeginAtLevel(level int) CellID { -	return CellID(uint64(ci) - ci.lsb() + lsbForLevel(level)) -} - -// ChildEnd returns the first cell after a traversal of the children of this cell in Hilbert curve order. -// The returned cell may be invalid. -func (ci CellID) ChildEnd() CellID { -	ol := ci.lsb() -	return CellID(uint64(ci) + ol + ol>>2) -} - -// ChildEndAtLevel returns the first cell after the last child in a traversal of children a given level deeper -// than this cell, in Hilbert curve order. -// The given level must be no smaller than the cell's level. -// The returned cell may be invalid. -func (ci CellID) ChildEndAtLevel(level int) CellID { -	return CellID(uint64(ci) + ci.lsb() + lsbForLevel(level)) -} - -// Next returns the next cell along the Hilbert curve. -// This is expected to be used with ChildBegin and ChildEnd, -// or ChildBeginAtLevel and ChildEndAtLevel. -func (ci CellID) Next() CellID { -	return CellID(uint64(ci) + ci.lsb()<<1) -} - -// Prev returns the previous cell along the Hilbert curve. -func (ci CellID) Prev() CellID { -	return CellID(uint64(ci) - ci.lsb()<<1) -} - -// NextWrap returns the next cell along the Hilbert curve, wrapping from last to -// first as necessary. This should not be used with ChildBegin and ChildEnd. -func (ci CellID) NextWrap() CellID { -	n := ci.Next() -	if uint64(n) < wrapOffset { -		return n -	} -	return CellID(uint64(n) - wrapOffset) -} - -// PrevWrap returns the previous cell along the Hilbert curve, wrapping around from -// first to last as necessary. This should not be used with ChildBegin and ChildEnd. -func (ci CellID) PrevWrap() CellID { -	p := ci.Prev() -	if uint64(p) < wrapOffset { -		return p -	} -	return CellID(uint64(p) + wrapOffset) -} - -// AdvanceWrap advances or retreats the indicated number of steps along the -// Hilbert curve at the current level and returns the new position. The -// position wraps between the first and last faces as necessary. -func (ci CellID) AdvanceWrap(steps int64) CellID { -	if steps == 0 { -		return ci -	} - -	// We clamp the number of steps if necessary to ensure that we do not -	// advance past the End() or before the Begin() of this level. -	shift := uint(2*(maxLevel-ci.Level()) + 1) -	if steps < 0 { -		if min := -int64(uint64(ci) >> shift); steps < min { -			wrap := int64(wrapOffset >> shift) -			steps %= wrap -			if steps < min { -				steps += wrap -			} -		} -	} else { -		// Unlike Advance(), we don't want to return End(level). -		if max := int64((wrapOffset - uint64(ci)) >> shift); steps > max { -			wrap := int64(wrapOffset >> shift) -			steps %= wrap -			if steps > max { -				steps -= wrap -			} -		} -	} - -	// If steps is negative, then shifting it left has undefined behavior. -	// Cast to uint64 for a 2's complement answer. -	return CellID(uint64(ci) + (uint64(steps) << shift)) -} - -// Encode encodes the CellID. -func (ci CellID) Encode(w io.Writer) error { -	e := &encoder{w: w} -	ci.encode(e) -	return e.err -} - -func (ci CellID) encode(e *encoder) { -	e.writeUint64(uint64(ci)) -} - -// Decode decodes the CellID. -func (ci *CellID) Decode(r io.Reader) error { -	d := &decoder{r: asByteReader(r)} -	ci.decode(d) -	return d.err -} - -func (ci *CellID) decode(d *decoder) { -	*ci = CellID(d.readUint64()) -} - -// TODO: the methods below are not exported yet.  Settle on the entire API design -// before doing this.  Do we want to mirror the C++ one as closely as possible? - -// distanceFromBegin returns the number of steps along the Hilbert curve that -// this cell is from the first node in the S2 hierarchy at our level. (i.e., -// FromFace(0).ChildBeginAtLevel(ci.Level())). This is analogous to Pos(), but -// for this cell's level. -// The return value is always non-negative. -func (ci CellID) distanceFromBegin() int64 { -	return int64(ci >> uint64(2*(maxLevel-ci.Level())+1)) -} - -// rawPoint returns an unnormalized r3 vector from the origin through the center -// of the s2 cell on the sphere. -func (ci CellID) rawPoint() r3.Vector { -	face, si, ti := ci.faceSiTi() -	return faceUVToXYZ(face, stToUV((0.5/maxSize)*float64(si)), stToUV((0.5/maxSize)*float64(ti))) -} - -// faceSiTi returns the Face/Si/Ti coordinates of the center of the cell. -func (ci CellID) faceSiTi() (face int, si, ti uint32) { -	face, i, j, _ := ci.faceIJOrientation() -	delta := 0 -	if ci.IsLeaf() { -		delta = 1 -	} else { -		if (i^(int(ci)>>2))&1 != 0 { -			delta = 2 -		} -	} -	return face, uint32(2*i + delta), uint32(2*j + delta) -} - -// faceIJOrientation uses the global lookupIJ table to unfiddle the bits of ci. -func (ci CellID) faceIJOrientation() (f, i, j, orientation int) { -	f = ci.Face() -	orientation = f & swapMask -	nbits := maxLevel - 7*lookupBits // first iteration - -	// Each iteration maps 8 bits of the Hilbert curve position into -	// 4 bits of "i" and "j". The lookup table transforms a key of the -	// form "ppppppppoo" to a value of the form "iiiijjjjoo", where the -	// letters [ijpo] represents bits of "i", "j", the Hilbert curve -	// position, and the Hilbert curve orientation respectively. -	// -	// On the first iteration we need to be careful to clear out the bits -	// representing the cube face. -	for k := 7; k >= 0; k-- { -		orientation += (int(uint64(ci)>>uint64(k*2*lookupBits+1)) & ((1 << uint(2*nbits)) - 1)) << 2 -		orientation = lookupIJ[orientation] -		i += (orientation >> (lookupBits + 2)) << uint(k*lookupBits) -		j += ((orientation >> 2) & ((1 << lookupBits) - 1)) << uint(k*lookupBits) -		orientation &= (swapMask | invertMask) -		nbits = lookupBits // following iterations -	} - -	// The position of a non-leaf cell at level "n" consists of a prefix of -	// 2*n bits that identifies the cell, followed by a suffix of -	// 2*(maxLevel-n)+1 bits of the form 10*. If n==maxLevel, the suffix is -	// just "1" and has no effect. Otherwise, it consists of "10", followed -	// by (maxLevel-n-1) repetitions of "00", followed by "0". The "10" has -	// no effect, while each occurrence of "00" has the effect of reversing -	// the swapMask bit. -	if ci.lsb()&0x1111111111111110 != 0 { -		orientation ^= swapMask -	} - -	return -} - -// cellIDFromFaceIJ returns a leaf cell given its cube face (range 0..5) and IJ coordinates. -func cellIDFromFaceIJ(f, i, j int) CellID { -	// Note that this value gets shifted one bit to the left at the end -	// of the function. -	n := uint64(f) << (posBits - 1) -	// Alternating faces have opposite Hilbert curve orientations; this -	// is necessary in order for all faces to have a right-handed -	// coordinate system. -	bits := f & swapMask -	// Each iteration maps 4 bits of "i" and "j" into 8 bits of the Hilbert -	// curve position.  The lookup table transforms a 10-bit key of the form -	// "iiiijjjjoo" to a 10-bit value of the form "ppppppppoo", where the -	// letters [ijpo] denote bits of "i", "j", Hilbert curve position, and -	// Hilbert curve orientation respectively. -	for k := 7; k >= 0; k-- { -		mask := (1 << lookupBits) - 1 -		bits += ((i >> uint(k*lookupBits)) & mask) << (lookupBits + 2) -		bits += ((j >> uint(k*lookupBits)) & mask) << 2 -		bits = lookupPos[bits] -		n |= uint64(bits>>2) << (uint(k) * 2 * lookupBits) -		bits &= (swapMask | invertMask) -	} -	return CellID(n*2 + 1) -} - -func cellIDFromFaceIJWrap(f, i, j int) CellID { -	// Convert i and j to the coordinates of a leaf cell just beyond the -	// boundary of this face.  This prevents 32-bit overflow in the case -	// of finding the neighbors of a face cell. -	i = clampInt(i, -1, maxSize) -	j = clampInt(j, -1, maxSize) - -	// We want to wrap these coordinates onto the appropriate adjacent face. -	// The easiest way to do this is to convert the (i,j) coordinates to (x,y,z) -	// (which yields a point outside the normal face boundary), and then call -	// xyzToFaceUV to project back onto the correct face. -	// -	// The code below converts (i,j) to (si,ti), and then (si,ti) to (u,v) using -	// the linear projection (u=2*s-1 and v=2*t-1).  (The code further below -	// converts back using the inverse projection, s=0.5*(u+1) and t=0.5*(v+1). -	// Any projection would work here, so we use the simplest.)  We also clamp -	// the (u,v) coordinates so that the point is barely outside the -	// [-1,1]x[-1,1] face rectangle, since otherwise the reprojection step -	// (which divides by the new z coordinate) might change the other -	// coordinates enough so that we end up in the wrong leaf cell. -	const scale = 1.0 / maxSize -	limit := math.Nextafter(1, 2) -	u := math.Max(-limit, math.Min(limit, scale*float64((i<<1)+1-maxSize))) -	v := math.Max(-limit, math.Min(limit, scale*float64((j<<1)+1-maxSize))) - -	// Find the leaf cell coordinates on the adjacent face, and convert -	// them to a cell id at the appropriate level. -	f, u, v = xyzToFaceUV(faceUVToXYZ(f, u, v)) -	return cellIDFromFaceIJ(f, stToIJ(0.5*(u+1)), stToIJ(0.5*(v+1))) -} - -func cellIDFromFaceIJSame(f, i, j int, sameFace bool) CellID { -	if sameFace { -		return cellIDFromFaceIJ(f, i, j) -	} -	return cellIDFromFaceIJWrap(f, i, j) -} - -// ijToSTMin converts the i- or j-index of a leaf cell to the minimum corresponding -// s- or t-value contained by that cell. The argument must be in the range -// [0..2**30], i.e. up to one position beyond the normal range of valid leaf -// cell indices. -func ijToSTMin(i int) float64 { -	return float64(i) / float64(maxSize) -} - -// stToIJ converts value in ST coordinates to a value in IJ coordinates. -func stToIJ(s float64) int { -	return clampInt(int(math.Floor(maxSize*s)), 0, maxSize-1) -} - -// cellIDFromPoint returns a leaf cell containing point p. Usually there is -// exactly one such cell, but for points along the edge of a cell, any -// adjacent cell may be (deterministically) chosen. This is because -// s2.CellIDs are considered to be closed sets. The returned cell will -// always contain the given point, i.e. -// -//   CellFromPoint(p).ContainsPoint(p) -// -// is always true. -func cellIDFromPoint(p Point) CellID { -	f, u, v := xyzToFaceUV(r3.Vector{p.X, p.Y, p.Z}) -	i := stToIJ(uvToST(u)) -	j := stToIJ(uvToST(v)) -	return cellIDFromFaceIJ(f, i, j) -} - -// ijLevelToBoundUV returns the bounds in (u,v)-space for the cell at the given -// level containing the leaf cell with the given (i,j)-coordinates. -func ijLevelToBoundUV(i, j, level int) r2.Rect { -	cellSize := sizeIJ(level) -	xLo := i & -cellSize -	yLo := j & -cellSize - -	return r2.Rect{ -		X: r1.Interval{ -			Lo: stToUV(ijToSTMin(xLo)), -			Hi: stToUV(ijToSTMin(xLo + cellSize)), -		}, -		Y: r1.Interval{ -			Lo: stToUV(ijToSTMin(yLo)), -			Hi: stToUV(ijToSTMin(yLo + cellSize)), -		}, -	} -} - -// Constants related to the bit mangling in the Cell ID. -const ( -	lookupBits = 4 -	swapMask   = 0x01 -	invertMask = 0x02 -) - -// The following lookup tables are used to convert efficiently between an -// (i,j) cell index and the corresponding position along the Hilbert curve. -// -// lookupPos maps 4 bits of "i", 4 bits of "j", and 2 bits representing the -// orientation of the current cell into 8 bits representing the order in which -// that subcell is visited by the Hilbert curve, plus 2 bits indicating the -// new orientation of the Hilbert curve within that subcell. (Cell -// orientations are represented as combination of swapMask and invertMask.) -// -// lookupIJ is an inverted table used for mapping in the opposite -// direction. -// -// We also experimented with looking up 16 bits at a time (14 bits of position -// plus 2 of orientation) but found that smaller lookup tables gave better -// performance. (2KB fits easily in the primary cache.) -var ( -	ijToPos = [4][4]int{ -		{0, 1, 3, 2}, // canonical order -		{0, 3, 1, 2}, // axes swapped -		{2, 3, 1, 0}, // bits inverted -		{2, 1, 3, 0}, // swapped & inverted -	} -	posToIJ = [4][4]int{ -		{0, 1, 3, 2}, // canonical order:    (0,0), (0,1), (1,1), (1,0) -		{0, 2, 3, 1}, // axes swapped:       (0,0), (1,0), (1,1), (0,1) -		{3, 2, 0, 1}, // bits inverted:      (1,1), (1,0), (0,0), (0,1) -		{3, 1, 0, 2}, // swapped & inverted: (1,1), (0,1), (0,0), (1,0) -	} -	posToOrientation = [4]int{swapMask, 0, 0, invertMask | swapMask} -	lookupIJ         [1 << (2*lookupBits + 2)]int -	lookupPos        [1 << (2*lookupBits + 2)]int -) - -func init() { -	initLookupCell(0, 0, 0, 0, 0, 0) -	initLookupCell(0, 0, 0, swapMask, 0, swapMask) -	initLookupCell(0, 0, 0, invertMask, 0, invertMask) -	initLookupCell(0, 0, 0, swapMask|invertMask, 0, swapMask|invertMask) -} - -// initLookupCell initializes the lookupIJ table at init time. -func initLookupCell(level, i, j, origOrientation, pos, orientation int) { -	if level == lookupBits { -		ij := (i << lookupBits) + j -		lookupPos[(ij<<2)+origOrientation] = (pos << 2) + orientation -		lookupIJ[(pos<<2)+origOrientation] = (ij << 2) + orientation -		return -	} - -	level++ -	i <<= 1 -	j <<= 1 -	pos <<= 2 -	r := posToIJ[orientation] -	initLookupCell(level, i+(r[0]>>1), j+(r[0]&1), origOrientation, pos, orientation^posToOrientation[0]) -	initLookupCell(level, i+(r[1]>>1), j+(r[1]&1), origOrientation, pos+1, orientation^posToOrientation[1]) -	initLookupCell(level, i+(r[2]>>1), j+(r[2]&1), origOrientation, pos+2, orientation^posToOrientation[2]) -	initLookupCell(level, i+(r[3]>>1), j+(r[3]&1), origOrientation, pos+3, orientation^posToOrientation[3]) -} - -// CommonAncestorLevel returns the level of the common ancestor of the two S2 CellIDs. -func (ci CellID) CommonAncestorLevel(other CellID) (level int, ok bool) { -	bits := uint64(ci ^ other) -	if bits < ci.lsb() { -		bits = ci.lsb() -	} -	if bits < other.lsb() { -		bits = other.lsb() -	} - -	msbPos := findMSBSetNonZero64(bits) -	if msbPos > 60 { -		return 0, false -	} -	return (60 - msbPos) >> 1, true -} - -// Advance advances or retreats the indicated number of steps along the -// Hilbert curve at the current level, and returns the new position. The -// position is never advanced past End() or before Begin(). -func (ci CellID) Advance(steps int64) CellID { -	if steps == 0 { -		return ci -	} - -	// We clamp the number of steps if necessary to ensure that we do not -	// advance past the End() or before the Begin() of this level. Note that -	// minSteps and maxSteps always fit in a signed 64-bit integer. -	stepShift := uint(2*(maxLevel-ci.Level()) + 1) -	if steps < 0 { -		minSteps := -int64(uint64(ci) >> stepShift) -		if steps < minSteps { -			steps = minSteps -		} -	} else { -		maxSteps := int64((wrapOffset + ci.lsb() - uint64(ci)) >> stepShift) -		if steps > maxSteps { -			steps = maxSteps -		} -	} -	return ci + CellID(steps)<<stepShift -} - -// centerST return the center of the CellID in (s,t)-space. -func (ci CellID) centerST() r2.Point { -	_, si, ti := ci.faceSiTi() -	return r2.Point{siTiToST(si), siTiToST(ti)} -} - -// sizeST returns the edge length of this CellID in (s,t)-space at the given level. -func (ci CellID) sizeST(level int) float64 { -	return ijToSTMin(sizeIJ(level)) -} - -// boundST returns the bound of this CellID in (s,t)-space. -func (ci CellID) boundST() r2.Rect { -	s := ci.sizeST(ci.Level()) -	return r2.RectFromCenterSize(ci.centerST(), r2.Point{s, s}) -} - -// centerUV returns the center of this CellID in (u,v)-space. Note that -// the center of the cell is defined as the point at which it is recursively -// subdivided into four children; in general, it is not at the midpoint of -// the (u,v) rectangle covered by the cell. -func (ci CellID) centerUV() r2.Point { -	_, si, ti := ci.faceSiTi() -	return r2.Point{stToUV(siTiToST(si)), stToUV(siTiToST(ti))} -} - -// boundUV returns the bound of this CellID in (u,v)-space. -func (ci CellID) boundUV() r2.Rect { -	_, i, j, _ := ci.faceIJOrientation() -	return ijLevelToBoundUV(i, j, ci.Level()) -} - -// expandEndpoint returns a new u-coordinate u' such that the distance from the -// line u=u' to the given edge (u,v0)-(u,v1) is exactly the given distance -// (which is specified as the sine of the angle corresponding to the distance). -func expandEndpoint(u, maxV, sinDist float64) float64 { -	// This is based on solving a spherical right triangle, similar to the -	// calculation in Cap.RectBound. -	// Given an edge of the form (u,v0)-(u,v1), let maxV = max(abs(v0), abs(v1)). -	sinUShift := sinDist * math.Sqrt((1+u*u+maxV*maxV)/(1+u*u)) -	cosUShift := math.Sqrt(1 - sinUShift*sinUShift) -	// The following is an expansion of tan(atan(u) + asin(sinUShift)). -	return (cosUShift*u + sinUShift) / (cosUShift - sinUShift*u) -} - -// expandedByDistanceUV returns a rectangle expanded in (u,v)-space so that it -// contains all points within the given distance of the boundary, and return the -// smallest such rectangle. If the distance is negative, then instead shrink this -// rectangle so that it excludes all points within the given absolute distance -// of the boundary. -// -// Distances are measured *on the sphere*, not in (u,v)-space. For example, -// you can use this method to expand the (u,v)-bound of an CellID so that -// it contains all points within 5km of the original cell. You can then -// test whether a point lies within the expanded bounds like this: -// -//   if u, v, ok := faceXYZtoUV(face, point); ok && bound.ContainsPoint(r2.Point{u,v}) { ... } -// -// Limitations: -// -//  - Because the rectangle is drawn on one of the six cube-face planes -//    (i.e., {x,y,z} = +/-1), it can cover at most one hemisphere. This -//    limits the maximum amount that a rectangle can be expanded. For -//    example, CellID bounds can be expanded safely by at most 45 degrees -//    (about 5000 km on the Earth's surface). -// -//  - The implementation is not exact for negative distances. The resulting -//    rectangle will exclude all points within the given distance of the -//    boundary but may be slightly smaller than necessary. -func expandedByDistanceUV(uv r2.Rect, distance s1.Angle) r2.Rect { -	// Expand each of the four sides of the rectangle just enough to include all -	// points within the given distance of that side. (The rectangle may be -	// expanded by a different amount in (u,v)-space on each side.) -	maxU := math.Max(math.Abs(uv.X.Lo), math.Abs(uv.X.Hi)) -	maxV := math.Max(math.Abs(uv.Y.Lo), math.Abs(uv.Y.Hi)) -	sinDist := math.Sin(float64(distance)) -	return r2.Rect{ -		X: r1.Interval{expandEndpoint(uv.X.Lo, maxV, -sinDist), -			expandEndpoint(uv.X.Hi, maxV, sinDist)}, -		Y: r1.Interval{expandEndpoint(uv.Y.Lo, maxU, -sinDist), -			expandEndpoint(uv.Y.Hi, maxU, sinDist)}} -} - -// MaxTile returns the largest cell with the same RangeMin such that -// RangeMax < limit.RangeMin. It returns limit if no such cell exists. -// This method can be used to generate a small set of CellIDs that covers -// a given range (a tiling). This example shows how to generate a tiling -// for a semi-open range of leaf cells [start, limit): -// -//   for id := start.MaxTile(limit); id != limit; id = id.Next().MaxTile(limit)) { ... } -// -// Note that in general the cells in the tiling will be of different sizes; -// they gradually get larger (near the middle of the range) and then -// gradually get smaller as limit is approached. -func (ci CellID) MaxTile(limit CellID) CellID { -	start := ci.RangeMin() -	if start >= limit.RangeMin() { -		return limit -	} - -	if ci.RangeMax() >= limit { -		// The cell is too large, shrink it. Note that when generating coverings -		// of CellID ranges, this loop usually executes only once. Also because -		// ci.RangeMin() < limit.RangeMin(), we will always exit the loop by the -		// time we reach a leaf cell. -		for { -			ci = ci.Children()[0] -			if ci.RangeMax() < limit { -				break -			} -		} -		return ci -	} - -	// The cell may be too small. Grow it if necessary. Note that generally -	// this loop only iterates once. -	for !ci.isFace() { -		parent := ci.immediateParent() -		if parent.RangeMin() != start || parent.RangeMax() >= limit { -			break -		} -		ci = parent -	} -	return ci -} - -// centerFaceSiTi returns the (face, si, ti) coordinates of the center of the cell. -// Note that although (si,ti) coordinates span the range [0,2**31] in general, -// the cell center coordinates are always in the range [1,2**31-1] and -// therefore can be represented using a signed 32-bit integer. -func (ci CellID) centerFaceSiTi() (face, si, ti int) { -	// First we compute the discrete (i,j) coordinates of a leaf cell contained -	// within the given cell. Given that cells are represented by the Hilbert -	// curve position corresponding at their center, it turns out that the cell -	// returned by faceIJOrientation is always one of two leaf cells closest -	// to the center of the cell (unless the given cell is a leaf cell itself, -	// in which case there is only one possibility). -	// -	// Given a cell of size s >= 2 (i.e. not a leaf cell), and letting (imin, -	// jmin) be the coordinates of its lower left-hand corner, the leaf cell -	// returned by faceIJOrientation is either (imin + s/2, jmin + s/2) -	// (imin + s/2 - 1, jmin + s/2 - 1). The first case is the one we want. -	// We can distinguish these two cases by looking at the low bit of i or -	// j. In the second case the low bit is one, unless s == 2 (i.e. the -	// level just above leaf cells) in which case the low bit is zero. -	// -	// In the code below, the expression ((i ^ (int(id) >> 2)) & 1) is true -	// if we are in the second case described above. -	face, i, j, _ := ci.faceIJOrientation() -	delta := 0 -	if ci.IsLeaf() { -		delta = 1 -	} else if (int64(i)^(int64(ci)>>2))&1 == 1 { -		delta = 2 -	} - -	// Note that (2 * {i,j} + delta) will never overflow a 32-bit integer. -	return face, 2*i + delta, 2*j + delta -} diff --git a/vendor/github.com/golang/geo/s2/cellunion.go b/vendor/github.com/golang/geo/s2/cellunion.go deleted file mode 100644 index 0654de973..000000000 --- a/vendor/github.com/golang/geo/s2/cellunion.go +++ /dev/null @@ -1,590 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" -	"io" -	"sort" - -	"github.com/golang/geo/s1" -) - -// A CellUnion is a collection of CellIDs. -// -// It is normalized if it is sorted, and does not contain redundancy. -// Specifically, it may not contain the same CellID twice, nor a CellID that -// is contained by another, nor the four sibling CellIDs that are children of -// a single higher level CellID. -// -// CellUnions are not required to be normalized, but certain operations will -// return different results if they are not (e.g. Contains). -type CellUnion []CellID - -// CellUnionFromRange creates a CellUnion that covers the half-open range -// of leaf cells [begin, end). If begin == end the resulting union is empty. -// This requires that begin and end are both leaves, and begin <= end. -// To create a closed-ended range, pass in end.Next(). -func CellUnionFromRange(begin, end CellID) CellUnion { -	// We repeatedly add the largest cell we can. -	var cu CellUnion -	for id := begin.MaxTile(end); id != end; id = id.Next().MaxTile(end) { -		cu = append(cu, id) -	} -	// The output is normalized because the cells are added in order by the iteration. -	return cu -} - -// CellUnionFromUnion creates a CellUnion from the union of the given CellUnions. -func CellUnionFromUnion(cellUnions ...CellUnion) CellUnion { -	var cu CellUnion -	for _, cellUnion := range cellUnions { -		cu = append(cu, cellUnion...) -	} -	cu.Normalize() -	return cu -} - -// CellUnionFromIntersection creates a CellUnion from the intersection of the given CellUnions. -func CellUnionFromIntersection(x, y CellUnion) CellUnion { -	var cu CellUnion - -	// This is a fairly efficient calculation that uses binary search to skip -	// over sections of both input vectors. It takes constant time if all the -	// cells of x come before or after all the cells of y in CellID order. -	var i, j int -	for i < len(x) && j < len(y) { -		iMin := x[i].RangeMin() -		jMin := y[j].RangeMin() -		if iMin > jMin { -			// Either j.Contains(i) or the two cells are disjoint. -			if x[i] <= y[j].RangeMax() { -				cu = append(cu, x[i]) -				i++ -			} else { -				// Advance j to the first cell possibly contained by x[i]. -				j = y.lowerBound(j+1, len(y), iMin) -				// The previous cell y[j-1] may now contain x[i]. -				if x[i] <= y[j-1].RangeMax() { -					j-- -				} -			} -		} else if jMin > iMin { -			// Identical to the code above with i and j reversed. -			if y[j] <= x[i].RangeMax() { -				cu = append(cu, y[j]) -				j++ -			} else { -				i = x.lowerBound(i+1, len(x), jMin) -				if y[j] <= x[i-1].RangeMax() { -					i-- -				} -			} -		} else { -			// i and j have the same RangeMin(), so one contains the other. -			if x[i] < y[j] { -				cu = append(cu, x[i]) -				i++ -			} else { -				cu = append(cu, y[j]) -				j++ -			} -		} -	} - -	// The output is generated in sorted order. -	cu.Normalize() -	return cu -} - -// CellUnionFromIntersectionWithCellID creates a CellUnion from the intersection -// of a CellUnion with the given CellID. This can be useful for splitting a -// CellUnion into chunks. -func CellUnionFromIntersectionWithCellID(x CellUnion, id CellID) CellUnion { -	var cu CellUnion -	if x.ContainsCellID(id) { -		cu = append(cu, id) -		cu.Normalize() -		return cu -	} - -	idmax := id.RangeMax() -	for i := x.lowerBound(0, len(x), id.RangeMin()); i < len(x) && x[i] <= idmax; i++ { -		cu = append(cu, x[i]) -	} - -	cu.Normalize() -	return cu -} - -// CellUnionFromDifference creates a CellUnion from the difference (x - y) -// of the given CellUnions. -func CellUnionFromDifference(x, y CellUnion) CellUnion { -	// TODO(roberts): This is approximately O(N*log(N)), but could probably -	// use similar techniques as CellUnionFromIntersectionWithCellID to be more efficient. - -	var cu CellUnion -	for _, xid := range x { -		cu.cellUnionDifferenceInternal(xid, &y) -	} - -	// The output is generated in sorted order, and there should not be any -	// cells that can be merged (provided that both inputs were normalized). -	return cu -} - -// The C++ constructor methods FromNormalized and FromVerbatim are not necessary -// since they don't call Normalize, and just set the CellIDs directly on the object, -// so straight casting is sufficient in Go to replicate this behavior. - -// IsValid reports whether the cell union is valid, meaning that the CellIDs are -// valid, non-overlapping, and sorted in increasing order. -func (cu *CellUnion) IsValid() bool { -	for i, cid := range *cu { -		if !cid.IsValid() { -			return false -		} -		if i == 0 { -			continue -		} -		if (*cu)[i-1].RangeMax() >= cid.RangeMin() { -			return false -		} -	} -	return true -} - -// IsNormalized reports whether the cell union is normalized, meaning that it is -// satisfies IsValid and that no four cells have a common parent. -// Certain operations such as Contains will return a different -// result if the cell union is not normalized. -func (cu *CellUnion) IsNormalized() bool { -	for i, cid := range *cu { -		if !cid.IsValid() { -			return false -		} -		if i == 0 { -			continue -		} -		if (*cu)[i-1].RangeMax() >= cid.RangeMin() { -			return false -		} -		if i < 3 { -			continue -		} -		if areSiblings((*cu)[i-3], (*cu)[i-2], (*cu)[i-1], cid) { -			return false -		} -	} -	return true -} - -// Normalize normalizes the CellUnion. -func (cu *CellUnion) Normalize() { -	sortCellIDs(*cu) - -	output := make([]CellID, 0, len(*cu)) // the list of accepted cells -	// Loop invariant: output is a sorted list of cells with no redundancy. -	for _, ci := range *cu { -		// The first two passes here either ignore this new candidate, -		// or remove previously accepted cells that are covered by this candidate. - -		// Ignore this cell if it is contained by the previous one. -		// We only need to check the last accepted cell. The ordering of the -		// cells implies containment (but not the converse), and output has no redundancy, -		// so if this candidate is not contained by the last accepted cell -		// then it cannot be contained by any previously accepted cell. -		if len(output) > 0 && output[len(output)-1].Contains(ci) { -			continue -		} - -		// Discard any previously accepted cells contained by this one. -		// This could be any contiguous trailing subsequence, but it can't be -		// a discontiguous subsequence because of the containment property of -		// sorted S2 cells mentioned above. -		j := len(output) - 1 // last index to keep -		for j >= 0 { -			if !ci.Contains(output[j]) { -				break -			} -			j-- -		} -		output = output[:j+1] - -		// See if the last three cells plus this one can be collapsed. -		// We loop because collapsing three accepted cells and adding a higher level cell -		// could cascade into previously accepted cells. -		for len(output) >= 3 && areSiblings(output[len(output)-3], output[len(output)-2], output[len(output)-1], ci) { -			// Replace four children by their parent cell. -			output = output[:len(output)-3] -			ci = ci.immediateParent() // checked !ci.isFace above -		} -		output = append(output, ci) -	} -	*cu = output -} - -// IntersectsCellID reports whether this CellUnion intersects the given cell ID. -func (cu *CellUnion) IntersectsCellID(id CellID) bool { -	// Find index of array item that occurs directly after our probe cell: -	i := sort.Search(len(*cu), func(i int) bool { return id < (*cu)[i] }) - -	if i != len(*cu) && (*cu)[i].RangeMin() <= id.RangeMax() { -		return true -	} -	return i != 0 && (*cu)[i-1].RangeMax() >= id.RangeMin() -} - -// ContainsCellID reports whether the CellUnion contains the given cell ID. -// Containment is defined with respect to regions, e.g. a cell contains its 4 children. -// -// CAVEAT: If you have constructed a non-normalized CellUnion, note that groups -// of 4 child cells are *not* considered to contain their parent cell. To get -// this behavior you must use one of the call Normalize() explicitly. -func (cu *CellUnion) ContainsCellID(id CellID) bool { -	// Find index of array item that occurs directly after our probe cell: -	i := sort.Search(len(*cu), func(i int) bool { return id < (*cu)[i] }) - -	if i != len(*cu) && (*cu)[i].RangeMin() <= id { -		return true -	} -	return i != 0 && (*cu)[i-1].RangeMax() >= id -} - -// Denormalize replaces this CellUnion with an expanded version of the -// CellUnion where any cell whose level is less than minLevel or where -// (level - minLevel) is not a multiple of levelMod is replaced by its -// children, until either both of these conditions are satisfied or the -// maximum level is reached. -func (cu *CellUnion) Denormalize(minLevel, levelMod int) { -	var denorm CellUnion -	for _, id := range *cu { -		level := id.Level() -		newLevel := level -		if newLevel < minLevel { -			newLevel = minLevel -		} -		if levelMod > 1 { -			newLevel += (maxLevel - (newLevel - minLevel)) % levelMod -			if newLevel > maxLevel { -				newLevel = maxLevel -			} -		} -		if newLevel == level { -			denorm = append(denorm, id) -		} else { -			end := id.ChildEndAtLevel(newLevel) -			for ci := id.ChildBeginAtLevel(newLevel); ci != end; ci = ci.Next() { -				denorm = append(denorm, ci) -			} -		} -	} -	*cu = denorm -} - -// RectBound returns a Rect that bounds this entity. -func (cu *CellUnion) RectBound() Rect { -	bound := EmptyRect() -	for _, c := range *cu { -		bound = bound.Union(CellFromCellID(c).RectBound()) -	} -	return bound -} - -// CapBound returns a Cap that bounds this entity. -func (cu *CellUnion) CapBound() Cap { -	if len(*cu) == 0 { -		return EmptyCap() -	} - -	// Compute the approximate centroid of the region. This won't produce the -	// bounding cap of minimal area, but it should be close enough. -	var centroid Point - -	for _, ci := range *cu { -		area := AvgAreaMetric.Value(ci.Level()) -		centroid = Point{centroid.Add(ci.Point().Mul(area))} -	} - -	if zero := (Point{}); centroid == zero { -		centroid = PointFromCoords(1, 0, 0) -	} else { -		centroid = Point{centroid.Normalize()} -	} - -	// Use the centroid as the cap axis, and expand the cap angle so that it -	// contains the bounding caps of all the individual cells.  Note that it is -	// *not* sufficient to just bound all the cell vertices because the bounding -	// cap may be concave (i.e. cover more than one hemisphere). -	c := CapFromPoint(centroid) -	for _, ci := range *cu { -		c = c.AddCap(CellFromCellID(ci).CapBound()) -	} - -	return c -} - -// ContainsCell reports whether this cell union contains the given cell. -func (cu *CellUnion) ContainsCell(c Cell) bool { -	return cu.ContainsCellID(c.id) -} - -// IntersectsCell reports whether this cell union intersects the given cell. -func (cu *CellUnion) IntersectsCell(c Cell) bool { -	return cu.IntersectsCellID(c.id) -} - -// ContainsPoint reports whether this cell union contains the given point. -func (cu *CellUnion) ContainsPoint(p Point) bool { -	return cu.ContainsCell(CellFromPoint(p)) -} - -// CellUnionBound computes a covering of the CellUnion. -func (cu *CellUnion) CellUnionBound() []CellID { -	return cu.CapBound().CellUnionBound() -} - -// LeafCellsCovered reports the number of leaf cells covered by this cell union. -// This will be no more than 6*2^60 for the whole sphere. -func (cu *CellUnion) LeafCellsCovered() int64 { -	var numLeaves int64 -	for _, c := range *cu { -		numLeaves += 1 << uint64((maxLevel-int64(c.Level()))<<1) -	} -	return numLeaves -} - -// Returns true if the given four cells have a common parent. -// This requires that the four CellIDs are distinct. -func areSiblings(a, b, c, d CellID) bool { -	// A necessary (but not sufficient) condition is that the XOR of the -	// four cell IDs must be zero. This is also very fast to test. -	if (a ^ b ^ c) != d { -		return false -	} - -	// Now we do a slightly more expensive but exact test. First, compute a -	// mask that blocks out the two bits that encode the child position of -	// "id" with respect to its parent, then check that the other three -	// children all agree with "mask". -	mask := d.lsb() << 1 -	mask = ^(mask + (mask << 1)) -	idMasked := (uint64(d) & mask) -	return ((uint64(a)&mask) == idMasked && -		(uint64(b)&mask) == idMasked && -		(uint64(c)&mask) == idMasked && -		!d.isFace()) -} - -// Contains reports whether this CellUnion contains all of the CellIDs of the given CellUnion. -func (cu *CellUnion) Contains(o CellUnion) bool { -	// TODO(roberts): Investigate alternatives such as divide-and-conquer -	// or alternating-skip-search that may be significantly faster in both -	// the average and worst case. This applies to Intersects as well. -	for _, id := range o { -		if !cu.ContainsCellID(id) { -			return false -		} -	} - -	return true -} - -// Intersects reports whether this CellUnion intersects any of the CellIDs of the given CellUnion. -func (cu *CellUnion) Intersects(o CellUnion) bool { -	for _, c := range *cu { -		if o.IntersectsCellID(c) { -			return true -		} -	} - -	return false -} - -// lowerBound returns the index in this CellUnion to the first element whose value -// is not considered to go before the given cell id. (i.e., either it is equivalent -// or comes after the given id.) If there is no match, then end is returned. -func (cu *CellUnion) lowerBound(begin, end int, id CellID) int { -	for i := begin; i < end; i++ { -		if (*cu)[i] >= id { -			return i -		} -	} - -	return end -} - -// cellUnionDifferenceInternal adds the difference between the CellID and the union to -// the result CellUnion. If they intersect but the difference is non-empty, it divides -// and conquers. -func (cu *CellUnion) cellUnionDifferenceInternal(id CellID, other *CellUnion) { -	if !other.IntersectsCellID(id) { -		(*cu) = append((*cu), id) -		return -	} - -	if !other.ContainsCellID(id) { -		for _, child := range id.Children() { -			cu.cellUnionDifferenceInternal(child, other) -		} -	} -} - -// ExpandAtLevel expands this CellUnion by adding a rim of cells at expandLevel -// around the unions boundary. -// -// For each cell c in the union, we add all cells at level -// expandLevel that abut c. There are typically eight of those -// (four edge-abutting and four sharing a vertex). However, if c is -// finer than expandLevel, we add all cells abutting -// c.Parent(expandLevel) as well as c.Parent(expandLevel) itself, -// as an expandLevel cell rarely abuts a smaller cell. -// -// Note that the size of the output is exponential in -// expandLevel. For example, if expandLevel == 20 and the input -// has a cell at level 10, there will be on the order of 4000 -// adjacent cells in the output. For most applications the -// ExpandByRadius method below is easier to use. -func (cu *CellUnion) ExpandAtLevel(level int) { -	var output CellUnion -	levelLsb := lsbForLevel(level) -	for i := len(*cu) - 1; i >= 0; i-- { -		id := (*cu)[i] -		if id.lsb() < levelLsb { -			id = id.Parent(level) -			// Optimization: skip over any cells contained by this one. This is -			// especially important when very small regions are being expanded. -			for i > 0 && id.Contains((*cu)[i-1]) { -				i-- -			} -		} -		output = append(output, id) -		output = append(output, id.AllNeighbors(level)...) -	} -	sortCellIDs(output) - -	*cu = output -	cu.Normalize() -} - -// ExpandByRadius expands this CellUnion such that it contains all points whose -// distance to the CellUnion is at most minRadius, but do not use cells that -// are more than maxLevelDiff levels higher than the largest cell in the input. -// The second parameter controls the tradeoff between accuracy and output size -// when a large region is being expanded by a small amount (e.g. expanding Canada -// by 1km). For example, if maxLevelDiff == 4 the region will always be expanded -// by approximately 1/16 the width of its largest cell. Note that in the worst case, -// the number of cells in the output can be up to 4 * (1 + 2 ** maxLevelDiff) times -// larger than the number of cells in the input. -func (cu *CellUnion) ExpandByRadius(minRadius s1.Angle, maxLevelDiff int) { -	minLevel := maxLevel -	for _, cid := range *cu { -		minLevel = minInt(minLevel, cid.Level()) -	} - -	// Find the maximum level such that all cells are at least "minRadius" wide. -	radiusLevel := MinWidthMetric.MaxLevel(minRadius.Radians()) -	if radiusLevel == 0 && minRadius.Radians() > MinWidthMetric.Value(0) { -		// The requested expansion is greater than the width of a face cell. -		// The easiest way to handle this is to expand twice. -		cu.ExpandAtLevel(0) -	} -	cu.ExpandAtLevel(minInt(minLevel+maxLevelDiff, radiusLevel)) -} - -// Equal reports whether the two CellUnions are equal. -func (cu CellUnion) Equal(o CellUnion) bool { -	if len(cu) != len(o) { -		return false -	} -	for i := 0; i < len(cu); i++ { -		if cu[i] != o[i] { -			return false -		} -	} -	return true -} - -// AverageArea returns the average area of this CellUnion. -// This is accurate to within a factor of 1.7. -func (cu *CellUnion) AverageArea() float64 { -	return AvgAreaMetric.Value(maxLevel) * float64(cu.LeafCellsCovered()) -} - -// ApproxArea returns the approximate area of this CellUnion. This method is accurate -// to within 3% percent for all cell sizes and accurate to within 0.1% for cells -// at level 5 or higher within the union. -func (cu *CellUnion) ApproxArea() float64 { -	var area float64 -	for _, id := range *cu { -		area += CellFromCellID(id).ApproxArea() -	} -	return area -} - -// ExactArea returns the area of this CellUnion as accurately as possible. -func (cu *CellUnion) ExactArea() float64 { -	var area float64 -	for _, id := range *cu { -		area += CellFromCellID(id).ExactArea() -	} -	return area -} - -// Encode encodes the CellUnion. -func (cu *CellUnion) Encode(w io.Writer) error { -	e := &encoder{w: w} -	cu.encode(e) -	return e.err -} - -func (cu *CellUnion) encode(e *encoder) { -	e.writeInt8(encodingVersion) -	e.writeInt64(int64(len(*cu))) -	for _, ci := range *cu { -		ci.encode(e) -	} -} - -// Decode decodes the CellUnion. -func (cu *CellUnion) Decode(r io.Reader) error { -	d := &decoder{r: asByteReader(r)} -	cu.decode(d) -	return d.err -} - -func (cu *CellUnion) decode(d *decoder) { -	version := d.readInt8() -	if d.err != nil { -		return -	} -	if version != encodingVersion { -		d.err = fmt.Errorf("only version %d is supported", encodingVersion) -		return -	} -	n := d.readInt64() -	if d.err != nil { -		return -	} -	const maxCells = 1000000 -	if n > maxCells { -		d.err = fmt.Errorf("too many cells (%d; max is %d)", n, maxCells) -		return -	} -	*cu = make([]CellID, n) -	for i := range *cu { -		(*cu)[i].decode(d) -	} -} diff --git a/vendor/github.com/golang/geo/s2/centroids.go b/vendor/github.com/golang/geo/s2/centroids.go deleted file mode 100644 index e8a91c442..000000000 --- a/vendor/github.com/golang/geo/s2/centroids.go +++ /dev/null @@ -1,133 +0,0 @@ -// Copyright 2018 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" - -	"github.com/golang/geo/r3" -) - -// There are several notions of the "centroid" of a triangle. First, there -// is the planar centroid, which is simply the centroid of the ordinary -// (non-spherical) triangle defined by the three vertices. Second, there is -// the surface centroid, which is defined as the intersection of the three -// medians of the spherical triangle. It is possible to show that this -// point is simply the planar centroid projected to the surface of the -// sphere. Finally, there is the true centroid (mass centroid), which is -// defined as the surface integral over the spherical triangle of (x,y,z) -// divided by the triangle area. This is the point that the triangle would -// rotate around if it was spinning in empty space. -// -// The best centroid for most purposes is the true centroid. Unlike the -// planar and surface centroids, the true centroid behaves linearly as -// regions are added or subtracted. That is, if you split a triangle into -// pieces and compute the average of their centroids (weighted by triangle -// area), the result equals the centroid of the original triangle. This is -// not true of the other centroids. -// -// Also note that the surface centroid may be nowhere near the intuitive -// "center" of a spherical triangle. For example, consider the triangle -// with vertices A=(1,eps,0), B=(0,0,1), C=(-1,eps,0) (a quarter-sphere). -// The surface centroid of this triangle is at S=(0, 2*eps, 1), which is -// within a distance of 2*eps of the vertex B. Note that the median from A -// (the segment connecting A to the midpoint of BC) passes through S, since -// this is the shortest path connecting the two endpoints. On the other -// hand, the true centroid is at M=(0, 0.5, 0.5), which when projected onto -// the surface is a much more reasonable interpretation of the "center" of -// this triangle. -// - -// TrueCentroid returns the true centroid of the spherical triangle ABC -// multiplied by the signed area of spherical triangle ABC. The reasons for -// multiplying by the signed area are (1) this is the quantity that needs to be -// summed to compute the centroid of a union or difference of triangles, and -// (2) it's actually easier to calculate this way. All points must have unit length. -// -// Note that the result of this function is defined to be Point(0, 0, 0) if -// the triangle is degenerate. -func TrueCentroid(a, b, c Point) Point { -	// Use Distance to get accurate results for small triangles. -	ra := float64(1) -	if sa := float64(b.Distance(c)); sa != 0 { -		ra = sa / math.Sin(sa) -	} -	rb := float64(1) -	if sb := float64(c.Distance(a)); sb != 0 { -		rb = sb / math.Sin(sb) -	} -	rc := float64(1) -	if sc := float64(a.Distance(b)); sc != 0 { -		rc = sc / math.Sin(sc) -	} - -	// Now compute a point M such that: -	// -	//  [Ax Ay Az] [Mx]                       [ra] -	//  [Bx By Bz] [My]  = 0.5 * det(A,B,C) * [rb] -	//  [Cx Cy Cz] [Mz]                       [rc] -	// -	// To improve the numerical stability we subtract the first row (A) from the -	// other two rows; this reduces the cancellation error when A, B, and C are -	// very close together. Then we solve it using Cramer's rule. -	// -	// The result is the true centroid of the triangle multiplied by the -	// triangle's area. -	// -	// This code still isn't as numerically stable as it could be. -	// The biggest potential improvement is to compute B-A and C-A more -	// accurately so that (B-A)x(C-A) is always inside triangle ABC. -	x := r3.Vector{a.X, b.X - a.X, c.X - a.X} -	y := r3.Vector{a.Y, b.Y - a.Y, c.Y - a.Y} -	z := r3.Vector{a.Z, b.Z - a.Z, c.Z - a.Z} -	r := r3.Vector{ra, rb - ra, rc - ra} - -	return Point{r3.Vector{y.Cross(z).Dot(r), z.Cross(x).Dot(r), x.Cross(y).Dot(r)}.Mul(0.5)} -} - -// EdgeTrueCentroid returns the true centroid of the spherical geodesic edge AB -// multiplied by the length of the edge AB. As with triangles, the true centroid -// of a collection of line segments may be computed simply by summing the result -// of this method for each segment. -// -// Note that the planar centroid of a line segment is simply 0.5 * (a + b), -// while the surface centroid is (a + b).Normalize(). However neither of -// these values is appropriate for computing the centroid of a collection of -// edges (such as a polyline). -// -// Also note that the result of this function is defined to be Point(0, 0, 0) -// if the edge is degenerate. -func EdgeTrueCentroid(a, b Point) Point { -	// The centroid (multiplied by length) is a vector toward the midpoint -	// of the edge, whose length is twice the sine of half the angle between -	// the two vertices. Defining theta to be this angle, we have: -	vDiff := a.Sub(b.Vector) // Length == 2*sin(theta) -	vSum := a.Add(b.Vector)  // Length == 2*cos(theta) -	sin2 := vDiff.Norm2() -	cos2 := vSum.Norm2() -	if cos2 == 0 { -		return Point{} // Ignore antipodal edges. -	} -	return Point{vSum.Mul(math.Sqrt(sin2 / cos2))} // Length == 2*sin(theta) -} - -// PlanarCentroid returns the centroid of the planar triangle ABC. This can be -// normalized to unit length to obtain the "surface centroid" of the corresponding -// spherical triangle, i.e. the intersection of the three medians. However, note -// that for large spherical triangles the surface centroid may be nowhere near -// the intuitive "center". -func PlanarCentroid(a, b, c Point) Point { -	return Point{a.Add(b.Vector).Add(c.Vector).Mul(1. / 3)} -} diff --git a/vendor/github.com/golang/geo/s2/contains_point_query.go b/vendor/github.com/golang/geo/s2/contains_point_query.go deleted file mode 100644 index 3026f3601..000000000 --- a/vendor/github.com/golang/geo/s2/contains_point_query.go +++ /dev/null @@ -1,190 +0,0 @@ -// Copyright 2018 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// VertexModel defines whether shapes are considered to contain their vertices. -// Note that these definitions differ from the ones used by BooleanOperation. -// -// Note that points other than vertices are never contained by polylines. -// If you want need this behavior, use ClosestEdgeQuery's IsDistanceLess -// with a suitable distance threshold instead. -type VertexModel int - -const ( -	// VertexModelOpen means no shapes contain their vertices (not even -	// points). Therefore Contains(Point) returns true if and only if the -	// point is in the interior of some polygon. -	VertexModelOpen VertexModel = iota - -	// VertexModelSemiOpen means that polygon point containment is defined -	// such that if several polygons tile the region around a vertex, then -	// exactly one of those polygons contains that vertex. Points and -	// polylines still do not contain any vertices. -	VertexModelSemiOpen - -	// VertexModelClosed means all shapes contain their vertices (including -	// points and polylines). -	VertexModelClosed -) - -// ContainsPointQuery determines whether one or more shapes in a ShapeIndex -// contain a given Point. The ShapeIndex may contain any number of points, -// polylines, and/or polygons (possibly overlapping). Shape boundaries may be -// modeled as Open, SemiOpen, or Closed (this affects whether or not shapes are -// considered to contain their vertices). -// -// This type is not safe for concurrent use. -// -// However, note that if you need to do a large number of point containment -// tests, it is more efficient to re-use the query rather than creating a new -// one each time. -type ContainsPointQuery struct { -	model VertexModel -	index *ShapeIndex -	iter  *ShapeIndexIterator -} - -// NewContainsPointQuery creates a new instance of the ContainsPointQuery for the index -// and given vertex model choice. -func NewContainsPointQuery(index *ShapeIndex, model VertexModel) *ContainsPointQuery { -	return &ContainsPointQuery{ -		index: index, -		model: model, -		iter:  index.Iterator(), -	} -} - -// Contains reports whether any shape in the queries index contains the point p -// under the queries vertex model (Open, SemiOpen, or Closed). -func (q *ContainsPointQuery) Contains(p Point) bool { -	if !q.iter.LocatePoint(p) { -		return false -	} - -	cell := q.iter.IndexCell() -	for _, clipped := range cell.shapes { -		if q.shapeContains(clipped, q.iter.Center(), p) { -			return true -		} -	} -	return false -} - -// shapeContains reports whether the clippedShape from the iterator's center position contains -// the given point. -func (q *ContainsPointQuery) shapeContains(clipped *clippedShape, center, p Point) bool { -	inside := clipped.containsCenter -	numEdges := clipped.numEdges() -	if numEdges <= 0 { -		return inside -	} - -	shape := q.index.Shape(clipped.shapeID) -	if shape.Dimension() != 2 { -		// Points and polylines can be ignored unless the vertex model is Closed. -		if q.model != VertexModelClosed { -			return false -		} - -		// Otherwise, the point is contained if and only if it matches a vertex. -		for _, edgeID := range clipped.edges { -			edge := shape.Edge(edgeID) -			if edge.V0 == p || edge.V1 == p { -				return true -			} -		} -		return false -	} - -	// Test containment by drawing a line segment from the cell center to the -	// given point and counting edge crossings. -	crosser := NewEdgeCrosser(center, p) -	for _, edgeID := range clipped.edges { -		edge := shape.Edge(edgeID) -		sign := crosser.CrossingSign(edge.V0, edge.V1) -		if sign == DoNotCross { -			continue -		} -		if sign == MaybeCross { -			// For the Open and Closed models, check whether p is a vertex. -			if q.model != VertexModelSemiOpen && (edge.V0 == p || edge.V1 == p) { -				return (q.model == VertexModelClosed) -			} -			// C++ plays fast and loose with the int <-> bool conversions here. -			if VertexCrossing(crosser.a, crosser.b, edge.V0, edge.V1) { -				sign = Cross -			} else { -				sign = DoNotCross -			} -		} -		inside = inside != (sign == Cross) -	} - -	return inside -} - -// ShapeContains reports whether the given shape contains the point under this -// queries vertex model (Open, SemiOpen, or Closed). -// -// This requires the shape belongs to this queries index. -func (q *ContainsPointQuery) ShapeContains(shape Shape, p Point) bool { -	if !q.iter.LocatePoint(p) { -		return false -	} - -	clipped := q.iter.IndexCell().findByShapeID(q.index.idForShape(shape)) -	if clipped == nil { -		return false -	} -	return q.shapeContains(clipped, q.iter.Center(), p) -} - -// shapeVisitorFunc is a type of function that can be called against shaped in an index. -type shapeVisitorFunc func(shape Shape) bool - -// visitContainingShapes visits all shapes in the given index that contain the -// given point p, terminating early if the given visitor function returns false, -// in which case visitContainingShapes returns false. Each shape is -// visited at most once. -func (q *ContainsPointQuery) visitContainingShapes(p Point, f shapeVisitorFunc) bool { -	// This function returns false only if the algorithm terminates early -	// because the visitor function returned false. -	if !q.iter.LocatePoint(p) { -		return true -	} - -	cell := q.iter.IndexCell() -	for _, clipped := range cell.shapes { -		if q.shapeContains(clipped, q.iter.Center(), p) && -			!f(q.index.Shape(clipped.shapeID)) { -			return false -		} -	} -	return true -} - -// ContainingShapes returns a slice of all shapes that contain the given point. -func (q *ContainsPointQuery) ContainingShapes(p Point) []Shape { -	var shapes []Shape -	q.visitContainingShapes(p, func(shape Shape) bool { -		shapes = append(shapes, shape) -		return true -	}) -	return shapes -} - -// TODO(roberts): Remaining methods from C++ -// type edgeVisitorFunc func(shape ShapeEdge) bool -// func (q *ContainsPointQuery) visitIncidentEdges(p Point, v edgeVisitorFunc) bool diff --git a/vendor/github.com/golang/geo/s2/contains_vertex_query.go b/vendor/github.com/golang/geo/s2/contains_vertex_query.go deleted file mode 100644 index 8e74f9e5b..000000000 --- a/vendor/github.com/golang/geo/s2/contains_vertex_query.go +++ /dev/null @@ -1,63 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// ContainsVertexQuery is used to track the edges entering and leaving the -// given vertex of a Polygon in order to be able to determine if the point is -// contained by the Polygon. -// -// Point containment is defined according to the semi-open boundary model -// which means that if several polygons tile the region around a vertex, -// then exactly one of those polygons contains that vertex. -type ContainsVertexQuery struct { -	target  Point -	edgeMap map[Point]int -} - -// NewContainsVertexQuery returns a new query for the given vertex whose -// containment will be determined. -func NewContainsVertexQuery(target Point) *ContainsVertexQuery { -	return &ContainsVertexQuery{ -		target:  target, -		edgeMap: make(map[Point]int), -	} -} - -// AddEdge adds the edge between target and v with the given direction. -// (+1 = outgoing, -1 = incoming, 0 = degenerate). -func (q *ContainsVertexQuery) AddEdge(v Point, direction int) { -	q.edgeMap[v] += direction -} - -// ContainsVertex reports a +1 if the target vertex is contained, -1 if it is -// not contained, and 0 if the incident edges consisted of matched sibling pairs. -func (q *ContainsVertexQuery) ContainsVertex() int { -	// Find the unmatched edge that is immediately clockwise from Ortho(P). -	referenceDir := Point{q.target.Ortho()} - -	bestPoint := referenceDir -	bestDir := 0 - -	for k, v := range q.edgeMap { -		if v == 0 { -			continue // This is a "matched" edge. -		} -		if OrderedCCW(referenceDir, bestPoint, k, q.target) { -			bestPoint = k -			bestDir = v -		} -	} -	return bestDir -} diff --git a/vendor/github.com/golang/geo/s2/convex_hull_query.go b/vendor/github.com/golang/geo/s2/convex_hull_query.go deleted file mode 100644 index 68539abb1..000000000 --- a/vendor/github.com/golang/geo/s2/convex_hull_query.go +++ /dev/null @@ -1,258 +0,0 @@ -// Copyright 2018 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"sort" - -	"github.com/golang/geo/r3" -) - -// ConvexHullQuery builds the convex hull of any collection of points, -// polylines, loops, and polygons. It returns a single convex loop. -// -// The convex hull is defined as the smallest convex region on the sphere that -// contains all of your input geometry. Recall that a region is "convex" if -// for every pair of points inside the region, the straight edge between them -// is also inside the region. In our case, a "straight" edge is a geodesic, -// i.e. the shortest path on the sphere between two points. -// -// Containment of input geometry is defined as follows: -// -//  - Each input loop and polygon is contained by the convex hull exactly -//    (i.e., according to Polygon's Contains(Polygon)). -// -//  - Each input point is either contained by the convex hull or is a vertex -//    of the convex hull. (Recall that S2Loops do not necessarily contain their -//    vertices.) -// -//  - For each input polyline, the convex hull contains all of its vertices -//    according to the rule for points above. (The definition of convexity -//    then ensures that the convex hull also contains the polyline edges.) -// -// To use this type, call the various Add... methods to add your input geometry, and -// then call ConvexHull. Note that ConvexHull does *not* reset the -// state; you can continue adding geometry if desired and compute the convex -// hull again. If you want to start from scratch, simply create a new -// ConvexHullQuery value. -// -// This implement Andrew's monotone chain algorithm, which is a variant of the -// Graham scan (see https://en.wikipedia.org/wiki/Graham_scan). The time -// complexity is O(n log n), and the space required is O(n). In fact only the -// call to "sort" takes O(n log n) time; the rest of the algorithm is linear. -// -// Demonstration of the algorithm and code: -// en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain -// -// This type is not safe for concurrent use. -type ConvexHullQuery struct { -	bound  Rect -	points []Point -} - -// NewConvexHullQuery creates a new ConvexHullQuery. -func NewConvexHullQuery() *ConvexHullQuery { -	return &ConvexHullQuery{ -		bound: EmptyRect(), -	} -} - -// AddPoint adds the given point to the input geometry. -func (q *ConvexHullQuery) AddPoint(p Point) { -	q.bound = q.bound.AddPoint(LatLngFromPoint(p)) -	q.points = append(q.points, p) -} - -// AddPolyline adds the given polyline to the input geometry. -func (q *ConvexHullQuery) AddPolyline(p *Polyline) { -	q.bound = q.bound.Union(p.RectBound()) -	q.points = append(q.points, (*p)...) -} - -// AddLoop adds the given loop to the input geometry. -func (q *ConvexHullQuery) AddLoop(l *Loop) { -	q.bound = q.bound.Union(l.RectBound()) -	if l.isEmptyOrFull() { -		return -	} -	q.points = append(q.points, l.vertices...) -} - -// AddPolygon adds the given polygon to the input geometry. -func (q *ConvexHullQuery) AddPolygon(p *Polygon) { -	q.bound = q.bound.Union(p.RectBound()) -	for _, l := range p.loops { -		// Only loops at depth 0 can contribute to the convex hull. -		if l.depth == 0 { -			q.AddLoop(l) -		} -	} -} - -// CapBound returns a bounding cap for the input geometry provided. -// -// Note that this method does not clear the geometry; you can continue -// adding to it and call this method again if desired. -func (q *ConvexHullQuery) CapBound() Cap { -	// We keep track of a rectangular bound rather than a spherical cap because -	// it is easy to compute a tight bound for a union of rectangles, whereas it -	// is quite difficult to compute a tight bound around a union of caps. -	// Also, polygons and polylines implement CapBound() in terms of -	// RectBound() for this same reason, so it is much better to keep track -	// of a rectangular bound as we go along and convert it at the end. -	// -	// TODO(roberts): We could compute an optimal bound by implementing Welzl's -	// algorithm. However we would still need to have special handling of loops -	// and polygons, since if a loop spans more than 180 degrees in any -	// direction (i.e., if it contains two antipodal points), then it is not -	// enough just to bound its vertices. In this case the only convex bounding -	// cap is FullCap(), and the only convex bounding loop is the full loop. -	return q.bound.CapBound() -} - -// ConvexHull returns a Loop representing the convex hull of the input geometry provided. -// -// If there is no geometry, this method returns an empty loop containing no -// points. -// -// If the geometry spans more than half of the sphere, this method returns a -// full loop containing the entire sphere. -// -// If the geometry contains 1 or 2 points, or a single edge, this method -// returns a very small loop consisting of three vertices (which are a -// superset of the input vertices). -// -// Note that this method does not clear the geometry; you can continue -// adding to the query and call this method again. -func (q *ConvexHullQuery) ConvexHull() *Loop { -	c := q.CapBound() -	if c.Height() >= 1 { -		// The bounding cap is not convex. The current bounding cap -		// implementation is not optimal, but nevertheless it is likely that the -		// input geometry itself is not contained by any convex polygon. In any -		// case, we need a convex bounding cap to proceed with the algorithm below -		// (in order to construct a point "origin" that is definitely outside the -		// convex hull). -		return FullLoop() -	} - -	// Remove duplicates. We need to do this before checking whether there are -	// fewer than 3 points. -	x := make(map[Point]bool) -	r, w := 0, 0 // read/write indexes -	for ; r < len(q.points); r++ { -		if x[q.points[r]] { -			continue -		} -		q.points[w] = q.points[r] -		x[q.points[r]] = true -		w++ -	} -	q.points = q.points[:w] - -	// This code implements Andrew's monotone chain algorithm, which is a simple -	// variant of the Graham scan. Rather than sorting by x-coordinate, instead -	// we sort the points in CCW order around an origin O such that all points -	// are guaranteed to be on one side of some geodesic through O. This -	// ensures that as we scan through the points, each new point can only -	// belong at the end of the chain (i.e., the chain is monotone in terms of -	// the angle around O from the starting point). -	origin := Point{c.Center().Ortho()} -	sort.Slice(q.points, func(i, j int) bool { -		return RobustSign(origin, q.points[i], q.points[j]) == CounterClockwise -	}) - -	// Special cases for fewer than 3 points. -	switch len(q.points) { -	case 0: -		return EmptyLoop() -	case 1: -		return singlePointLoop(q.points[0]) -	case 2: -		return singleEdgeLoop(q.points[0], q.points[1]) -	} - -	// Generate the lower and upper halves of the convex hull. Each half -	// consists of the maximal subset of vertices such that the edge chain -	// makes only left (CCW) turns. -	lower := q.monotoneChain() - -	// reverse the points -	for left, right := 0, len(q.points)-1; left < right; left, right = left+1, right-1 { -		q.points[left], q.points[right] = q.points[right], q.points[left] -	} -	upper := q.monotoneChain() - -	// Remove the duplicate vertices and combine the chains. -	lower = lower[:len(lower)-1] -	upper = upper[:len(upper)-1] -	lower = append(lower, upper...) - -	return LoopFromPoints(lower) -} - -// monotoneChain iterates through the points, selecting the maximal subset of points -// such that the edge chain makes only left (CCW) turns. -func (q *ConvexHullQuery) monotoneChain() []Point { -	var output []Point -	for _, p := range q.points { -		// Remove any points that would cause the chain to make a clockwise turn. -		for len(output) >= 2 && RobustSign(output[len(output)-2], output[len(output)-1], p) != CounterClockwise { -			output = output[:len(output)-1] -		} -		output = append(output, p) -	} -	return output -} - -// singlePointLoop constructs a 3-vertex polygon consisting of "p" and two nearby -// vertices. Note that ContainsPoint(p) may be false for the resulting loop. -func singlePointLoop(p Point) *Loop { -	const offset = 1e-15 -	d0 := p.Ortho() -	d1 := p.Cross(d0) -	vertices := []Point{ -		p, -		{p.Add(d0.Mul(offset)).Normalize()}, -		{p.Add(d1.Mul(offset)).Normalize()}, -	} -	return LoopFromPoints(vertices) -} - -// singleEdgeLoop constructs a loop consisting of the two vertices and their midpoint. -func singleEdgeLoop(a, b Point) *Loop { -	// If the points are exactly antipodal we return the full loop. -	// -	// Note that we could use the code below even in this case (which would -	// return a zero-area loop that follows the edge AB), except that (1) the -	// direction of AB is defined using symbolic perturbations and therefore is -	// not predictable by ordinary users, and (2) Loop disallows anitpodal -	// adjacent vertices and so we would need to use 4 vertices to define the -	// degenerate loop. (Note that the Loop antipodal vertex restriction is -	// historical and now could easily be removed, however it would still have -	// the problem that the edge direction is not easily predictable.) -	if a.Add(b.Vector) == (r3.Vector{}) { -		return FullLoop() -	} - -	// Construct a loop consisting of the two vertices and their midpoint.  We -	// use Interpolate() to ensure that the midpoint is very close to -	// the edge even when its endpoints nearly antipodal. -	vertices := []Point{a, b, Interpolate(0.5, a, b)} -	loop := LoopFromPoints(vertices) -	// The resulting loop may be clockwise, so invert it if necessary. -	loop.Normalize() -	return loop -} diff --git a/vendor/github.com/golang/geo/s2/crossing_edge_query.go b/vendor/github.com/golang/geo/s2/crossing_edge_query.go deleted file mode 100644 index 51852dab4..000000000 --- a/vendor/github.com/golang/geo/s2/crossing_edge_query.go +++ /dev/null @@ -1,409 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"sort" - -	"github.com/golang/geo/r2" -) - -// CrossingEdgeQuery is used to find the Edge IDs of Shapes that are crossed by -// a given edge(s). -// -// Note that if you need to query many edges, it is more efficient to declare -// a single CrossingEdgeQuery instance and reuse it. -// -// If you want to find *all* the pairs of crossing edges, it is more efficient to -// use the not yet implemented VisitCrossings in shapeutil. -type CrossingEdgeQuery struct { -	index *ShapeIndex - -	// temporary values used while processing a query. -	a, b r2.Point -	iter *ShapeIndexIterator - -	// candidate cells generated when finding crossings. -	cells []*ShapeIndexCell -} - -// NewCrossingEdgeQuery creates a CrossingEdgeQuery for the given index. -func NewCrossingEdgeQuery(index *ShapeIndex) *CrossingEdgeQuery { -	c := &CrossingEdgeQuery{ -		index: index, -		iter:  index.Iterator(), -	} -	return c -} - -// Crossings returns the set of edge of the shape S that intersect the given edge AB. -// If the CrossingType is Interior, then only intersections at a point interior to both -// edges are reported, while if it is CrossingTypeAll then edges that share a vertex -// are also reported. -func (c *CrossingEdgeQuery) Crossings(a, b Point, shape Shape, crossType CrossingType) []int { -	edges := c.candidates(a, b, shape) -	if len(edges) == 0 { -		return nil -	} - -	crosser := NewEdgeCrosser(a, b) -	out := 0 -	n := len(edges) - -	for in := 0; in < n; in++ { -		b := shape.Edge(edges[in]) -		sign := crosser.CrossingSign(b.V0, b.V1) -		if crossType == CrossingTypeAll && (sign == MaybeCross || sign == Cross) || crossType != CrossingTypeAll && sign == Cross { -			edges[out] = edges[in] -			out++ -		} -	} - -	if out < n { -		edges = edges[0:out] -	} -	return edges -} - -// EdgeMap stores a sorted set of edge ids for each shape. -type EdgeMap map[Shape][]int - -// CrossingsEdgeMap returns the set of all edges in the index that intersect the given -// edge AB. If crossType is CrossingTypeInterior, then only intersections at a -// point interior to both edges are reported, while if it is CrossingTypeAll -// then edges that share a vertex are also reported. -// -// The edges are returned as a mapping from shape to the edges of that shape -// that intersect AB. Every returned shape has at least one crossing edge. -func (c *CrossingEdgeQuery) CrossingsEdgeMap(a, b Point, crossType CrossingType) EdgeMap { -	edgeMap := c.candidatesEdgeMap(a, b) -	if len(edgeMap) == 0 { -		return nil -	} - -	crosser := NewEdgeCrosser(a, b) -	for shape, edges := range edgeMap { -		out := 0 -		n := len(edges) -		for in := 0; in < n; in++ { -			edge := shape.Edge(edges[in]) -			sign := crosser.CrossingSign(edge.V0, edge.V1) -			if (crossType == CrossingTypeAll && (sign == MaybeCross || sign == Cross)) || (crossType != CrossingTypeAll && sign == Cross) { -				edgeMap[shape][out] = edges[in] -				out++ -			} -		} - -		if out == 0 { -			delete(edgeMap, shape) -		} else { -			if out < n { -				edgeMap[shape] = edgeMap[shape][0:out] -			} -		} -	} -	return edgeMap -} - -// candidates returns a superset of the edges of the given shape that intersect -// the edge AB. -func (c *CrossingEdgeQuery) candidates(a, b Point, shape Shape) []int { -	var edges []int - -	// For small loops it is faster to use brute force. The threshold below was -	// determined using benchmarks. -	const maxBruteForceEdges = 27 -	maxEdges := shape.NumEdges() -	if maxEdges <= maxBruteForceEdges { -		edges = make([]int, maxEdges) -		for i := 0; i < maxEdges; i++ { -			edges[i] = i -		} -		return edges -	} - -	// Compute the set of index cells intersected by the query edge. -	c.getCellsForEdge(a, b) -	if len(c.cells) == 0 { -		return nil -	} - -	// Gather all the edges that intersect those cells and sort them. -	// TODO(roberts): Shapes don't track their ID, so we need to range over -	// the index to find the ID manually. -	var shapeID int32 -	for k, v := range c.index.shapes { -		if v == shape { -			shapeID = k -		} -	} - -	for _, cell := range c.cells { -		if cell == nil { -			continue -		} -		clipped := cell.findByShapeID(shapeID) -		if clipped == nil { -			continue -		} -		edges = append(edges, clipped.edges...) -	} - -	if len(c.cells) > 1 { -		edges = uniqueInts(edges) -	} - -	return edges -} - -// uniqueInts returns the sorted uniqued values from the given input. -func uniqueInts(in []int) []int { -	var edges []int -	m := make(map[int]bool) -	for _, i := range in { -		if m[i] { -			continue -		} -		m[i] = true -		edges = append(edges, i) -	} -	sort.Ints(edges) -	return edges -} - -// candidatesEdgeMap returns a map from shapes to the superse of edges for that -// shape that intersect the edge AB. -// -// CAVEAT: This method may return shapes that have an empty set of candidate edges. -// However the return value is non-empty only if at least one shape has a candidate edge. -func (c *CrossingEdgeQuery) candidatesEdgeMap(a, b Point) EdgeMap { -	edgeMap := make(EdgeMap) - -	// If there are only a few edges then it's faster to use brute force. We -	// only bother with this optimization when there is a single shape. -	if len(c.index.shapes) == 1 { -		// Typically this method is called many times, so it is worth checking -		// whether the edge map is empty or already consists of a single entry for -		// this shape, and skip clearing edge map in that case. -		shape := c.index.Shape(0) - -		// Note that we leave the edge map non-empty even if there are no candidates -		// (i.e., there is a single entry with an empty set of edges). -		edgeMap[shape] = c.candidates(a, b, shape) -		return edgeMap -	} - -	// Compute the set of index cells intersected by the query edge. -	c.getCellsForEdge(a, b) -	if len(c.cells) == 0 { -		return edgeMap -	} - -	// Gather all the edges that intersect those cells and sort them. -	for _, cell := range c.cells { -		for _, clipped := range cell.shapes { -			s := c.index.Shape(clipped.shapeID) -			for j := 0; j < clipped.numEdges(); j++ { -				edgeMap[s] = append(edgeMap[s], clipped.edges[j]) -			} -		} -	} - -	if len(c.cells) > 1 { -		for s, edges := range edgeMap { -			edgeMap[s] = uniqueInts(edges) -		} -	} - -	return edgeMap -} - -// getCells returns the set of ShapeIndexCells that might contain edges intersecting -// the edge AB in the given cell root. This method is used primarily by loop and shapeutil. -func (c *CrossingEdgeQuery) getCells(a, b Point, root *PaddedCell) []*ShapeIndexCell { -	aUV, bUV, ok := ClipToFace(a, b, root.id.Face()) -	if ok { -		c.a = aUV -		c.b = bUV -		edgeBound := r2.RectFromPoints(c.a, c.b) -		if root.Bound().Intersects(edgeBound) { -			c.computeCellsIntersected(root, edgeBound) -		} -	} - -	if len(c.cells) == 0 { -		return nil -	} - -	return c.cells -} - -// getCellsForEdge populates the cells field to the set of index cells intersected by an edge AB. -func (c *CrossingEdgeQuery) getCellsForEdge(a, b Point) { -	c.cells = nil - -	segments := FaceSegments(a, b) -	for _, segment := range segments { -		c.a = segment.a -		c.b = segment.b - -		// Optimization: rather than always starting the recursive subdivision at -		// the top level face cell, instead we start at the smallest S2CellId that -		// contains the edge (the edge root cell). This typically lets us skip -		// quite a few levels of recursion since most edges are short. -		edgeBound := r2.RectFromPoints(c.a, c.b) -		pcell := PaddedCellFromCellID(CellIDFromFace(segment.face), 0) -		edgeRoot := pcell.ShrinkToFit(edgeBound) - -		// Now we need to determine how the edge root cell is related to the cells -		// in the spatial index (cellMap). There are three cases: -		// -		//  1. edgeRoot is an index cell or is contained within an index cell. -		//     In this case we only need to look at the contents of that cell. -		//  2. edgeRoot is subdivided into one or more index cells. In this case -		//     we recursively subdivide to find the cells intersected by AB. -		//  3. edgeRoot does not intersect any index cells. In this case there -		//     is nothing to do. -		relation := c.iter.LocateCellID(edgeRoot) -		if relation == Indexed { -			// edgeRoot is an index cell or is contained by an index cell (case 1). -			c.cells = append(c.cells, c.iter.IndexCell()) -		} else if relation == Subdivided { -			// edgeRoot is subdivided into one or more index cells (case 2). We -			// find the cells intersected by AB using recursive subdivision. -			if !edgeRoot.isFace() { -				pcell = PaddedCellFromCellID(edgeRoot, 0) -			} -			c.computeCellsIntersected(pcell, edgeBound) -		} -	} -} - -// computeCellsIntersected computes the index cells intersected by the current -// edge that are descendants of pcell and adds them to this queries set of cells. -func (c *CrossingEdgeQuery) computeCellsIntersected(pcell *PaddedCell, edgeBound r2.Rect) { - -	c.iter.seek(pcell.id.RangeMin()) -	if c.iter.Done() || c.iter.CellID() > pcell.id.RangeMax() { -		// The index does not contain pcell or any of its descendants. -		return -	} -	if c.iter.CellID() == pcell.id { -		// The index contains this cell exactly. -		c.cells = append(c.cells, c.iter.IndexCell()) -		return -	} - -	// Otherwise, split the edge among the four children of pcell. -	center := pcell.Middle().Lo() - -	if edgeBound.X.Hi < center.X { -		// Edge is entirely contained in the two left children. -		c.clipVAxis(edgeBound, center.Y, 0, pcell) -		return -	} else if edgeBound.X.Lo >= center.X { -		// Edge is entirely contained in the two right children. -		c.clipVAxis(edgeBound, center.Y, 1, pcell) -		return -	} - -	childBounds := c.splitUBound(edgeBound, center.X) -	if edgeBound.Y.Hi < center.Y { -		// Edge is entirely contained in the two lower children. -		c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 0, 0), childBounds[0]) -		c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 1, 0), childBounds[1]) -	} else if edgeBound.Y.Lo >= center.Y { -		// Edge is entirely contained in the two upper children. -		c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 0, 1), childBounds[0]) -		c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 1, 1), childBounds[1]) -	} else { -		// The edge bound spans all four children. The edge itself intersects -		// at most three children (since no padding is being used). -		c.clipVAxis(childBounds[0], center.Y, 0, pcell) -		c.clipVAxis(childBounds[1], center.Y, 1, pcell) -	} -} - -// clipVAxis computes the intersected cells recursively for a given padded cell. -// Given either the left (i=0) or right (i=1) side of a padded cell pcell, -// determine whether the current edge intersects the lower child, upper child, -// or both children, and call c.computeCellsIntersected recursively on those children. -// The center is the v-coordinate at the center of pcell. -func (c *CrossingEdgeQuery) clipVAxis(edgeBound r2.Rect, center float64, i int, pcell *PaddedCell) { -	if edgeBound.Y.Hi < center { -		// Edge is entirely contained in the lower child. -		c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 0), edgeBound) -	} else if edgeBound.Y.Lo >= center { -		// Edge is entirely contained in the upper child. -		c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 1), edgeBound) -	} else { -		// The edge intersects both children. -		childBounds := c.splitVBound(edgeBound, center) -		c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 0), childBounds[0]) -		c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 1), childBounds[1]) -	} -} - -// splitUBound returns the bound for two children as a result of spliting the -// current edge at the given value U. -func (c *CrossingEdgeQuery) splitUBound(edgeBound r2.Rect, u float64) [2]r2.Rect { -	v := edgeBound.Y.ClampPoint(interpolateFloat64(u, c.a.X, c.b.X, c.a.Y, c.b.Y)) -	// diag indicates which diagonal of the bounding box is spanned by AB: -	// it is 0 if AB has positive slope, and 1 if AB has negative slope. -	var diag int -	if (c.a.X > c.b.X) != (c.a.Y > c.b.Y) { -		diag = 1 -	} -	return splitBound(edgeBound, 0, diag, u, v) -} - -// splitVBound returns the bound for two children as a result of spliting the -// current edge into two child edges at the given value V. -func (c *CrossingEdgeQuery) splitVBound(edgeBound r2.Rect, v float64) [2]r2.Rect { -	u := edgeBound.X.ClampPoint(interpolateFloat64(v, c.a.Y, c.b.Y, c.a.X, c.b.X)) -	var diag int -	if (c.a.X > c.b.X) != (c.a.Y > c.b.Y) { -		diag = 1 -	} -	return splitBound(edgeBound, diag, 0, u, v) -} - -// splitBound returns the bounds for the two childrenn as a result of spliting -// the current edge into two child edges at the given point (u,v). uEnd and vEnd -// indicate which bound endpoints of the first child will be updated. -func splitBound(edgeBound r2.Rect, uEnd, vEnd int, u, v float64) [2]r2.Rect { -	var childBounds = [2]r2.Rect{ -		edgeBound, -		edgeBound, -	} - -	if uEnd == 1 { -		childBounds[0].X.Lo = u -		childBounds[1].X.Hi = u -	} else { -		childBounds[0].X.Hi = u -		childBounds[1].X.Lo = u -	} - -	if vEnd == 1 { -		childBounds[0].Y.Lo = v -		childBounds[1].Y.Hi = v -	} else { -		childBounds[0].Y.Hi = v -		childBounds[1].Y.Lo = v -	} - -	return childBounds -} diff --git a/vendor/github.com/golang/geo/s2/distance_target.go b/vendor/github.com/golang/geo/s2/distance_target.go deleted file mode 100644 index 066bbacfa..000000000 --- a/vendor/github.com/golang/geo/s2/distance_target.go +++ /dev/null @@ -1,149 +0,0 @@ -// Copyright 2019 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"github.com/golang/geo/s1" -) - -// The distance interface represents a set of common methods used by algorithms -// that compute distances between various S2 types. -type distance interface { -	// chordAngle returns this type as a ChordAngle. -	chordAngle() s1.ChordAngle - -	// fromChordAngle is used to type convert a ChordAngle to this type. -	// This is to work around needing to be clever in parts of the code -	// where a distanceTarget interface method expects distances, but the -	// user only supplies a ChordAngle, and we need to dynamically cast it -	// to an appropriate distance interface types. -	fromChordAngle(o s1.ChordAngle) distance - -	// zero returns a zero distance. -	zero() distance -	// negative returns a value smaller than any valid value. -	negative() distance -	// infinity returns a value larger than any valid value. -	infinity() distance - -	// less is similar to the Less method in Sort. To get minimum values, -	// this would be a less than type operation. For maximum, this would -	// be a greater than type operation. -	less(other distance) bool - -	// sub subtracts the other value from this one and returns the new value. -	// This is done as a method and not simple mathematical operation to -	// allow closest and furthest to implement this in opposite ways. -	sub(other distance) distance - -	// chordAngleBound reports the upper bound on a ChordAngle corresponding -	// to this distance. For example, if distance measures WGS84 ellipsoid -	// distance then the corresponding angle needs to be 0.56% larger. -	chordAngleBound() s1.ChordAngle - -	// updateDistance may update the value this distance represents -	// based on the given input. The updated value and a boolean reporting -	// if the value was changed are returned. -	updateDistance(other distance) (distance, bool) -} - -// distanceTarget is an interface that represents a geometric type to which distances -// are measured. -// -// For example, there are implementations that measure distances to a Point, -// an Edge, a Cell, a CellUnion, and even to an arbitrary collection of geometry -// stored in ShapeIndex. -// -// The distanceTarget types are provided for the benefit of types that measure -// distances and/or find nearby geometry, such as ClosestEdgeQuery, FurthestEdgeQuery, -// ClosestPointQuery, and ClosestCellQuery, etc. -type distanceTarget interface { -	// capBound returns a Cap that bounds the set of points whose distance to the -	// target is distance.zero(). -	capBound() Cap - -	// updateDistanceToPoint updates the distance if the distance to -	// the point P is within than the given dist. -	// The boolean reports if the value was updated. -	updateDistanceToPoint(p Point, dist distance) (distance, bool) - -	// updateDistanceToEdge updates the distance if the distance to -	// the edge E is within than the given dist. -	// The boolean reports if the value was updated. -	updateDistanceToEdge(e Edge, dist distance) (distance, bool) - -	// updateDistanceToCell updates the distance if the distance to the cell C -	// (including its interior) is within than the given dist. -	// The boolean reports if the value was updated. -	updateDistanceToCell(c Cell, dist distance) (distance, bool) - -	// setMaxError potentially updates the value of MaxError, and reports if -	// the specific type supports altering it. Whenever one of the -	// updateDistanceTo... methods above returns true, the returned distance -	// is allowed to be up to maxError larger than the true minimum distance. -	// In other words, it gives this target object permission to terminate its -	// distance calculation as soon as it has determined that (1) the minimum -	// distance is less than minDist and (2) the best possible further -	// improvement is less than maxError. -	// -	// If the target takes advantage of maxError to optimize its distance -	// calculation, this method must return true. (Most target types will -	// default to return false.) -	setMaxError(maxErr s1.ChordAngle) bool - -	// maxBruteForceIndexSize reports the maximum number of indexed objects for -	// which it is faster to compute the distance by brute force (e.g., by testing -	// every edge) rather than by using an index. -	// -	// The following method is provided as a convenience for types that compute -	// distances to a collection of indexed geometry, such as ClosestEdgeQuery -	// and ClosestPointQuery. -	// -	// Types that do not support this should return a -1. -	maxBruteForceIndexSize() int - -	// distance returns an instance of the underlying distance type this -	// target uses. This is to work around the use of Templates in the C++. -	distance() distance - -	// visitContainingShapes finds all polygons in the given index that -	// completely contain a connected component of the target geometry. (For -	// example, if the target consists of 10 points, this method finds -	// polygons that contain any of those 10 points.) For each such polygon, -	// the visit function is called with the Shape of the polygon along with -	// a point of the target geometry that is contained by that polygon. -	// -	// Optionally, any polygon that intersects the target geometry may also be -	// returned.  In other words, this method returns all polygons that -	// contain any connected component of the target, along with an arbitrary -	// subset of the polygons that intersect the target. -	// -	// For example, suppose that the index contains two abutting polygons -	// A and B. If the target consists of two points "a" contained by A and -	// "b" contained by B, then both A and B are returned. But if the target -	// consists of the edge "ab", then any subset of {A, B} could be returned -	// (because both polygons intersect the target but neither one contains -	// the edge "ab"). -	// -	// If the visit function returns false, this method terminates early and -	// returns false as well. Otherwise returns true. -	// -	// NOTE(roberts): This method exists only for the purpose of implementing -	// edgeQuery IncludeInteriors efficiently. -	visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool -} - -// shapePointVisitorFunc defines a type of function the visitContainingShapes can call. -type shapePointVisitorFunc func(containingShape Shape, targetPoint Point) bool diff --git a/vendor/github.com/golang/geo/s2/doc.go b/vendor/github.com/golang/geo/s2/doc.go deleted file mode 100644 index 43e7a6344..000000000 --- a/vendor/github.com/golang/geo/s2/doc.go +++ /dev/null @@ -1,29 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/* -Package s2 is a library for working with geometry in S² (spherical geometry). - -Its related packages, parallel to this one, are s1 (operates on S¹), r1 (operates on ℝ¹), -r2 (operates on ℝ²) and r3 (operates on ℝ³). - -This package provides types and functions for the S2 cell hierarchy and coordinate systems. -The S2 cell hierarchy is a hierarchical decomposition of the surface of a unit sphere (S²) -into ``cells''; it is highly efficient, scales from continental size to under 1 cm² -and preserves spatial locality (nearby cells have close IDs). - -More information including an in-depth introduction to S2 can be found on the -S2 website https://s2geometry.io/ -*/ -package s2 diff --git a/vendor/github.com/golang/geo/s2/edge_clipping.go b/vendor/github.com/golang/geo/s2/edge_clipping.go deleted file mode 100644 index 57a53bf0f..000000000 --- a/vendor/github.com/golang/geo/s2/edge_clipping.go +++ /dev/null @@ -1,672 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// This file contains a collection of methods for: -// -//   (1) Robustly clipping geodesic edges to the faces of the S2 biunit cube -//       (see s2stuv), and -// -//   (2) Robustly clipping 2D edges against 2D rectangles. -// -// These functions can be used to efficiently find the set of CellIDs that -// are intersected by a geodesic edge (e.g., see CrossingEdgeQuery). - -import ( -	"math" - -	"github.com/golang/geo/r1" -	"github.com/golang/geo/r2" -	"github.com/golang/geo/r3" -) - -const ( -	// edgeClipErrorUVCoord is the maximum error in a u- or v-coordinate -	// compared to the exact result, assuming that the points A and B are in -	// the rectangle [-1,1]x[1,1] or slightly outside it (by 1e-10 or less). -	edgeClipErrorUVCoord = 2.25 * dblEpsilon - -	// edgeClipErrorUVDist is the maximum distance from a clipped point to -	// the corresponding exact result. It is equal to the error in a single -	// coordinate because at most one coordinate is subject to error. -	edgeClipErrorUVDist = 2.25 * dblEpsilon - -	// faceClipErrorRadians is the maximum angle between a returned vertex -	// and the nearest point on the exact edge AB. It is equal to the -	// maximum directional error in PointCross, plus the error when -	// projecting points onto a cube face. -	faceClipErrorRadians = 3 * dblEpsilon - -	// faceClipErrorDist is the same angle expressed as a maximum distance -	// in (u,v)-space. In other words, a returned vertex is at most this far -	// from the exact edge AB projected into (u,v)-space. -	faceClipErrorUVDist = 9 * dblEpsilon - -	// faceClipErrorUVCoord is the maximum angle between a returned vertex -	// and the nearest point on the exact edge AB expressed as the maximum error -	// in an individual u- or v-coordinate. In other words, for each -	// returned vertex there is a point on the exact edge AB whose u- and -	// v-coordinates differ from the vertex by at most this amount. -	faceClipErrorUVCoord = 9.0 * (1.0 / math.Sqrt2) * dblEpsilon - -	// intersectsRectErrorUVDist is the maximum error when computing if a point -	// intersects with a given Rect. If some point of AB is inside the -	// rectangle by at least this distance, the result is guaranteed to be true; -	// if all points of AB are outside the rectangle by at least this distance, -	// the result is guaranteed to be false. This bound assumes that rect is -	// a subset of the rectangle [-1,1]x[-1,1] or extends slightly outside it -	// (e.g., by 1e-10 or less). -	intersectsRectErrorUVDist = 3 * math.Sqrt2 * dblEpsilon -) - -// ClipToFace returns the (u,v) coordinates for the portion of the edge AB that -// intersects the given face, or false if the edge AB does not intersect. -// This method guarantees that the clipped vertices lie within the [-1,1]x[-1,1] -// cube face rectangle and are within faceClipErrorUVDist of the line AB, but -// the results may differ from those produced by FaceSegments. -func ClipToFace(a, b Point, face int) (aUV, bUV r2.Point, intersects bool) { -	return ClipToPaddedFace(a, b, face, 0.0) -} - -// ClipToPaddedFace returns the (u,v) coordinates for the portion of the edge AB that -// intersects the given face, but rather than clipping to the square [-1,1]x[-1,1] -// in (u,v) space, this method clips to [-R,R]x[-R,R] where R=(1+padding). -// Padding must be non-negative. -func ClipToPaddedFace(a, b Point, f int, padding float64) (aUV, bUV r2.Point, intersects bool) { -	// Fast path: both endpoints are on the given face. -	if face(a.Vector) == f && face(b.Vector) == f { -		au, av := validFaceXYZToUV(f, a.Vector) -		bu, bv := validFaceXYZToUV(f, b.Vector) -		return r2.Point{au, av}, r2.Point{bu, bv}, true -	} - -	// Convert everything into the (u,v,w) coordinates of the given face. Note -	// that the cross product *must* be computed in the original (x,y,z) -	// coordinate system because PointCross (unlike the mathematical cross -	// product) can produce different results in different coordinate systems -	// when one argument is a linear multiple of the other, due to the use of -	// symbolic perturbations. -	normUVW := pointUVW(faceXYZtoUVW(f, a.PointCross(b))) -	aUVW := pointUVW(faceXYZtoUVW(f, a)) -	bUVW := pointUVW(faceXYZtoUVW(f, b)) - -	// Padding is handled by scaling the u- and v-components of the normal. -	// Letting R=1+padding, this means that when we compute the dot product of -	// the normal with a cube face vertex (such as (-1,-1,1)), we will actually -	// compute the dot product with the scaled vertex (-R,-R,1). This allows -	// methods such as intersectsFace, exitAxis, etc, to handle padding -	// with no further modifications. -	scaleUV := 1 + padding -	scaledN := pointUVW{r3.Vector{X: scaleUV * normUVW.X, Y: scaleUV * normUVW.Y, Z: normUVW.Z}} -	if !scaledN.intersectsFace() { -		return aUV, bUV, false -	} - -	// TODO(roberts): This is a workaround for extremely small vectors where some -	// loss of precision can occur in Normalize causing underflow. When PointCross -	// is updated to work around this, this can be removed. -	if math.Max(math.Abs(normUVW.X), math.Max(math.Abs(normUVW.Y), math.Abs(normUVW.Z))) < math.Ldexp(1, -511) { -		normUVW = pointUVW{normUVW.Mul(math.Ldexp(1, 563))} -	} - -	normUVW = pointUVW{normUVW.Normalize()} - -	aTan := pointUVW{normUVW.Cross(aUVW.Vector)} -	bTan := pointUVW{bUVW.Cross(normUVW.Vector)} - -	// As described in clipDestination, if the sum of the scores from clipping the two -	// endpoints is 3 or more, then the segment does not intersect this face. -	aUV, aScore := clipDestination(bUVW, aUVW, pointUVW{scaledN.Mul(-1)}, bTan, aTan, scaleUV) -	bUV, bScore := clipDestination(aUVW, bUVW, scaledN, aTan, bTan, scaleUV) - -	return aUV, bUV, aScore+bScore < 3 -} - -// ClipEdge returns the portion of the edge defined by AB that is contained by the -// given rectangle. If there is no intersection, false is returned and aClip and bClip -// are undefined. -func ClipEdge(a, b r2.Point, clip r2.Rect) (aClip, bClip r2.Point, intersects bool) { -	// Compute the bounding rectangle of AB, clip it, and then extract the new -	// endpoints from the clipped bound. -	bound := r2.RectFromPoints(a, b) -	if bound, intersects = clipEdgeBound(a, b, clip, bound); !intersects { -		return aClip, bClip, false -	} -	ai := 0 -	if a.X > b.X { -		ai = 1 -	} -	aj := 0 -	if a.Y > b.Y { -		aj = 1 -	} - -	return bound.VertexIJ(ai, aj), bound.VertexIJ(1-ai, 1-aj), true -} - -// The three functions below (sumEqual, intersectsFace, intersectsOppositeEdges) -// all compare a sum (u + v) to a third value w. They are implemented in such a -// way that they produce an exact result even though all calculations are done -// with ordinary floating-point operations. Here are the principles on which these -// functions are based: -// -// A. If u + v < w in floating-point, then u + v < w in exact arithmetic. -// -// B. If u + v < w in exact arithmetic, then at least one of the following -//    expressions is true in floating-point: -//       u + v < w -//       u < w - v -//       v < w - u -// -// Proof: By rearranging terms and substituting ">" for "<", we can assume -// that all values are non-negative.  Now clearly "w" is not the smallest -// value, so assume WLOG that "u" is the smallest.  We want to show that -// u < w - v in floating-point.  If v >= w/2, the calculation of w - v is -// exact since the result is smaller in magnitude than either input value, -// so the result holds.  Otherwise we have u <= v < w/2 and w - v >= w/2 -// (even in floating point), so the result also holds. - -// sumEqual reports whether u + v == w exactly. -func sumEqual(u, v, w float64) bool { -	return (u+v == w) && (u == w-v) && (v == w-u) -} - -// pointUVW represents a Point in (u,v,w) coordinate space of a cube face. -type pointUVW Point - -// intersectsFace reports whether a given directed line L intersects the cube face F. -// The line L is defined by its normal N in the (u,v,w) coordinates of F. -func (p pointUVW) intersectsFace() bool { -	// L intersects the [-1,1]x[-1,1] square in (u,v) if and only if the dot -	// products of N with the four corner vertices (-1,-1,1), (1,-1,1), (1,1,1), -	// and (-1,1,1) do not all have the same sign. This is true exactly when -	// |Nu| + |Nv| >= |Nw|. The code below evaluates this expression exactly. -	u := math.Abs(p.X) -	v := math.Abs(p.Y) -	w := math.Abs(p.Z) - -	// We only need to consider the cases where u or v is the smallest value, -	// since if w is the smallest then both expressions below will have a -	// positive LHS and a negative RHS. -	return (v >= w-u) && (u >= w-v) -} - -// intersectsOppositeEdges reports whether a directed line L intersects two -// opposite edges of a cube face F. This includs the case where L passes -// exactly through a corner vertex of F. The directed line L is defined -// by its normal N in the (u,v,w) coordinates of F. -func (p pointUVW) intersectsOppositeEdges() bool { -	// The line L intersects opposite edges of the [-1,1]x[-1,1] (u,v) square if -	// and only exactly two of the corner vertices lie on each side of L. This -	// is true exactly when ||Nu| - |Nv|| >= |Nw|. The code below evaluates this -	// expression exactly. -	u := math.Abs(p.X) -	v := math.Abs(p.Y) -	w := math.Abs(p.Z) - -	// If w is the smallest, the following line returns an exact result. -	if math.Abs(u-v) != w { -		return math.Abs(u-v) >= w -	} - -	// Otherwise u - v = w exactly, or w is not the smallest value. In either -	// case the following returns the correct result. -	if u >= v { -		return u-w >= v -	} -	return v-w >= u -} - -// axis represents the possible results of exitAxis. -type axis int - -const ( -	axisU axis = iota -	axisV -) - -// exitAxis reports which axis the directed line L exits the cube face F on. -// The directed line L is represented by its CCW normal N in the (u,v,w) coordinates -// of F. It returns axisU if L exits through the u=-1 or u=+1 edge, and axisV if L exits -// through the v=-1 or v=+1 edge. Either result is acceptable if L exits exactly -// through a corner vertex of the cube face. -func (p pointUVW) exitAxis() axis { -	if p.intersectsOppositeEdges() { -		// The line passes through through opposite edges of the face. -		// It exits through the v=+1 or v=-1 edge if the u-component of N has a -		// larger absolute magnitude than the v-component. -		if math.Abs(p.X) >= math.Abs(p.Y) { -			return axisV -		} -		return axisU -	} - -	// The line passes through through two adjacent edges of the face. -	// It exits the v=+1 or v=-1 edge if an even number of the components of N -	// are negative. We test this using signbit() rather than multiplication -	// to avoid the possibility of underflow. -	var x, y, z int -	if math.Signbit(p.X) { -		x = 1 -	} -	if math.Signbit(p.Y) { -		y = 1 -	} -	if math.Signbit(p.Z) { -		z = 1 -	} - -	if x^y^z == 0 { -		return axisV -	} -	return axisU -} - -// exitPoint returns the UV coordinates of the point where a directed line L (represented -// by the CCW normal of this point), exits the cube face this point is derived from along -// the given axis. -func (p pointUVW) exitPoint(a axis) r2.Point { -	if a == axisU { -		u := -1.0 -		if p.Y > 0 { -			u = 1.0 -		} -		return r2.Point{u, (-u*p.X - p.Z) / p.Y} -	} - -	v := -1.0 -	if p.X < 0 { -		v = 1.0 -	} -	return r2.Point{(-v*p.Y - p.Z) / p.X, v} -} - -// clipDestination returns a score which is used to indicate if the clipped edge AB -// on the given face intersects the face at all. This function returns the score for -// the given endpoint, which is an integer ranging from 0 to 3. If the sum of the scores -// from both of the endpoints is 3 or more, then edge AB does not intersect this face. -// -// First, it clips the line segment AB to find the clipped destination B' on a given -// face. (The face is specified implicitly by expressing *all arguments* in the (u,v,w) -// coordinates of that face.) Second, it partially computes whether the segment AB -// intersects this face at all. The actual condition is fairly complicated, but it -// turns out that it can be expressed as a "score" that can be computed independently -// when clipping the two endpoints A and B. -func clipDestination(a, b, scaledN, aTan, bTan pointUVW, scaleUV float64) (r2.Point, int) { -	var uv r2.Point - -	// Optimization: if B is within the safe region of the face, use it. -	maxSafeUVCoord := 1 - faceClipErrorUVCoord -	if b.Z > 0 { -		uv = r2.Point{b.X / b.Z, b.Y / b.Z} -		if math.Max(math.Abs(uv.X), math.Abs(uv.Y)) <= maxSafeUVCoord { -			return uv, 0 -		} -	} - -	// Otherwise find the point B' where the line AB exits the face. -	uv = scaledN.exitPoint(scaledN.exitAxis()).Mul(scaleUV) - -	p := pointUVW(Point{r3.Vector{uv.X, uv.Y, 1.0}}) - -	// Determine if the exit point B' is contained within the segment. We do this -	// by computing the dot products with two inward-facing tangent vectors at A -	// and B. If either dot product is negative, we say that B' is on the "wrong -	// side" of that point. As the point B' moves around the great circle AB past -	// the segment endpoint B, it is initially on the wrong side of B only; as it -	// moves further it is on the wrong side of both endpoints; and then it is on -	// the wrong side of A only. If the exit point B' is on the wrong side of -	// either endpoint, we can't use it; instead the segment is clipped at the -	// original endpoint B. -	// -	// We reject the segment if the sum of the scores of the two endpoints is 3 -	// or more. Here is what that rule encodes: -	//  - If B' is on the wrong side of A, then the other clipped endpoint A' -	//    must be in the interior of AB (otherwise AB' would go the wrong way -	//    around the circle). There is a similar rule for A'. -	//  - If B' is on the wrong side of either endpoint (and therefore we must -	//    use the original endpoint B instead), then it must be possible to -	//    project B onto this face (i.e., its w-coordinate must be positive). -	//    This rule is only necessary to handle certain zero-length edges (A=B). -	score := 0 -	if p.Sub(a.Vector).Dot(aTan.Vector) < 0 { -		score = 2 // B' is on wrong side of A. -	} else if p.Sub(b.Vector).Dot(bTan.Vector) < 0 { -		score = 1 // B' is on wrong side of B. -	} - -	if score > 0 { // B' is not in the interior of AB. -		if b.Z <= 0 { -			score = 3 // B cannot be projected onto this face. -		} else { -			uv = r2.Point{b.X / b.Z, b.Y / b.Z} -		} -	} - -	return uv, score -} - -// updateEndpoint returns the interval with the specified endpoint updated to -// the given value. If the value lies beyond the opposite endpoint, nothing is -// changed and false is returned. -func updateEndpoint(bound r1.Interval, highEndpoint bool, value float64) (r1.Interval, bool) { -	if !highEndpoint { -		if bound.Hi < value { -			return bound, false -		} -		if bound.Lo < value { -			bound.Lo = value -		} -		return bound, true -	} - -	if bound.Lo > value { -		return bound, false -	} -	if bound.Hi > value { -		bound.Hi = value -	} -	return bound, true -} - -// clipBoundAxis returns the clipped versions of the bounding intervals for the given -// axes for the line segment from (a0,a1) to (b0,b1) so that neither extends beyond the -// given clip interval. negSlope is a precomputed helper variable that indicates which -// diagonal of the bounding box is spanned by AB; it is false if AB has positive slope, -// and true if AB has negative slope. If the clipping interval doesn't overlap the bounds, -// false is returned. -func clipBoundAxis(a0, b0 float64, bound0 r1.Interval, a1, b1 float64, bound1 r1.Interval, -	negSlope bool, clip r1.Interval) (bound0c, bound1c r1.Interval, updated bool) { - -	if bound0.Lo < clip.Lo { -		// If the upper bound is below the clips lower bound, there is nothing to do. -		if bound0.Hi < clip.Lo { -			return bound0, bound1, false -		} -		// narrow the intervals lower bound to the clip bound. -		bound0.Lo = clip.Lo -		if bound1, updated = updateEndpoint(bound1, negSlope, interpolateFloat64(clip.Lo, a0, b0, a1, b1)); !updated { -			return bound0, bound1, false -		} -	} - -	if bound0.Hi > clip.Hi { -		// If the lower bound is above the clips upper bound, there is nothing to do. -		if bound0.Lo > clip.Hi { -			return bound0, bound1, false -		} -		// narrow the intervals upper bound to the clip bound. -		bound0.Hi = clip.Hi -		if bound1, updated = updateEndpoint(bound1, !negSlope, interpolateFloat64(clip.Hi, a0, b0, a1, b1)); !updated { -			return bound0, bound1, false -		} -	} -	return bound0, bound1, true -} - -// edgeIntersectsRect reports whether the edge defined by AB intersects the -// given closed rectangle to within the error bound. -func edgeIntersectsRect(a, b r2.Point, r r2.Rect) bool { -	// First check whether the bounds of a Rect around AB intersects the given rect. -	if !r.Intersects(r2.RectFromPoints(a, b)) { -		return false -	} - -	// Otherwise AB intersects the rect if and only if all four vertices of rect -	// do not lie on the same side of the extended line AB. We test this by finding -	// the two vertices of rect with minimum and maximum projections onto the normal -	// of AB, and computing their dot products with the edge normal. -	n := b.Sub(a).Ortho() - -	i := 0 -	if n.X >= 0 { -		i = 1 -	} -	j := 0 -	if n.Y >= 0 { -		j = 1 -	} - -	max := n.Dot(r.VertexIJ(i, j).Sub(a)) -	min := n.Dot(r.VertexIJ(1-i, 1-j).Sub(a)) - -	return (max >= 0) && (min <= 0) -} - -// clippedEdgeBound returns the bounding rectangle of the portion of the edge defined -// by AB intersected by clip. The resulting bound may be empty. This is a convenience -// function built on top of clipEdgeBound. -func clippedEdgeBound(a, b r2.Point, clip r2.Rect) r2.Rect { -	bound := r2.RectFromPoints(a, b) -	if b1, intersects := clipEdgeBound(a, b, clip, bound); intersects { -		return b1 -	} -	return r2.EmptyRect() -} - -// clipEdgeBound clips an edge AB to sequence of rectangles efficiently. -// It represents the clipped edges by their bounding boxes rather than as a pair of -// endpoints. Specifically, let A'B' be some portion of an edge AB, and let bound be -// a tight bound of A'B'. This function returns the bound that is a tight bound -// of A'B' intersected with a given rectangle. If A'B' does not intersect clip, -// it returns false and the original bound. -func clipEdgeBound(a, b r2.Point, clip, bound r2.Rect) (r2.Rect, bool) { -	// negSlope indicates which diagonal of the bounding box is spanned by AB: it -	// is false if AB has positive slope, and true if AB has negative slope. This is -	// used to determine which interval endpoints need to be updated each time -	// the edge is clipped. -	negSlope := (a.X > b.X) != (a.Y > b.Y) - -	b0x, b0y, up1 := clipBoundAxis(a.X, b.X, bound.X, a.Y, b.Y, bound.Y, negSlope, clip.X) -	if !up1 { -		return bound, false -	} -	b1y, b1x, up2 := clipBoundAxis(a.Y, b.Y, b0y, a.X, b.X, b0x, negSlope, clip.Y) -	if !up2 { -		return r2.Rect{b0x, b0y}, false -	} -	return r2.Rect{X: b1x, Y: b1y}, true -} - -// interpolateFloat64 returns a value with the same combination of a1 and b1 as the -// given value x is of a and b. This function makes the following guarantees: -//  - If x == a, then x1 = a1 (exactly). -//  - If x == b, then x1 = b1 (exactly). -//  - If a <= x <= b, then a1 <= x1 <= b1 (even if a1 == b1). -// This requires a != b. -func interpolateFloat64(x, a, b, a1, b1 float64) float64 { -	// To get results that are accurate near both A and B, we interpolate -	// starting from the closer of the two points. -	if math.Abs(a-x) <= math.Abs(b-x) { -		return a1 + (b1-a1)*(x-a)/(b-a) -	} -	return b1 + (a1-b1)*(x-b)/(a-b) -} - -// FaceSegment represents an edge AB clipped to an S2 cube face. It is -// represented by a face index and a pair of (u,v) coordinates. -type FaceSegment struct { -	face int -	a, b r2.Point -} - -// FaceSegments subdivides the given edge AB at every point where it crosses the -// boundary between two S2 cube faces and returns the corresponding FaceSegments. -// The segments are returned in order from A toward B. The input points must be -// unit length. -// -// This function guarantees that the returned segments form a continuous path -// from A to B, and that all vertices are within faceClipErrorUVDist of the -// line AB. All vertices lie within the [-1,1]x[-1,1] cube face rectangles. -// The results are consistent with Sign, i.e. the edge is well-defined even its -// endpoints are antipodal. -// TODO(roberts): Extend the implementation of PointCross so that this is true. -func FaceSegments(a, b Point) []FaceSegment { -	var segment FaceSegment - -	// Fast path: both endpoints are on the same face. -	var aFace, bFace int -	aFace, segment.a.X, segment.a.Y = xyzToFaceUV(a.Vector) -	bFace, segment.b.X, segment.b.Y = xyzToFaceUV(b.Vector) -	if aFace == bFace { -		segment.face = aFace -		return []FaceSegment{segment} -	} - -	// Starting at A, we follow AB from face to face until we reach the face -	// containing B. The following code is designed to ensure that we always -	// reach B, even in the presence of numerical errors. -	// -	// First we compute the normal to the plane containing A and B. This normal -	// becomes the ultimate definition of the line AB; it is used to resolve all -	// questions regarding where exactly the line goes. Unfortunately due to -	// numerical errors, the line may not quite intersect the faces containing -	// the original endpoints. We handle this by moving A and/or B slightly if -	// necessary so that they are on faces intersected by the line AB. -	ab := a.PointCross(b) - -	aFace, segment.a = moveOriginToValidFace(aFace, a, ab, segment.a) -	bFace, segment.b = moveOriginToValidFace(bFace, b, Point{ab.Mul(-1)}, segment.b) - -	// Now we simply follow AB from face to face until we reach B. -	var segments []FaceSegment -	segment.face = aFace -	bSaved := segment.b - -	for face := aFace; face != bFace; { -		// Complete the current segment by finding the point where AB -		// exits the current face. -		z := faceXYZtoUVW(face, ab) -		n := pointUVW{z.Vector} - -		exitAxis := n.exitAxis() -		segment.b = n.exitPoint(exitAxis) -		segments = append(segments, segment) - -		// Compute the next face intersected by AB, and translate the exit -		// point of the current segment into the (u,v) coordinates of the -		// next face. This becomes the first point of the next segment. -		exitXyz := faceUVToXYZ(face, segment.b.X, segment.b.Y) -		face = nextFace(face, segment.b, exitAxis, n, bFace) -		exitUvw := faceXYZtoUVW(face, Point{exitXyz}) -		segment.face = face -		segment.a = r2.Point{exitUvw.X, exitUvw.Y} -	} -	// Finish the last segment. -	segment.b = bSaved -	return append(segments, segment) -} - -// moveOriginToValidFace updates the origin point to a valid face if necessary. -// Given a line segment AB whose origin A has been projected onto a given cube -// face, determine whether it is necessary to project A onto a different face -// instead. This can happen because the normal of the line AB is not computed -// exactly, so that the line AB (defined as the set of points perpendicular to -// the normal) may not intersect the cube face containing A. Even if it does -// intersect the face, the exit point of the line from that face may be on -// the wrong side of A (i.e., in the direction away from B). If this happens, -// we reproject A onto the adjacent face where the line AB approaches A most -// closely. This moves the origin by a small amount, but never more than the -// error tolerances. -func moveOriginToValidFace(face int, a, ab Point, aUV r2.Point) (int, r2.Point) { -	// Fast path: if the origin is sufficiently far inside the face, it is -	// always safe to use it. -	const maxSafeUVCoord = 1 - faceClipErrorUVCoord -	if math.Max(math.Abs((aUV).X), math.Abs((aUV).Y)) <= maxSafeUVCoord { -		return face, aUV -	} - -	// Otherwise check whether the normal AB even intersects this face. -	z := faceXYZtoUVW(face, ab) -	n := pointUVW{z.Vector} -	if n.intersectsFace() { -		// Check whether the point where the line AB exits this face is on the -		// wrong side of A (by more than the acceptable error tolerance). -		uv := n.exitPoint(n.exitAxis()) -		exit := faceUVToXYZ(face, uv.X, uv.Y) -		aTangent := ab.Normalize().Cross(a.Vector) - -		// We can use the given face. -		if exit.Sub(a.Vector).Dot(aTangent) >= -faceClipErrorRadians { -			return face, aUV -		} -	} - -	// Otherwise we reproject A to the nearest adjacent face. (If line AB does -	// not pass through a given face, it must pass through all adjacent faces.) -	var dir int -	if math.Abs((aUV).X) >= math.Abs((aUV).Y) { -		// U-axis -		if aUV.X > 0 { -			dir = 1 -		} -		face = uvwFace(face, 0, dir) -	} else { -		// V-axis -		if aUV.Y > 0 { -			dir = 1 -		} -		face = uvwFace(face, 1, dir) -	} - -	aUV.X, aUV.Y = validFaceXYZToUV(face, a.Vector) -	aUV.X = math.Max(-1.0, math.Min(1.0, aUV.X)) -	aUV.Y = math.Max(-1.0, math.Min(1.0, aUV.Y)) - -	return face, aUV -} - -// nextFace returns the next face that should be visited by FaceSegments, given that -// we have just visited face and we are following the line AB (represented -// by its normal N in the (u,v,w) coordinates of that face). The other -// arguments include the point where AB exits face, the corresponding -// exit axis, and the target face containing the destination point B. -func nextFace(face int, exit r2.Point, axis axis, n pointUVW, targetFace int) int { -	// this bit is to work around C++ cleverly casting bools to ints for you. -	exitA := exit.X -	exit1MinusA := exit.Y - -	if axis == axisV { -		exitA = exit.Y -		exit1MinusA = exit.X -	} -	exitAPos := 0 -	if exitA > 0 { -		exitAPos = 1 -	} -	exit1MinusAPos := 0 -	if exit1MinusA > 0 { -		exit1MinusAPos = 1 -	} - -	// We return the face that is adjacent to the exit point along the given -	// axis. If line AB exits *exactly* through a corner of the face, there are -	// two possible next faces. If one is the target face containing B, then -	// we guarantee that we advance to that face directly. -	// -	// The three conditions below check that (1) AB exits approximately through -	// a corner, (2) the adjacent face along the non-exit axis is the target -	// face, and (3) AB exits *exactly* through the corner. (The sumEqual -	// code checks whether the dot product of (u,v,1) and n is exactly zero.) -	if math.Abs(exit1MinusA) == 1 && -		uvwFace(face, int(1-axis), exit1MinusAPos) == targetFace && -		sumEqual(exit.X*n.X, exit.Y*n.Y, -n.Z) { -		return targetFace -	} - -	// Otherwise return the face that is adjacent to the exit point in the -	// direction of the exit axis. -	return uvwFace(face, int(axis), exitAPos) -} diff --git a/vendor/github.com/golang/geo/s2/edge_crosser.go b/vendor/github.com/golang/geo/s2/edge_crosser.go deleted file mode 100644 index 69c6da6b9..000000000 --- a/vendor/github.com/golang/geo/s2/edge_crosser.go +++ /dev/null @@ -1,227 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" -) - -// EdgeCrosser allows edges to be efficiently tested for intersection with a -// given fixed edge AB. It is especially efficient when testing for -// intersection with an edge chain connecting vertices v0, v1, v2, ... -// -// Example usage: -// -//	func CountIntersections(a, b Point, edges []Edge) int { -//		count := 0 -//		crosser := NewEdgeCrosser(a, b) -//		for _, edge := range edges { -//			if crosser.CrossingSign(&edge.First, &edge.Second) != DoNotCross { -//				count++ -//			} -//		} -//		return count -//	} -// -type EdgeCrosser struct { -	a   Point -	b   Point -	aXb Point - -	// To reduce the number of calls to expensiveSign, we compute an -	// outward-facing tangent at A and B if necessary. If the plane -	// perpendicular to one of these tangents separates AB from CD (i.e., one -	// edge on each side) then there is no intersection. -	aTangent Point // Outward-facing tangent at A. -	bTangent Point // Outward-facing tangent at B. - -	// The fields below are updated for each vertex in the chain. -	c   Point     // Previous vertex in the vertex chain. -	acb Direction // The orientation of triangle ACB. -} - -// NewEdgeCrosser returns an EdgeCrosser with the fixed edge AB. -func NewEdgeCrosser(a, b Point) *EdgeCrosser { -	norm := a.PointCross(b) -	return &EdgeCrosser{ -		a:        a, -		b:        b, -		aXb:      Point{a.Cross(b.Vector)}, -		aTangent: Point{a.Cross(norm.Vector)}, -		bTangent: Point{norm.Cross(b.Vector)}, -	} -} - -// CrossingSign reports whether the edge AB intersects the edge CD. If any two -// vertices from different edges are the same, returns MaybeCross. If either edge -// is degenerate (A == B or C == D), returns either DoNotCross or MaybeCross. -// -// Properties of CrossingSign: -// -//  (1) CrossingSign(b,a,c,d) == CrossingSign(a,b,c,d) -//  (2) CrossingSign(c,d,a,b) == CrossingSign(a,b,c,d) -//  (3) CrossingSign(a,b,c,d) == MaybeCross if a==c, a==d, b==c, b==d -//  (3) CrossingSign(a,b,c,d) == DoNotCross or MaybeCross if a==b or c==d -// -// Note that if you want to check an edge against a chain of other edges, -// it is slightly more efficient to use the single-argument version -// ChainCrossingSign below. -func (e *EdgeCrosser) CrossingSign(c, d Point) Crossing { -	if c != e.c { -		e.RestartAt(c) -	} -	return e.ChainCrossingSign(d) -} - -// EdgeOrVertexCrossing reports whether if CrossingSign(c, d) > 0, or AB and -// CD share a vertex and VertexCrossing(a, b, c, d) is true. -// -// This method extends the concept of a "crossing" to the case where AB -// and CD have a vertex in common. The two edges may or may not cross, -// according to the rules defined in VertexCrossing above. The rules -// are designed so that point containment tests can be implemented simply -// by counting edge crossings. Similarly, determining whether one edge -// chain crosses another edge chain can be implemented by counting. -func (e *EdgeCrosser) EdgeOrVertexCrossing(c, d Point) bool { -	if c != e.c { -		e.RestartAt(c) -	} -	return e.EdgeOrVertexChainCrossing(d) -} - -// NewChainEdgeCrosser is a convenience constructor that uses AB as the fixed edge, -// and C as the first vertex of the vertex chain (equivalent to calling RestartAt(c)). -// -// You don't need to use this or any of the chain functions unless you're trying to -// squeeze out every last drop of performance. Essentially all you are saving is a test -// whether the first vertex of the current edge is the same as the second vertex of the -// previous edge. -func NewChainEdgeCrosser(a, b, c Point) *EdgeCrosser { -	e := NewEdgeCrosser(a, b) -	e.RestartAt(c) -	return e -} - -// RestartAt sets the current point of the edge crosser to be c. -// Call this method when your chain 'jumps' to a new place. -// The argument must point to a value that persists until the next call. -func (e *EdgeCrosser) RestartAt(c Point) { -	e.c = c -	e.acb = -triageSign(e.a, e.b, e.c) -} - -// ChainCrossingSign is like CrossingSign, but uses the last vertex passed to one of -// the crossing methods (or RestartAt) as the first vertex of the current edge. -func (e *EdgeCrosser) ChainCrossingSign(d Point) Crossing { -	// For there to be an edge crossing, the triangles ACB, CBD, BDA, DAC must -	// all be oriented the same way (CW or CCW). We keep the orientation of ACB -	// as part of our state. When each new point D arrives, we compute the -	// orientation of BDA and check whether it matches ACB. This checks whether -	// the points C and D are on opposite sides of the great circle through AB. - -	// Recall that triageSign is invariant with respect to rotating its -	// arguments, i.e. ABD has the same orientation as BDA. -	bda := triageSign(e.a, e.b, d) -	if e.acb == -bda && bda != Indeterminate { -		// The most common case -- triangles have opposite orientations. Save the -		// current vertex D as the next vertex C, and also save the orientation of -		// the new triangle ACB (which is opposite to the current triangle BDA). -		e.c = d -		e.acb = -bda -		return DoNotCross -	} -	return e.crossingSign(d, bda) -} - -// EdgeOrVertexChainCrossing is like EdgeOrVertexCrossing, but uses the last vertex -// passed to one of the crossing methods (or RestartAt) as the first vertex of the current edge. -func (e *EdgeCrosser) EdgeOrVertexChainCrossing(d Point) bool { -	// We need to copy e.c since it is clobbered by ChainCrossingSign. -	c := e.c -	switch e.ChainCrossingSign(d) { -	case DoNotCross: -		return false -	case Cross: -		return true -	} -	return VertexCrossing(e.a, e.b, c, d) -} - -// crossingSign handle the slow path of CrossingSign. -func (e *EdgeCrosser) crossingSign(d Point, bda Direction) Crossing { -	// Compute the actual result, and then save the current vertex D as the next -	// vertex C, and save the orientation of the next triangle ACB (which is -	// opposite to the current triangle BDA). -	defer func() { -		e.c = d -		e.acb = -bda -	}() - -	// At this point, a very common situation is that A,B,C,D are four points on -	// a line such that AB does not overlap CD. (For example, this happens when -	// a line or curve is sampled finely, or when geometry is constructed by -	// computing the union of S2CellIds.) Most of the time, we can determine -	// that AB and CD do not intersect using the two outward-facing -	// tangents at A and B (parallel to AB) and testing whether AB and CD are on -	// opposite sides of the plane perpendicular to one of these tangents. This -	// is moderately expensive but still much cheaper than expensiveSign. - -	// The error in RobustCrossProd is insignificant. The maximum error in -	// the call to CrossProd (i.e., the maximum norm of the error vector) is -	// (0.5 + 1/sqrt(3)) * dblEpsilon. The maximum error in each call to -	// DotProd below is dblEpsilon. (There is also a small relative error -	// term that is insignificant because we are comparing the result against a -	// constant that is very close to zero.) -	maxError := (1.5 + 1/math.Sqrt(3)) * dblEpsilon -	if (e.c.Dot(e.aTangent.Vector) > maxError && d.Dot(e.aTangent.Vector) > maxError) || (e.c.Dot(e.bTangent.Vector) > maxError && d.Dot(e.bTangent.Vector) > maxError) { -		return DoNotCross -	} - -	// Otherwise, eliminate the cases where two vertices from different edges are -	// equal. (These cases could be handled in the code below, but we would rather -	// avoid calling ExpensiveSign if possible.) -	if e.a == e.c || e.a == d || e.b == e.c || e.b == d { -		return MaybeCross -	} - -	// Eliminate the cases where an input edge is degenerate. (Note that in -	// most cases, if CD is degenerate then this method is not even called -	// because acb and bda have different signs.) -	if e.a == e.b || e.c == d { -		return DoNotCross -	} - -	// Otherwise it's time to break out the big guns. -	if e.acb == Indeterminate { -		e.acb = -expensiveSign(e.a, e.b, e.c) -	} -	if bda == Indeterminate { -		bda = expensiveSign(e.a, e.b, d) -	} - -	if bda != e.acb { -		return DoNotCross -	} - -	cbd := -RobustSign(e.c, d, e.b) -	if cbd != e.acb { -		return DoNotCross -	} -	dac := RobustSign(e.c, d, e.a) -	if dac != e.acb { -		return DoNotCross -	} -	return Cross -} diff --git a/vendor/github.com/golang/geo/s2/edge_crossings.go b/vendor/github.com/golang/geo/s2/edge_crossings.go deleted file mode 100644 index a98ec76ff..000000000 --- a/vendor/github.com/golang/geo/s2/edge_crossings.go +++ /dev/null @@ -1,396 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" -	"math" - -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -const ( -	// intersectionError can be set somewhat arbitrarily, because the algorithm -	// uses more precision if necessary in order to achieve the specified error. -	// The only strict requirement is that intersectionError >= dblEpsilon -	// radians. However, using a larger error tolerance makes the algorithm more -	// efficient because it reduces the number of cases where exact arithmetic is -	// needed. -	intersectionError = s1.Angle(8 * dblError) - -	// intersectionMergeRadius is used to ensure that intersection points that -	// are supposed to be coincident are merged back together into a single -	// vertex. This is required in order for various polygon operations (union, -	// intersection, etc) to work correctly. It is twice the intersection error -	// because two coincident intersection points might have errors in -	// opposite directions. -	intersectionMergeRadius = 2 * intersectionError -) - -// A Crossing indicates how edges cross. -type Crossing int - -const ( -	// Cross means the edges cross. -	Cross Crossing = iota -	// MaybeCross means two vertices from different edges are the same. -	MaybeCross -	// DoNotCross means the edges do not cross. -	DoNotCross -) - -func (c Crossing) String() string { -	switch c { -	case Cross: -		return "Cross" -	case MaybeCross: -		return "MaybeCross" -	case DoNotCross: -		return "DoNotCross" -	default: -		return fmt.Sprintf("(BAD CROSSING %d)", c) -	} -} - -// CrossingSign reports whether the edge AB intersects the edge CD. -// If AB crosses CD at a point that is interior to both edges, Cross is returned. -// If any two vertices from different edges are the same it returns MaybeCross. -// Otherwise it returns DoNotCross. -// If either edge is degenerate (A == B or C == D), the return value is MaybeCross -// if two vertices from different edges are the same and DoNotCross otherwise. -// -// Properties of CrossingSign: -// -//  (1) CrossingSign(b,a,c,d) == CrossingSign(a,b,c,d) -//  (2) CrossingSign(c,d,a,b) == CrossingSign(a,b,c,d) -//  (3) CrossingSign(a,b,c,d) == MaybeCross if a==c, a==d, b==c, b==d -//  (3) CrossingSign(a,b,c,d) == DoNotCross or MaybeCross if a==b or c==d -// -// This method implements an exact, consistent perturbation model such -// that no three points are ever considered to be collinear. This means -// that even if you have 4 points A, B, C, D that lie exactly in a line -// (say, around the equator), C and D will be treated as being slightly to -// one side or the other of AB. This is done in a way such that the -// results are always consistent (see RobustSign). -func CrossingSign(a, b, c, d Point) Crossing { -	crosser := NewChainEdgeCrosser(a, b, c) -	return crosser.ChainCrossingSign(d) -} - -// VertexCrossing reports whether two edges "cross" in such a way that point-in-polygon -// containment tests can be implemented by counting the number of edge crossings. -// -// Given two edges AB and CD where at least two vertices are identical -// (i.e. CrossingSign(a,b,c,d) == 0), the basic rule is that a "crossing" -// occurs if AB is encountered after CD during a CCW sweep around the shared -// vertex starting from a fixed reference point. -// -// Note that according to this rule, if AB crosses CD then in general CD -// does not cross AB. However, this leads to the correct result when -// counting polygon edge crossings. For example, suppose that A,B,C are -// three consecutive vertices of a CCW polygon. If we now consider the edge -// crossings of a segment BP as P sweeps around B, the crossing number -// changes parity exactly when BP crosses BA or BC. -// -// Useful properties of VertexCrossing (VC): -// -//  (1) VC(a,a,c,d) == VC(a,b,c,c) == false -//  (2) VC(a,b,a,b) == VC(a,b,b,a) == true -//  (3) VC(a,b,c,d) == VC(a,b,d,c) == VC(b,a,c,d) == VC(b,a,d,c) -//  (3) If exactly one of a,b equals one of c,d, then exactly one of -//      VC(a,b,c,d) and VC(c,d,a,b) is true -// -// It is an error to call this method with 4 distinct vertices. -func VertexCrossing(a, b, c, d Point) bool { -	// If A == B or C == D there is no intersection. We need to check this -	// case first in case 3 or more input points are identical. -	if a == b || c == d { -		return false -	} - -	// If any other pair of vertices is equal, there is a crossing if and only -	// if OrderedCCW indicates that the edge AB is further CCW around the -	// shared vertex O (either A or B) than the edge CD, starting from an -	// arbitrary fixed reference point. - -	// Optimization: if AB=CD or AB=DC, we can avoid most of the calculations. -	switch { -	case a == c: -		return (b == d) || OrderedCCW(Point{a.Ortho()}, d, b, a) -	case b == d: -		return OrderedCCW(Point{b.Ortho()}, c, a, b) -	case a == d: -		return (b == c) || OrderedCCW(Point{a.Ortho()}, c, b, a) -	case b == c: -		return OrderedCCW(Point{b.Ortho()}, d, a, b) -	} - -	return false -} - -// EdgeOrVertexCrossing is a convenience function that calls CrossingSign to -// handle cases where all four vertices are distinct, and VertexCrossing to -// handle cases where two or more vertices are the same. This defines a crossing -// function such that point-in-polygon containment tests can be implemented -// by simply counting edge crossings. -func EdgeOrVertexCrossing(a, b, c, d Point) bool { -	switch CrossingSign(a, b, c, d) { -	case DoNotCross: -		return false -	case Cross: -		return true -	default: -		return VertexCrossing(a, b, c, d) -	} -} - -// Intersection returns the intersection point of two edges AB and CD that cross -// (CrossingSign(a,b,c,d) == Crossing). -// -// Useful properties of Intersection: -// -//  (1) Intersection(b,a,c,d) == Intersection(a,b,d,c) == Intersection(a,b,c,d) -//  (2) Intersection(c,d,a,b) == Intersection(a,b,c,d) -// -// The returned intersection point X is guaranteed to be very close to the -// true intersection point of AB and CD, even if the edges intersect at a -// very small angle. -func Intersection(a0, a1, b0, b1 Point) Point { -	// It is difficult to compute the intersection point of two edges accurately -	// when the angle between the edges is very small. Previously we handled -	// this by only guaranteeing that the returned intersection point is within -	// intersectionError of each edge. However, this means that when the edges -	// cross at a very small angle, the computed result may be very far from the -	// true intersection point. -	// -	// Instead this function now guarantees that the result is always within -	// intersectionError of the true intersection. This requires using more -	// sophisticated techniques and in some cases extended precision. -	// -	//  - intersectionStable computes the intersection point using -	//    projection and interpolation, taking care to minimize cancellation -	//    error. -	// -	//  - intersectionExact computes the intersection point using precision -	//    arithmetic and converts the final result back to an Point. -	pt, ok := intersectionStable(a0, a1, b0, b1) -	if !ok { -		pt = intersectionExact(a0, a1, b0, b1) -	} - -	// Make sure the intersection point is on the correct side of the sphere. -	// Since all vertices are unit length, and edges are less than 180 degrees, -	// (a0 + a1) and (b0 + b1) both have positive dot product with the -	// intersection point.  We use the sum of all vertices to make sure that the -	// result is unchanged when the edges are swapped or reversed. -	if pt.Dot((a0.Add(a1.Vector)).Add(b0.Add(b1.Vector))) < 0 { -		pt = Point{pt.Mul(-1)} -	} - -	return pt -} - -// Computes the cross product of two vectors, normalized to be unit length. -// Also returns the length of the cross -// product before normalization, which is useful for estimating the amount of -// error in the result.  For numerical stability, the vectors should both be -// approximately unit length. -func robustNormalWithLength(x, y r3.Vector) (r3.Vector, float64) { -	var pt r3.Vector -	// This computes 2 * (x.Cross(y)), but has much better numerical -	// stability when x and y are unit length. -	tmp := x.Sub(y).Cross(x.Add(y)) -	length := tmp.Norm() -	if length != 0 { -		pt = tmp.Mul(1 / length) -	} -	return pt, 0.5 * length // Since tmp == 2 * (x.Cross(y)) -} - -/* -// intersectionSimple is not used by the C++ so it is skipped here. -*/ - -// projection returns the projection of aNorm onto X (x.Dot(aNorm)), and a bound -// on the error in the result. aNorm is not necessarily unit length. -// -// The remaining parameters (the length of aNorm (aNormLen) and the edge endpoints -// a0 and a1) allow this dot product to be computed more accurately and efficiently. -func projection(x, aNorm r3.Vector, aNormLen float64, a0, a1 Point) (proj, bound float64) { -	// The error in the dot product is proportional to the lengths of the input -	// vectors, so rather than using x itself (a unit-length vector) we use -	// the vectors from x to the closer of the two edge endpoints. This -	// typically reduces the error by a huge factor. -	x0 := x.Sub(a0.Vector) -	x1 := x.Sub(a1.Vector) -	x0Dist2 := x0.Norm2() -	x1Dist2 := x1.Norm2() - -	// If both distances are the same, we need to be careful to choose one -	// endpoint deterministically so that the result does not change if the -	// order of the endpoints is reversed. -	var dist float64 -	if x0Dist2 < x1Dist2 || (x0Dist2 == x1Dist2 && x0.Cmp(x1) == -1) { -		dist = math.Sqrt(x0Dist2) -		proj = x0.Dot(aNorm) -	} else { -		dist = math.Sqrt(x1Dist2) -		proj = x1.Dot(aNorm) -	} - -	// This calculation bounds the error from all sources: the computation of -	// the normal, the subtraction of one endpoint, and the dot product itself. -	// dblError appears because the input points are assumed to be -	// normalized in double precision. -	// -	// For reference, the bounds that went into this calculation are: -	// ||N'-N|| <= ((1 + 2 * sqrt(3))||N|| + 32 * sqrt(3) * dblError) * epsilon -	// |(A.B)'-(A.B)| <= (1.5 * (A.B) + 1.5 * ||A|| * ||B||) * epsilon -	// ||(X-Y)'-(X-Y)|| <= ||X-Y|| * epsilon -	bound = (((3.5+2*math.Sqrt(3))*aNormLen+32*math.Sqrt(3)*dblError)*dist + 1.5*math.Abs(proj)) * epsilon -	return proj, bound -} - -// compareEdges reports whether (a0,a1) is less than (b0,b1) with respect to a total -// ordering on edges that is invariant under edge reversals. -func compareEdges(a0, a1, b0, b1 Point) bool { -	if a0.Cmp(a1.Vector) != -1 { -		a0, a1 = a1, a0 -	} -	if b0.Cmp(b1.Vector) != -1 { -		b0, b1 = b1, b0 -	} -	return a0.Cmp(b0.Vector) == -1 || (a0 == b0 && b0.Cmp(b1.Vector) == -1) -} - -// intersectionStable returns the intersection point of the edges (a0,a1) and -// (b0,b1) if it can be computed to within an error of at most intersectionError -// by this function. -// -// The intersection point is not guaranteed to have the correct sign because we -// choose to use the longest of the two edges first. The sign is corrected by -// Intersection. -func intersectionStable(a0, a1, b0, b1 Point) (Point, bool) { -	// Sort the two edges so that (a0,a1) is longer, breaking ties in a -	// deterministic way that does not depend on the ordering of the endpoints. -	// This is desirable for two reasons: -	//  - So that the result doesn't change when edges are swapped or reversed. -	//  - It reduces error, since the first edge is used to compute the edge -	//    normal (where a longer edge means less error), and the second edge -	//    is used for interpolation (where a shorter edge means less error). -	aLen2 := a1.Sub(a0.Vector).Norm2() -	bLen2 := b1.Sub(b0.Vector).Norm2() -	if aLen2 < bLen2 || (aLen2 == bLen2 && compareEdges(a0, a1, b0, b1)) { -		return intersectionStableSorted(b0, b1, a0, a1) -	} -	return intersectionStableSorted(a0, a1, b0, b1) -} - -// intersectionStableSorted is a helper function for intersectionStable. -// It expects that the edges (a0,a1) and (b0,b1) have been sorted so that -// the first edge passed in is longer. -func intersectionStableSorted(a0, a1, b0, b1 Point) (Point, bool) { -	var pt Point - -	// Compute the normal of the plane through (a0, a1) in a stable way. -	aNorm := a0.Sub(a1.Vector).Cross(a0.Add(a1.Vector)) -	aNormLen := aNorm.Norm() -	bLen := b1.Sub(b0.Vector).Norm() - -	// Compute the projection (i.e., signed distance) of b0 and b1 onto the -	// plane through (a0, a1).  Distances are scaled by the length of aNorm. -	b0Dist, b0Error := projection(b0.Vector, aNorm, aNormLen, a0, a1) -	b1Dist, b1Error := projection(b1.Vector, aNorm, aNormLen, a0, a1) - -	// The total distance from b0 to b1 measured perpendicularly to (a0,a1) is -	// |b0Dist - b1Dist|.  Note that b0Dist and b1Dist generally have -	// opposite signs because b0 and b1 are on opposite sides of (a0, a1).  The -	// code below finds the intersection point by interpolating along the edge -	// (b0, b1) to a fractional distance of b0Dist / (b0Dist - b1Dist). -	// -	// It can be shown that the maximum error in the interpolation fraction is -	// -	//   (b0Dist * b1Error - b1Dist * b0Error) / (distSum * (distSum - errorSum)) -	// -	// We save ourselves some work by scaling the result and the error bound by -	// "distSum", since the result is normalized to be unit length anyway. -	distSum := math.Abs(b0Dist - b1Dist) -	errorSum := b0Error + b1Error -	if distSum <= errorSum { -		return pt, false // Error is unbounded in this case. -	} - -	x := b1.Mul(b0Dist).Sub(b0.Mul(b1Dist)) -	err := bLen*math.Abs(b0Dist*b1Error-b1Dist*b0Error)/ -		(distSum-errorSum) + 2*distSum*epsilon - -	// Finally we normalize the result, compute the corresponding error, and -	// check whether the total error is acceptable. -	xLen := x.Norm() -	maxError := intersectionError -	if err > (float64(maxError)-epsilon)*xLen { -		return pt, false -	} - -	return Point{x.Mul(1 / xLen)}, true -} - -// intersectionExact returns the intersection point of (a0, a1) and (b0, b1) -// using precise arithmetic. Note that the result is not exact because it is -// rounded down to double precision at the end. Also, the intersection point -// is not guaranteed to have the correct sign (i.e., the return value may need -// to be negated). -func intersectionExact(a0, a1, b0, b1 Point) Point { -	// Since we are using presice arithmetic, we don't need to worry about -	// numerical stability. -	a0P := r3.PreciseVectorFromVector(a0.Vector) -	a1P := r3.PreciseVectorFromVector(a1.Vector) -	b0P := r3.PreciseVectorFromVector(b0.Vector) -	b1P := r3.PreciseVectorFromVector(b1.Vector) -	aNormP := a0P.Cross(a1P) -	bNormP := b0P.Cross(b1P) -	xP := aNormP.Cross(bNormP) - -	// The final Normalize() call is done in double precision, which creates a -	// directional error of up to 2*dblError. (Precise conversion and Normalize() -	// each contribute up to dblError of directional error.) -	x := xP.Vector() - -	if x == (r3.Vector{}) { -		// The two edges are exactly collinear, but we still consider them to be -		// "crossing" because of simulation of simplicity. Out of the four -		// endpoints, exactly two lie in the interior of the other edge. Of -		// those two we return the one that is lexicographically smallest. -		x = r3.Vector{10, 10, 10} // Greater than any valid S2Point - -		aNorm := Point{aNormP.Vector()} -		bNorm := Point{bNormP.Vector()} -		if OrderedCCW(b0, a0, b1, bNorm) && a0.Cmp(x) == -1 { -			return a0 -		} -		if OrderedCCW(b0, a1, b1, bNorm) && a1.Cmp(x) == -1 { -			return a1 -		} -		if OrderedCCW(a0, b0, a1, aNorm) && b0.Cmp(x) == -1 { -			return b0 -		} -		if OrderedCCW(a0, b1, a1, aNorm) && b1.Cmp(x) == -1 { -			return b1 -		} -	} - -	return Point{x} -} diff --git a/vendor/github.com/golang/geo/s2/edge_distances.go b/vendor/github.com/golang/geo/s2/edge_distances.go deleted file mode 100644 index ca197af1d..000000000 --- a/vendor/github.com/golang/geo/s2/edge_distances.go +++ /dev/null @@ -1,408 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// This file defines a collection of methods for computing the distance to an edge, -// interpolating along an edge, projecting points onto edges, etc. - -import ( -	"math" - -	"github.com/golang/geo/s1" -) - -// DistanceFromSegment returns the distance of point X from line segment AB. -// The points are expected to be normalized. The result is very accurate for small -// distances but may have some numerical error if the distance is large -// (approximately pi/2 or greater). The case A == B is handled correctly. -func DistanceFromSegment(x, a, b Point) s1.Angle { -	var minDist s1.ChordAngle -	minDist, _ = updateMinDistance(x, a, b, minDist, true) -	return minDist.Angle() -} - -// IsDistanceLess reports whether the distance from X to the edge AB is less -// than limit. (For less than or equal to, specify limit.Successor()). -// This method is faster than DistanceFromSegment(). If you want to -// compare against a fixed s1.Angle, you should convert it to an s1.ChordAngle -// once and save the value, since this conversion is relatively expensive. -func IsDistanceLess(x, a, b Point, limit s1.ChordAngle) bool { -	_, less := UpdateMinDistance(x, a, b, limit) -	return less -} - -// UpdateMinDistance checks if the distance from X to the edge AB is less -// than minDist, and if so, returns the updated value and true. -// The case A == B is handled correctly. -// -// Use this method when you want to compute many distances and keep track of -// the minimum. It is significantly faster than using DistanceFromSegment -// because (1) using s1.ChordAngle is much faster than s1.Angle, and (2) it -// can save a lot of work by not actually computing the distance when it is -// obviously larger than the current minimum. -func UpdateMinDistance(x, a, b Point, minDist s1.ChordAngle) (s1.ChordAngle, bool) { -	return updateMinDistance(x, a, b, minDist, false) -} - -// UpdateMaxDistance checks if the distance from X to the edge AB is greater -// than maxDist, and if so, returns the updated value and true. -// Otherwise it returns false. The case A == B is handled correctly. -func UpdateMaxDistance(x, a, b Point, maxDist s1.ChordAngle) (s1.ChordAngle, bool) { -	dist := maxChordAngle(ChordAngleBetweenPoints(x, a), ChordAngleBetweenPoints(x, b)) -	if dist > s1.RightChordAngle { -		dist, _ = updateMinDistance(Point{x.Mul(-1)}, a, b, dist, true) -		dist = s1.StraightChordAngle - dist -	} -	if maxDist < dist { -		return dist, true -	} - -	return maxDist, false -} - -// IsInteriorDistanceLess reports whether the minimum distance from X to the edge -// AB is attained at an interior point of AB (i.e., not an endpoint), and that -// distance is less than limit. (Specify limit.Successor() for less than or equal to). -func IsInteriorDistanceLess(x, a, b Point, limit s1.ChordAngle) bool { -	_, less := UpdateMinInteriorDistance(x, a, b, limit) -	return less -} - -// UpdateMinInteriorDistance reports whether the minimum distance from X to AB -// is attained at an interior point of AB (i.e., not an endpoint), and that distance -// is less than minDist. If so, the value of minDist is updated and true is returned. -// Otherwise it is unchanged and returns false. -func UpdateMinInteriorDistance(x, a, b Point, minDist s1.ChordAngle) (s1.ChordAngle, bool) { -	return interiorDist(x, a, b, minDist, false) -} - -// Project returns the point along the edge AB that is closest to the point X. -// The fractional distance of this point along the edge AB can be obtained -// using DistanceFraction. -// -// This requires that all points are unit length. -func Project(x, a, b Point) Point { -	aXb := a.PointCross(b) -	// Find the closest point to X along the great circle through AB. -	p := x.Sub(aXb.Mul(x.Dot(aXb.Vector) / aXb.Vector.Norm2())) - -	// If this point is on the edge AB, then it's the closest point. -	if Sign(aXb, a, Point{p}) && Sign(Point{p}, b, aXb) { -		return Point{p.Normalize()} -	} - -	// Otherwise, the closest point is either A or B. -	if x.Sub(a.Vector).Norm2() <= x.Sub(b.Vector).Norm2() { -		return a -	} -	return b -} - -// DistanceFraction returns the distance ratio of the point X along an edge AB. -// If X is on the line segment AB, this is the fraction T such -// that X == Interpolate(T, A, B). -// -// This requires that A and B are distinct. -func DistanceFraction(x, a, b Point) float64 { -	d0 := x.Angle(a.Vector) -	d1 := x.Angle(b.Vector) -	return float64(d0 / (d0 + d1)) -} - -// Interpolate returns the point X along the line segment AB whose distance from A -// is the given fraction "t" of the distance AB. Does NOT require that "t" be -// between 0 and 1. Note that all distances are measured on the surface of -// the sphere, so this is more complicated than just computing (1-t)*a + t*b -// and normalizing the result. -func Interpolate(t float64, a, b Point) Point { -	if t == 0 { -		return a -	} -	if t == 1 { -		return b -	} -	ab := a.Angle(b.Vector) -	return InterpolateAtDistance(s1.Angle(t)*ab, a, b) -} - -// InterpolateAtDistance returns the point X along the line segment AB whose -// distance from A is the angle ax. -func InterpolateAtDistance(ax s1.Angle, a, b Point) Point { -	aRad := ax.Radians() - -	// Use PointCross to compute the tangent vector at A towards B. The -	// result is always perpendicular to A, even if A=B or A=-B, but it is not -	// necessarily unit length. (We effectively normalize it below.) -	normal := a.PointCross(b) -	tangent := normal.Vector.Cross(a.Vector) - -	// Now compute the appropriate linear combination of A and "tangent". With -	// infinite precision the result would always be unit length, but we -	// normalize it anyway to ensure that the error is within acceptable bounds. -	// (Otherwise errors can build up when the result of one interpolation is -	// fed into another interpolation.) -	return Point{(a.Mul(math.Cos(aRad)).Add(tangent.Mul(math.Sin(aRad) / tangent.Norm()))).Normalize()} -} - -// minUpdateDistanceMaxError returns the maximum error in the result of -// UpdateMinDistance (and the associated functions such as -// UpdateMinInteriorDistance, IsDistanceLess, etc), assuming that all -// input points are normalized to within the bounds guaranteed by r3.Vector's -// Normalize. The error can be added or subtracted from an s1.ChordAngle -// using its Expanded method. -func minUpdateDistanceMaxError(dist s1.ChordAngle) float64 { -	// There are two cases for the maximum error in UpdateMinDistance(), -	// depending on whether the closest point is interior to the edge. -	return math.Max(minUpdateInteriorDistanceMaxError(dist), dist.MaxPointError()) -} - -// minUpdateInteriorDistanceMaxError returns the maximum error in the result of -// UpdateMinInteriorDistance, assuming that all input points are normalized -// to within the bounds guaranteed by Point's Normalize. The error can be added -// or subtracted from an s1.ChordAngle using its Expanded method. -// -// Note that accuracy goes down as the distance approaches 0 degrees or 180 -// degrees (for different reasons). Near 0 degrees the error is acceptable -// for all practical purposes (about 1.2e-15 radians ~= 8 nanometers).  For -// exactly antipodal points the maximum error is quite high (0.5 meters), -// but this error drops rapidly as the points move away from antipodality -// (approximately 1 millimeter for points that are 50 meters from antipodal, -// and 1 micrometer for points that are 50km from antipodal). -// -// TODO(roberts): Currently the error bound does not hold for edges whose endpoints -// are antipodal to within about 1e-15 radians (less than 1 micron). This could -// be fixed by extending PointCross to use higher precision when necessary. -func minUpdateInteriorDistanceMaxError(dist s1.ChordAngle) float64 { -	// If a point is more than 90 degrees from an edge, then the minimum -	// distance is always to one of the endpoints, not to the edge interior. -	if dist >= s1.RightChordAngle { -		return 0.0 -	} - -	// This bound includes all source of error, assuming that the input points -	// are normalized. a and b are components of chord length that are -	// perpendicular and parallel to a plane containing the edge respectively. -	b := math.Min(1.0, 0.5*float64(dist)) -	a := math.Sqrt(b * (2 - b)) -	return ((2.5+2*math.Sqrt(3)+8.5*a)*a + -		(2+2*math.Sqrt(3)/3+6.5*(1-b))*b + -		(23+16/math.Sqrt(3))*dblEpsilon) * dblEpsilon -} - -// updateMinDistance computes the distance from a point X to a line segment AB, -// and if either the distance was less than the given minDist, or alwaysUpdate is -// true, the value and whether it was updated are returned. -func updateMinDistance(x, a, b Point, minDist s1.ChordAngle, alwaysUpdate bool) (s1.ChordAngle, bool) { -	if d, ok := interiorDist(x, a, b, minDist, alwaysUpdate); ok { -		// Minimum distance is attained along the edge interior. -		return d, true -	} - -	// Otherwise the minimum distance is to one of the endpoints. -	xa2, xb2 := (x.Sub(a.Vector)).Norm2(), x.Sub(b.Vector).Norm2() -	dist := s1.ChordAngle(math.Min(xa2, xb2)) -	if !alwaysUpdate && dist >= minDist { -		return minDist, false -	} -	return dist, true -} - -// interiorDist returns the shortest distance from point x to edge ab, assuming -// that the closest point to X is interior to AB. If the closest point is not -// interior to AB, interiorDist returns (minDist, false). If alwaysUpdate is set to -// false, the distance is only updated when the value exceeds certain the given minDist. -func interiorDist(x, a, b Point, minDist s1.ChordAngle, alwaysUpdate bool) (s1.ChordAngle, bool) { -	// Chord distance of x to both end points a and b. -	xa2, xb2 := (x.Sub(a.Vector)).Norm2(), x.Sub(b.Vector).Norm2() - -	// The closest point on AB could either be one of the two vertices (the -	// vertex case) or in the interior (the interior case). Let C = A x B. -	// If X is in the spherical wedge extending from A to B around the axis -	// through C, then we are in the interior case. Otherwise we are in the -	// vertex case. -	// -	// Check whether we might be in the interior case. For this to be true, XAB -	// and XBA must both be acute angles. Checking this condition exactly is -	// expensive, so instead we consider the planar triangle ABX (which passes -	// through the sphere's interior). The planar angles XAB and XBA are always -	// less than the corresponding spherical angles, so if we are in the -	// interior case then both of these angles must be acute. -	// -	// We check this by computing the squared edge lengths of the planar -	// triangle ABX, and testing whether angles XAB and XBA are both acute using -	// the law of cosines: -	// -	//            | XA^2 - XB^2 | < AB^2      (*) -	// -	// This test must be done conservatively (taking numerical errors into -	// account) since otherwise we might miss a situation where the true minimum -	// distance is achieved by a point on the edge interior. -	// -	// There are two sources of error in the expression above (*).  The first is -	// that points are not normalized exactly; they are only guaranteed to be -	// within 2 * dblEpsilon of unit length.  Under the assumption that the two -	// sides of (*) are nearly equal, the total error due to normalization errors -	// can be shown to be at most -	// -	//        2 * dblEpsilon * (XA^2 + XB^2 + AB^2) + 8 * dblEpsilon ^ 2 . -	// -	// The other source of error is rounding of results in the calculation of (*). -	// Each of XA^2, XB^2, AB^2 has a maximum relative error of 2.5 * dblEpsilon, -	// plus an additional relative error of 0.5 * dblEpsilon in the final -	// subtraction which we further bound as 0.25 * dblEpsilon * (XA^2 + XB^2 + -	// AB^2) for convenience.  This yields a final error bound of -	// -	//        4.75 * dblEpsilon * (XA^2 + XB^2 + AB^2) + 8 * dblEpsilon ^ 2 . -	ab2 := a.Sub(b.Vector).Norm2() -	maxError := (4.75*dblEpsilon*(xa2+xb2+ab2) + 8*dblEpsilon*dblEpsilon) -	if math.Abs(xa2-xb2) >= ab2+maxError { -		return minDist, false -	} - -	// The minimum distance might be to a point on the edge interior. Let R -	// be closest point to X that lies on the great circle through AB. Rather -	// than computing the geodesic distance along the surface of the sphere, -	// instead we compute the "chord length" through the sphere's interior. -	// -	// The squared chord length XR^2 can be expressed as XQ^2 + QR^2, where Q -	// is the point X projected onto the plane through the great circle AB. -	// The distance XQ^2 can be written as (X.C)^2 / |C|^2 where C = A x B. -	// We ignore the QR^2 term and instead use XQ^2 as a lower bound, since it -	// is faster and the corresponding distance on the Earth's surface is -	// accurate to within 1% for distances up to about 1800km. -	c := a.PointCross(b) -	c2 := c.Norm2() -	xDotC := x.Dot(c.Vector) -	xDotC2 := xDotC * xDotC -	if !alwaysUpdate && xDotC2 > c2*float64(minDist) { -		// The closest point on the great circle AB is too far away.  We need to -		// test this using ">" rather than ">=" because the actual minimum bound -		// on the distance is (xDotC2 / c2), which can be rounded differently -		// than the (more efficient) multiplicative test above. -		return minDist, false -	} - -	// Otherwise we do the exact, more expensive test for the interior case. -	// This test is very likely to succeed because of the conservative planar -	// test we did initially. -	// -	// TODO(roberts): Ensure that the errors in test are accurately reflected in the -	// minUpdateInteriorDistanceMaxError. -	cx := c.Cross(x.Vector) -	if a.Sub(x.Vector).Dot(cx) >= 0 || b.Sub(x.Vector).Dot(cx) <= 0 { -		return minDist, false -	} - -	// Compute the squared chord length XR^2 = XQ^2 + QR^2 (see above). -	// This calculation has good accuracy for all chord lengths since it -	// is based on both the dot product and cross product (rather than -	// deriving one from the other). However, note that the chord length -	// representation itself loses accuracy as the angle approaches π. -	qr := 1 - math.Sqrt(cx.Norm2()/c2) -	dist := s1.ChordAngle((xDotC2 / c2) + (qr * qr)) - -	if !alwaysUpdate && dist >= minDist { -		return minDist, false -	} - -	return dist, true -} - -// updateEdgePairMinDistance computes the minimum distance between the given -// pair of edges. If the two edges cross, the distance is zero. The cases -// a0 == a1 and b0 == b1 are handled correctly. -func updateEdgePairMinDistance(a0, a1, b0, b1 Point, minDist s1.ChordAngle) (s1.ChordAngle, bool) { -	if minDist == 0 { -		return 0, false -	} -	if CrossingSign(a0, a1, b0, b1) == Cross { -		minDist = 0 -		return 0, true -	} - -	// Otherwise, the minimum distance is achieved at an endpoint of at least -	// one of the two edges. We ensure that all four possibilities are always checked. -	// -	// The calculation below computes each of the six vertex-vertex distances -	// twice (this could be optimized). -	var ok1, ok2, ok3, ok4 bool -	minDist, ok1 = UpdateMinDistance(a0, b0, b1, minDist) -	minDist, ok2 = UpdateMinDistance(a1, b0, b1, minDist) -	minDist, ok3 = UpdateMinDistance(b0, a0, a1, minDist) -	minDist, ok4 = UpdateMinDistance(b1, a0, a1, minDist) -	return minDist, ok1 || ok2 || ok3 || ok4 -} - -// updateEdgePairMaxDistance reports the minimum distance between the given pair of edges. -// If one edge crosses the antipodal reflection of the other, the distance is pi. -func updateEdgePairMaxDistance(a0, a1, b0, b1 Point, maxDist s1.ChordAngle) (s1.ChordAngle, bool) { -	if maxDist == s1.StraightChordAngle { -		return s1.StraightChordAngle, false -	} -	if CrossingSign(a0, a1, Point{b0.Mul(-1)}, Point{b1.Mul(-1)}) == Cross { -		return s1.StraightChordAngle, true -	} - -	// Otherwise, the maximum distance is achieved at an endpoint of at least -	// one of the two edges. We ensure that all four possibilities are always checked. -	// -	// The calculation below computes each of the six vertex-vertex distances -	// twice (this could be optimized). -	var ok1, ok2, ok3, ok4 bool -	maxDist, ok1 = UpdateMaxDistance(a0, b0, b1, maxDist) -	maxDist, ok2 = UpdateMaxDistance(a1, b0, b1, maxDist) -	maxDist, ok3 = UpdateMaxDistance(b0, a0, a1, maxDist) -	maxDist, ok4 = UpdateMaxDistance(b1, a0, a1, maxDist) -	return maxDist, ok1 || ok2 || ok3 || ok4 -} - -// EdgePairClosestPoints returns the pair of points (a, b) that achieves the -// minimum distance between edges a0a1 and b0b1, where a is a point on a0a1 and -// b is a point on b0b1. If the two edges intersect, a and b are both equal to -// the intersection point. Handles a0 == a1 and b0 == b1 correctly. -func EdgePairClosestPoints(a0, a1, b0, b1 Point) (Point, Point) { -	if CrossingSign(a0, a1, b0, b1) == Cross { -		x := Intersection(a0, a1, b0, b1) -		return x, x -	} -	// We save some work by first determining which vertex/edge pair achieves -	// the minimum distance, and then computing the closest point on that edge. -	var minDist s1.ChordAngle -	var ok bool - -	minDist, ok = updateMinDistance(a0, b0, b1, minDist, true) -	closestVertex := 0 -	if minDist, ok = UpdateMinDistance(a1, b0, b1, minDist); ok { -		closestVertex = 1 -	} -	if minDist, ok = UpdateMinDistance(b0, a0, a1, minDist); ok { -		closestVertex = 2 -	} -	if minDist, ok = UpdateMinDistance(b1, a0, a1, minDist); ok { -		closestVertex = 3 -	} -	switch closestVertex { -	case 0: -		return a0, Project(a0, b0, b1) -	case 1: -		return a1, Project(a1, b0, b1) -	case 2: -		return Project(b0, a0, a1), b0 -	case 3: -		return Project(b1, a0, a1), b1 -	default: -		panic("illegal case reached") -	} -} diff --git a/vendor/github.com/golang/geo/s2/edge_query.go b/vendor/github.com/golang/geo/s2/edge_query.go deleted file mode 100644 index 2d443d1ce..000000000 --- a/vendor/github.com/golang/geo/s2/edge_query.go +++ /dev/null @@ -1,803 +0,0 @@ -// Copyright 2019 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"sort" - -	"github.com/golang/geo/s1" -) - -// EdgeQueryOptions holds the options for controlling how EdgeQuery operates. -// -// Options can be chained together builder-style: -// -//	opts = NewClosestEdgeQueryOptions(). -//		MaxResults(1). -//		DistanceLimit(s1.ChordAngleFromAngle(3 * s1.Degree)). -//		MaxError(s1.ChordAngleFromAngle(0.001 * s1.Degree)) -//	query = NewClosestEdgeQuery(index, opts) -// -//  or set individually: -// -//	opts = NewClosestEdgeQueryOptions() -//	opts.IncludeInteriors(true) -// -// or just inline: -// -//	query = NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions().MaxResults(3)) -// -// If you pass a nil as the options you get the default values for the options. -type EdgeQueryOptions struct { -	common *queryOptions -} - -// DistanceLimit specifies that only edges whose distance to the target is -// within, this distance should be returned.  Edges whose distance is equal -// are not returned. To include values that are equal, specify the limit with -// the next largest representable distance. i.e. limit.Successor(). -func (e *EdgeQueryOptions) DistanceLimit(limit s1.ChordAngle) *EdgeQueryOptions { -	e.common = e.common.DistanceLimit(limit) -	return e -} - -// IncludeInteriors specifies whether polygon interiors should be -// included when measuring distances. -func (e *EdgeQueryOptions) IncludeInteriors(x bool) *EdgeQueryOptions { -	e.common = e.common.IncludeInteriors(x) -	return e -} - -// UseBruteForce sets or disables the use of brute force in a query. -func (e *EdgeQueryOptions) UseBruteForce(x bool) *EdgeQueryOptions { -	e.common = e.common.UseBruteForce(x) -	return e -} - -// MaxError specifies that edges up to dist away than the true -// matching edges may be substituted in the result set, as long as such -// edges satisfy all the remaining search criteria (such as DistanceLimit). -// This option only has an effect if MaxResults is also specified; -// otherwise all edges closer than MaxDistance will always be returned. -func (e *EdgeQueryOptions) MaxError(dist s1.ChordAngle) *EdgeQueryOptions { -	e.common = e.common.MaxError(dist) -	return e -} - -// MaxResults specifies that at most MaxResults edges should be returned. -// This must be at least 1. -func (e *EdgeQueryOptions) MaxResults(n int) *EdgeQueryOptions { -	e.common = e.common.MaxResults(n) -	return e -} - -// NewClosestEdgeQueryOptions returns a set of edge query options suitable -// for performing closest edge queries. -func NewClosestEdgeQueryOptions() *EdgeQueryOptions { -	return &EdgeQueryOptions{ -		common: newQueryOptions(minDistance(0)), -	} -} - -// NewFurthestEdgeQueryOptions returns a set of edge query options suitable -// for performing furthest edge queries. -func NewFurthestEdgeQueryOptions() *EdgeQueryOptions { -	return &EdgeQueryOptions{ -		common: newQueryOptions(maxDistance(0)), -	} -} - -// EdgeQueryResult represents an edge that meets the target criteria for the -// query. Note the following special cases: -// -//  - ShapeID >= 0 && EdgeID < 0 represents the interior of a shape. -//    Such results may be returned when the option IncludeInteriors is true. -// -//  - ShapeID < 0 && EdgeID < 0 is returned to indicate that no edge -//    satisfies the requested query options. -type EdgeQueryResult struct { -	distance distance -	shapeID  int32 -	edgeID   int32 -} - -// Distance reports the distance between the edge in this shape that satisfied -// the query's parameters. -func (e EdgeQueryResult) Distance() s1.ChordAngle { return e.distance.chordAngle() } - -// ShapeID reports the ID of the Shape this result is for. -func (e EdgeQueryResult) ShapeID() int32 { return e.shapeID } - -// EdgeID reports the ID of the edge in the results Shape. -func (e EdgeQueryResult) EdgeID() int32 { return e.edgeID } - -// newEdgeQueryResult returns a result instance with default values. -func newEdgeQueryResult(target distanceTarget) EdgeQueryResult { -	return EdgeQueryResult{ -		distance: target.distance().infinity(), -		shapeID:  -1, -		edgeID:   -1, -	} -} - -// IsInterior reports if this result represents the interior of a Shape. -func (e EdgeQueryResult) IsInterior() bool { -	return e.shapeID >= 0 && e.edgeID < 0 -} - -// IsEmpty reports if this has no edge that satisfies the given edge query options. -// This result is only returned in one special case, namely when FindEdge() does -// not find any suitable edges. -func (e EdgeQueryResult) IsEmpty() bool { -	return e.shapeID < 0 -} - -// Less reports if this results is less that the other first by distance, -// then by (shapeID, edgeID). This is used for sorting. -func (e EdgeQueryResult) Less(other EdgeQueryResult) bool { -	if e.distance.chordAngle() != other.distance.chordAngle() { -		return e.distance.less(other.distance) -	} -	if e.shapeID != other.shapeID { -		return e.shapeID < other.shapeID -	} -	return e.edgeID < other.edgeID -} - -// EdgeQuery is used to find the edge(s) between two geometries that match a -// given set of options. It is flexible enough so that it can be adapted to -// compute maximum distances and even potentially Hausdorff distances. -// -// By using the appropriate options, this type can answer questions such as: -// -//  - Find the minimum distance between two geometries A and B. -//  - Find all edges of geometry A that are within a distance D of geometry B. -//  - Find the k edges of geometry A that are closest to a given point P. -// -// You can also specify whether polygons should include their interiors (i.e., -// if a point is contained by a polygon, should the distance be zero or should -// it be measured to the polygon boundary?) -// -// The input geometries may consist of any number of points, polylines, and -// polygons (collectively referred to as "shapes"). Shapes do not need to be -// disjoint; they may overlap or intersect arbitrarily. The implementation is -// designed to be fast for both simple and complex geometries. -type EdgeQuery struct { -	index  *ShapeIndex -	opts   *queryOptions -	target distanceTarget - -	// True if opts.maxError must be subtracted from ShapeIndex cell distances -	// in order to ensure that such distances are measured conservatively. This -	// is true only if the target takes advantage of maxError in order to -	// return faster results, and 0 < maxError < distanceLimit. -	useConservativeCellDistance bool - -	// The decision about whether to use the brute force algorithm is based on -	// counting the total number of edges in the index. However if the index -	// contains a large number of shapes, this in itself might take too long. -	// So instead we only count edges up to (maxBruteForceIndexSize() + 1) -	// for the current target type (stored as indexNumEdgesLimit). -	indexNumEdges      int -	indexNumEdgesLimit int - -	// The distance beyond which we can safely ignore further candidate edges. -	// (Candidates that are exactly at the limit are ignored; this is more -	// efficient for UpdateMinDistance and should not affect clients since -	// distance measurements have a small amount of error anyway.) -	// -	// Initially this is the same as the maximum distance specified by the user, -	// but it can also be updated by the algorithm (see maybeAddResult). -	distanceLimit distance - -	// The current set of results of the query. -	results []EdgeQueryResult - -	// This field is true when duplicates must be avoided explicitly. This -	// is achieved by maintaining a separate set keyed by (shapeID, edgeID) -	// only, and checking whether each edge is in that set before computing the -	// distance to it. -	avoidDuplicates bool - -	// testedEdges tracks the set of shape and edges that have already been tested. -	testedEdges map[ShapeEdgeID]uint32 - -	// For the optimized algorihm we precompute the top-level CellIDs that -	// will be added to the priority queue. There can be at most 6 of these -	// cells. Essentially this is just a covering of the indexed edges, except -	// that we also store pointers to the corresponding ShapeIndexCells to -	// reduce the number of index seeks required. -	indexCovering []CellID -	indexCells    []*ShapeIndexCell - -	// The algorithm maintains a priority queue of unprocessed CellIDs, sorted -	// in increasing order of distance from the target. -	queue *queryQueue - -	iter                *ShapeIndexIterator -	maxDistanceCovering []CellID -	initialCells        []CellID -} - -// NewClosestEdgeQuery returns an EdgeQuery that is used for finding the -// closest edge(s) to a given Point, Edge, Cell, or geometry collection. -// -// You can find either the k closest edges, or all edges within a given -// radius, or both (i.e., the k closest edges up to a given maximum radius). -// E.g. to find all the edges within 5 kilometers, set the DistanceLimit in -// the options. -// -// By default *all* edges are returned, so you should always specify either -// MaxResults or DistanceLimit options or both. -// -// Note that by default, distances are measured to the boundary and interior -// of polygons. For example, if a point is inside a polygon then its distance -// is zero. To change this behavior, set the IncludeInteriors option to false. -// -// If you only need to test whether the distance is above or below a given -// threshold (e.g., 10 km), you can use the IsDistanceLess() method.  This is -// much faster than actually calculating the distance with FindEdge, -// since the implementation can stop as soon as it can prove that the minimum -// distance is either above or below the threshold. -func NewClosestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery { -	if opts == nil { -		opts = NewClosestEdgeQueryOptions() -	} -	e := &EdgeQuery{ -		testedEdges: make(map[ShapeEdgeID]uint32), -		index:       index, -		opts:        opts.common, -		queue:       newQueryQueue(), -	} - -	return e -} - -// NewFurthestEdgeQuery returns an EdgeQuery that is used for finding the -// furthest edge(s) to a given Point, Edge, Cell, or geometry collection. -// -// The furthest edge is defined as the one which maximizes the -// distance from any point on that edge to any point on the target geometry. -// -// Similar to the example in NewClosestEdgeQuery, to find the 5 furthest edges -// from a given Point: -func NewFurthestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery { -	if opts == nil { -		opts = NewFurthestEdgeQueryOptions() -	} -	e := &EdgeQuery{ -		testedEdges: make(map[ShapeEdgeID]uint32), -		index:       index, -		opts:        opts.common, -		queue:       newQueryQueue(), -	} - -	return e -} - -// Reset resets the state of this EdgeQuery. -func (e *EdgeQuery) Reset() { -	e.indexNumEdges = 0 -	e.indexNumEdgesLimit = 0 -	e.indexCovering = nil -	e.indexCells = nil -} - -// FindEdges returns the edges for the given target that satisfy the current options. -// -// Note that if opts.IncludeInteriors is true, the results may include some -// entries with edge_id == -1. This indicates that the target intersects -// the indexed polygon with the given ShapeID. -func (e *EdgeQuery) FindEdges(target distanceTarget) []EdgeQueryResult { -	return e.findEdges(target, e.opts) -} - -// Distance reports the distance to the target. If the index or target is empty, -// returns the EdgeQuery's maximal sentinel. -// -// Use IsDistanceLess()/IsDistanceGreater() if you only want to compare the -// distance against a threshold value, since it is often much faster. -func (e *EdgeQuery) Distance(target distanceTarget) s1.ChordAngle { -	return e.findEdge(target, e.opts).Distance() -} - -// IsDistanceLess reports if the distance to target is less than the given limit. -// -// This method is usually much faster than Distance(), since it is much -// less work to determine whether the minimum distance is above or below a -// threshold than it is to calculate the actual minimum distance. -// -// If you wish to check if the distance is less than or equal to the limit, use: -// -//	query.IsDistanceLess(target, limit.Successor()) -// -func (e *EdgeQuery) IsDistanceLess(target distanceTarget, limit s1.ChordAngle) bool { -	opts := e.opts -	opts = opts.MaxResults(1). -		DistanceLimit(limit). -		MaxError(s1.StraightChordAngle) -	return !e.findEdge(target, opts).IsEmpty() -} - -// IsDistanceGreater reports if the distance to target is greater than limit. -// -// This method is usually much faster than Distance, since it is much -// less work to determine whether the maximum distance is above or below a -// threshold than it is to calculate the actual maximum distance. -// If you wish to check if the distance is less than or equal to the limit, use: -// -//	query.IsDistanceGreater(target, limit.Predecessor()) -// -func (e *EdgeQuery) IsDistanceGreater(target distanceTarget, limit s1.ChordAngle) bool { -	return e.IsDistanceLess(target, limit) -} - -// IsConservativeDistanceLessOrEqual reports if the distance to target is less -// or equal to the limit, where the limit has been expanded by the maximum error -// for the distance calculation. -// -// For example, suppose that we want to test whether two geometries might -// intersect each other after they are snapped together using Builder -// (using the IdentitySnapFunction with a given "snap radius").  Since -// Builder uses exact distance predicates (s2predicates), we need to -// measure the distance between the two geometries conservatively.  If the -// distance is definitely greater than "snap radius", then the geometries -// are guaranteed to not intersect after snapping. -func (e *EdgeQuery) IsConservativeDistanceLessOrEqual(target distanceTarget, limit s1.ChordAngle) bool { -	return e.IsDistanceLess(target, limit.Expanded(minUpdateDistanceMaxError(limit))) -} - -// IsConservativeDistanceGreaterOrEqual reports if the distance to the target is greater -// than or equal to the given limit with some small tolerance. -func (e *EdgeQuery) IsConservativeDistanceGreaterOrEqual(target distanceTarget, limit s1.ChordAngle) bool { -	return e.IsDistanceGreater(target, limit.Expanded(-minUpdateDistanceMaxError(limit))) -} - -// findEdges returns the closest edges to the given target that satisfy the given options. -// -// Note that if opts.includeInteriors is true, the results may include some -// entries with edgeID == -1. This indicates that the target intersects the -// indexed polygon with the given shapeID. -func (e *EdgeQuery) findEdges(target distanceTarget, opts *queryOptions) []EdgeQueryResult { -	e.findEdgesInternal(target, opts) -	// TODO(roberts): Revisit this if there is a heap or other sorted and -	// uniquing datastructure we can use instead of just a slice. -	e.results = sortAndUniqueResults(e.results) -	if len(e.results) > e.opts.maxResults { -		e.results = e.results[:e.opts.maxResults] -	} -	return e.results -} - -func sortAndUniqueResults(results []EdgeQueryResult) []EdgeQueryResult { -	if len(results) <= 1 { -		return results -	} -	sort.Slice(results, func(i, j int) bool { return results[i].Less(results[j]) }) -	j := 0 -	for i := 1; i < len(results); i++ { -		if results[j] == results[i] { -			continue -		} -		j++ -		results[j] = results[i] -	} -	return results[:j+1] -} - -// findEdge is a convenience method that returns exactly one edge, and if no -// edges satisfy the given search criteria, then a default Result is returned. -// -// This is primarily to ease the usage of a number of the methods in the DistanceTargets -// and in EdgeQuery. -func (e *EdgeQuery) findEdge(target distanceTarget, opts *queryOptions) EdgeQueryResult { -	opts.MaxResults(1) -	e.findEdges(target, opts) -	if len(e.results) > 0 { -		return e.results[0] -	} - -	return newEdgeQueryResult(target) -} - -// findEdgesInternal does the actual work for find edges that match the given options. -func (e *EdgeQuery) findEdgesInternal(target distanceTarget, opts *queryOptions) { -	e.target = target -	e.opts = opts - -	e.testedEdges = make(map[ShapeEdgeID]uint32) -	e.distanceLimit = target.distance().fromChordAngle(opts.distanceLimit) -	e.results = make([]EdgeQueryResult, 0) - -	if e.distanceLimit == target.distance().zero() { -		return -	} - -	if opts.includeInteriors { -		shapeIDs := map[int32]struct{}{} -		e.target.visitContainingShapes(e.index, func(containingShape Shape, targetPoint Point) bool { -			shapeIDs[e.index.idForShape(containingShape)] = struct{}{} -			return len(shapeIDs) < opts.maxResults -		}) -		for shapeID := range shapeIDs { -			e.addResult(EdgeQueryResult{target.distance().zero(), shapeID, -1}) -		} - -		if e.distanceLimit == target.distance().zero() { -			return -		} -	} - -	// If maxError > 0 and the target takes advantage of this, then we may -	// need to adjust the distance estimates to ShapeIndex cells to ensure -	// that they are always a lower bound on the true distance. For example, -	// suppose max_distance == 100, maxError == 30, and we compute the distance -	// to the target from some cell C0 as d(C0) == 80. Then because the target -	// takes advantage of maxError, the true distance could be as low as 50. -	// In order not to miss edges contained by such cells, we need to subtract -	// maxError from the distance estimates. This behavior is controlled by -	// the useConservativeCellDistance flag. -	// -	// However there is one important case where this adjustment is not -	// necessary, namely when distanceLimit < maxError, This is because -	// maxError only affects the algorithm once at least maxEdges edges -	// have been found that satisfy the given distance limit. At that point, -	// maxError is subtracted from distanceLimit in order to ensure that -	// any further matches are closer by at least that amount. But when -	// distanceLimit < maxError, this reduces the distance limit to 0, -	// i.e. all remaining candidate cells and edges can safely be discarded. -	// (This is how IsDistanceLess() and friends are implemented.) -	targetUsesMaxError := opts.maxError != target.distance().zero().chordAngle() && -		e.target.setMaxError(opts.maxError) - -	// Note that we can't compare maxError and distanceLimit directly -	// because one is a Delta and one is a Distance. Instead we subtract them. -	e.useConservativeCellDistance = targetUsesMaxError && -		(e.distanceLimit == target.distance().infinity() || -			target.distance().zero().less(e.distanceLimit.sub(target.distance().fromChordAngle(opts.maxError)))) - -	// Use the brute force algorithm if the index is small enough. To avoid -	// spending too much time counting edges when there are many shapes, we stop -	// counting once there are too many edges. We may need to recount the edges -	// if we later see a target with a larger brute force edge threshold. -	minOptimizedEdges := e.target.maxBruteForceIndexSize() + 1 -	if minOptimizedEdges > e.indexNumEdgesLimit && e.indexNumEdges >= e.indexNumEdgesLimit { -		e.indexNumEdges = e.index.NumEdgesUpTo(minOptimizedEdges) -		e.indexNumEdgesLimit = minOptimizedEdges -	} - -	if opts.useBruteForce || e.indexNumEdges < minOptimizedEdges { -		// The brute force algorithm already considers each edge exactly once. -		e.avoidDuplicates = false -		e.findEdgesBruteForce() -	} else { -		// If the target takes advantage of maxError then we need to avoid -		// duplicate edges explicitly. (Otherwise it happens automatically.) -		e.avoidDuplicates = targetUsesMaxError && opts.maxResults > 1 -		e.findEdgesOptimized() -	} -} - -func (e *EdgeQuery) addResult(r EdgeQueryResult) { -	e.results = append(e.results, r) -	if e.opts.maxResults == 1 { -		// Optimization for the common case where only the closest edge is wanted. -		e.distanceLimit = r.distance.sub(e.target.distance().fromChordAngle(e.opts.maxError)) -	} -	// TODO(roberts): Add the other if/else cases when a different data structure -	// is used for the results. -} - -func (e *EdgeQuery) maybeAddResult(shape Shape, edgeID int32) { -	if _, ok := e.testedEdges[ShapeEdgeID{e.index.idForShape(shape), edgeID}]; e.avoidDuplicates && !ok { -		return -	} -	edge := shape.Edge(int(edgeID)) -	dist := e.distanceLimit - -	if dist, ok := e.target.updateDistanceToEdge(edge, dist); ok { -		e.addResult(EdgeQueryResult{dist, e.index.idForShape(shape), edgeID}) -	} -} - -func (e *EdgeQuery) findEdgesBruteForce() { -	// Range over all shapes in the index. Does order matter here? if so -	// switch to for i = 0 .. n? -	for _, shape := range e.index.shapes { -		// TODO(roberts): can this happen if we are only ranging over current entries? -		if shape == nil { -			continue -		} -		for edgeID := int32(0); edgeID < int32(shape.NumEdges()); edgeID++ { -			e.maybeAddResult(shape, edgeID) -		} -	} -} - -func (e *EdgeQuery) findEdgesOptimized() { -	e.initQueue() -	// Repeatedly find the closest Cell to "target" and either split it into -	// its four children or process all of its edges. -	for e.queue.size() > 0 { -		// We need to copy the top entry before removing it, and we need to -		// remove it before adding any new entries to the queue. -		entry := e.queue.pop() - -		if !entry.distance.less(e.distanceLimit) { -			e.queue.reset() // Clear any remaining entries. -			break -		} -		// If this is already known to be an index cell, just process it. -		if entry.indexCell != nil { -			e.processEdges(entry) -			continue -		} -		// Otherwise split the cell into its four children.  Before adding a -		// child back to the queue, we first check whether it is empty.  We do -		// this in two seek operations rather than four by seeking to the key -		// between children 0 and 1 and to the key between children 2 and 3. -		id := entry.id -		ch := id.Children() -		e.iter.seek(ch[1].RangeMin()) - -		if !e.iter.Done() && e.iter.CellID() <= ch[1].RangeMax() { -			e.processOrEnqueueCell(ch[1]) -		} -		if e.iter.Prev() && e.iter.CellID() >= id.RangeMin() { -			e.processOrEnqueueCell(ch[0]) -		} - -		e.iter.seek(ch[3].RangeMin()) -		if !e.iter.Done() && e.iter.CellID() <= id.RangeMax() { -			e.processOrEnqueueCell(ch[3]) -		} -		if e.iter.Prev() && e.iter.CellID() >= ch[2].RangeMin() { -			e.processOrEnqueueCell(ch[2]) -		} -	} -} - -func (e *EdgeQuery) processOrEnqueueCell(id CellID) { -	if e.iter.CellID() == id { -		e.processOrEnqueue(id, e.iter.IndexCell()) -	} else { -		e.processOrEnqueue(id, nil) -	} -} - -func (e *EdgeQuery) initQueue() { -	if len(e.indexCovering) == 0 { -		// We delay iterator initialization until now to make queries on very -		// small indexes a bit faster (i.e., where brute force is used). -		e.iter = NewShapeIndexIterator(e.index) -	} - -	// Optimization: if the user is searching for just the closest edge, and the -	// center of the target's bounding cap happens to intersect an index cell, -	// then we try to limit the search region to a small disc by first -	// processing the edges in that cell.  This sets distance_limit_ based on -	// the closest edge in that cell, which we can then use to limit the search -	// area.  This means that the cell containing "target" will be processed -	// twice, but in general this is still faster. -	// -	// TODO(roberts): Even if the cap center is not contained, we could still -	// process one or both of the adjacent index cells in CellID order, -	// provided that those cells are closer than distanceLimit. -	cb := e.target.capBound() -	if cb.IsEmpty() { -		return // Empty target. -	} - -	if e.opts.maxResults == 1 && e.iter.LocatePoint(cb.Center()) { -		e.processEdges(&queryQueueEntry{ -			distance:  e.target.distance().zero(), -			id:        e.iter.CellID(), -			indexCell: e.iter.IndexCell(), -		}) -		// Skip the rest of the algorithm if we found an intersecting edge. -		if e.distanceLimit == e.target.distance().zero() { -			return -		} -	} -	if len(e.indexCovering) == 0 { -		e.initCovering() -	} -	if e.distanceLimit == e.target.distance().infinity() { -		// Start with the precomputed index covering. -		for i := range e.indexCovering { -			e.processOrEnqueue(e.indexCovering[i], e.indexCells[i]) -		} -	} else { -		// Compute a covering of the search disc and intersect it with the -		// precomputed index covering. -		coverer := &RegionCoverer{MaxCells: 4, LevelMod: 1, MaxLevel: maxLevel} - -		radius := cb.Radius() + e.distanceLimit.chordAngleBound().Angle() -		searchCB := CapFromCenterAngle(cb.Center(), radius) -		maxDistCover := coverer.FastCovering(searchCB) -		e.initialCells = CellUnionFromIntersection(e.indexCovering, maxDistCover) - -		// Now we need to clean up the initial cells to ensure that they all -		// contain at least one cell of the ShapeIndex. (Some may not intersect -		// the index at all, while other may be descendants of an index cell.) -		i, j := 0, 0 -		for i < len(e.initialCells) { -			idI := e.initialCells[i] -			// Find the top-level cell that contains this initial cell. -			for e.indexCovering[j].RangeMax() < idI { -				j++ -			} - -			idJ := e.indexCovering[j] -			if idI == idJ { -				// This initial cell is one of the top-level cells.  Use the -				// precomputed ShapeIndexCell pointer to avoid an index seek. -				e.processOrEnqueue(idJ, e.indexCells[j]) -				i++ -				j++ -			} else { -				// This initial cell is a proper descendant of a top-level cell. -				// Check how it is related to the cells of the ShapeIndex. -				r := e.iter.LocateCellID(idI) -				if r == Indexed { -					// This cell is a descendant of an index cell. -					// Enqueue it and skip any other initial cells -					// that are also descendants of this cell. -					e.processOrEnqueue(e.iter.CellID(), e.iter.IndexCell()) -					lastID := e.iter.CellID().RangeMax() -					for i < len(e.initialCells) && e.initialCells[i] <= lastID { -						i++ -					} -				} else { -					// Enqueue the cell only if it contains at least one index cell. -					if r == Subdivided { -						e.processOrEnqueue(idI, nil) -					} -					i++ -				} -			} -		} -	} -} - -func (e *EdgeQuery) initCovering() { -	// Find the range of Cells spanned by the index and choose a level such -	// that the entire index can be covered with just a few cells. These are -	// the "top-level" cells. There are two cases: -	// -	//  - If the index spans more than one face, then there is one top-level cell -	// per spanned face, just big enough to cover the index cells on that face. -	// -	//  - If the index spans only one face, then we find the smallest cell "C" -	// that covers the index cells on that face (just like the case above). -	// Then for each of the 4 children of "C", if the child contains any index -	// cells then we create a top-level cell that is big enough to just fit -	// those index cells (i.e., shrinking the child as much as possible to fit -	// its contents). This essentially replicates what would happen if we -	// started with "C" as the top-level cell, since "C" would immediately be -	// split, except that we take the time to prune the children further since -	// this will save work on every subsequent query. -	e.indexCovering = make([]CellID, 0, 6) - -	// TODO(roberts): Use a single iterator below and save position -	// information using pair {CellID, ShapeIndexCell}. -	next := NewShapeIndexIterator(e.index, IteratorBegin) -	last := NewShapeIndexIterator(e.index, IteratorEnd) -	last.Prev() -	if next.CellID() != last.CellID() { -		// The index has at least two cells. Choose a level such that the entire -		// index can be spanned with at most 6 cells (if the index spans multiple -		// faces) or 4 cells (it the index spans a single face). -		level, ok := next.CellID().CommonAncestorLevel(last.CellID()) -		if !ok { -			level = 0 -		} else { -			level++ -		} - -		// Visit each potential top-level cell except the last (handled below). -		lastID := last.CellID().Parent(level) -		for id := next.CellID().Parent(level); id != lastID; id = id.Next() { -			// Skip any top-level cells that don't contain any index cells. -			if id.RangeMax() < next.CellID() { -				continue -			} - -			// Find the range of index cells contained by this top-level cell and -			// then shrink the cell if necessary so that it just covers them. -			cellFirst := next.clone() -			next.seek(id.RangeMax().Next()) -			cellLast := next.clone() -			cellLast.Prev() -			e.addInitialRange(cellFirst, cellLast) -			break -		} - -	} -	e.addInitialRange(next, last) -} - -// addInitialRange adds an entry to the indexCovering and indexCells that covers the given -// inclusive range of cells. -// -// This requires that first and last cells have a common ancestor. -func (e *EdgeQuery) addInitialRange(first, last *ShapeIndexIterator) { -	if first.CellID() == last.CellID() { -		// The range consists of a single index cell. -		e.indexCovering = append(e.indexCovering, first.CellID()) -		e.indexCells = append(e.indexCells, first.IndexCell()) -	} else { -		// Add the lowest common ancestor of the given range. -		level, _ := first.CellID().CommonAncestorLevel(last.CellID()) -		e.indexCovering = append(e.indexCovering, first.CellID().Parent(level)) -		e.indexCells = append(e.indexCells, nil) -	} -} - -// processEdges processes all the edges of the given index cell. -func (e *EdgeQuery) processEdges(entry *queryQueueEntry) { -	for _, clipped := range entry.indexCell.shapes { -		shape := e.index.Shape(clipped.shapeID) -		for j := 0; j < clipped.numEdges(); j++ { -			e.maybeAddResult(shape, int32(clipped.edges[j])) -		} -	} -} - -// processOrEnqueue the given cell id and indexCell. -func (e *EdgeQuery) processOrEnqueue(id CellID, indexCell *ShapeIndexCell) { -	if indexCell != nil { -		// If this index cell has only a few edges, then it is faster to check -		// them directly rather than computing the minimum distance to the Cell -		// and inserting it into the queue. -		const minEdgesToEnqueue = 10 -		numEdges := indexCell.numEdges() -		if numEdges == 0 { -			return -		} -		if numEdges < minEdgesToEnqueue { -			// Set "distance" to zero to avoid the expense of computing it. -			e.processEdges(&queryQueueEntry{ -				distance:  e.target.distance().zero(), -				id:        id, -				indexCell: indexCell, -			}) -			return -		} -	} - -	// Otherwise compute the minimum distance to any point in the cell and add -	// it to the priority queue. -	cell := CellFromCellID(id) -	dist := e.distanceLimit -	var ok bool -	if dist, ok = e.target.updateDistanceToCell(cell, dist); !ok { -		return -	} -	if e.useConservativeCellDistance { -		// Ensure that "distance" is a lower bound on the true distance to the cell. -		dist = dist.sub(e.target.distance().fromChordAngle(e.opts.maxError)) -	} - -	e.queue.push(&queryQueueEntry{ -		distance:  dist, -		id:        id, -		indexCell: indexCell, -	}) -} - -// TODO(roberts): Remaining pieces -// GetEdge -// Project diff --git a/vendor/github.com/golang/geo/s2/edge_tessellator.go b/vendor/github.com/golang/geo/s2/edge_tessellator.go deleted file mode 100644 index 1d5805c26..000000000 --- a/vendor/github.com/golang/geo/s2/edge_tessellator.go +++ /dev/null @@ -1,291 +0,0 @@ -// Copyright 2018 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"github.com/golang/geo/r2" -	"github.com/golang/geo/s1" -) - -// Tessellation is implemented by subdividing the edge until the estimated -// maximum error is below the given tolerance. Estimating error is a hard -// problem, especially when the only methods available are point evaluation of -// the projection and its inverse. (These are the only methods that -// Projection provides, which makes it easier and less error-prone to -// implement new projections.) -// -// One technique that significantly increases robustness is to treat the -// geodesic and projected edges as parametric curves rather than geometric ones. -// Given a spherical edge AB and a projection p:S2->R2, let f(t) be the -// normalized arc length parametrization of AB and let g(t) be the normalized -// arc length parameterization of the projected edge p(A)p(B). (In other words, -// f(0)=A, f(1)=B, g(0)=p(A), g(1)=p(B).)  We now define the geometric error as -// the maximum distance from the point p^-1(g(t)) to the geodesic edge AB for -// any t in [0,1], where p^-1 denotes the inverse projection. In other words, -// the geometric error is the maximum distance from any point on the projected -// edge (mapped back onto the sphere) to the geodesic edge AB. On the other -// hand we define the parametric error as the maximum distance between the -// points f(t) and p^-1(g(t)) for any t in [0,1], i.e. the maximum distance -// (measured on the sphere) between the geodesic and projected points at the -// same interpolation fraction t. -// -// The easiest way to estimate the parametric error is to simply evaluate both -// edges at their midpoints and measure the distance between them (the "midpoint -// method"). This is very fast and works quite well for most edges, however it -// has one major drawback: it doesn't handle points of inflection (i.e., points -// where the curvature changes sign). For example, edges in the Mercator and -// Plate Carree projections always curve towards the equator relative to the -// corresponding geodesic edge, so in these projections there is a point of -// inflection whenever the projected edge crosses the equator. The worst case -// occurs when the edge endpoints have different longitudes but the same -// absolute latitude, since in that case the error is non-zero but the edges -// have exactly the same midpoint (on the equator). -// -// One solution to this problem is to split the input edges at all inflection -// points (i.e., along the equator in the case of the Mercator and Plate Carree -// projections). However for general projections these inflection points can -// occur anywhere on the sphere (e.g., consider the Transverse Mercator -// projection). This could be addressed by adding methods to the S2Projection -// interface to split edges at inflection points but this would make it harder -// and more error-prone to implement new projections. -// -// Another problem with this approach is that the midpoint method sometimes -// underestimates the true error even when edges do not cross the equator. -// For the Plate Carree and Mercator projections, the midpoint method can -// underestimate the error by up to 3%. -// -// Both of these problems can be solved as follows. We assume that the error -// can be modeled as a convex combination of two worst-case functions, one -// where the error is maximized at the edge midpoint and another where the -// error is *minimized* (i.e., zero) at the edge midpoint. For example, we -// could choose these functions as: -// -//    E1(x) = 1 - x^2 -//    E2(x) = x * (1 - x^2) -// -// where for convenience we use an interpolation parameter "x" in the range -// [-1, 1] rather than the original "t" in the range [0, 1]. Note that both -// error functions must have roots at x = {-1, 1} since the error must be zero -// at the edge endpoints. E1 is simply a parabola whose maximum value is 1 -// attained at x = 0, while E2 is a cubic with an additional root at x = 0, -// and whose maximum value is 2 * sqrt(3) / 9 attained at x = 1 / sqrt(3). -// -// Next, it is convenient to scale these functions so that the both have a -// maximum value of 1. E1 already satisfies this requirement, and we simply -// redefine E2 as -// -//   E2(x) = x * (1 - x^2) / (2 * sqrt(3) / 9) -// -// Now define x0 to be the point where these two functions intersect, i.e. the -// point in the range (-1, 1) where E1(x0) = E2(x0). This value has the very -// convenient property that if we evaluate the actual error E(x0), then the -// maximum error on the entire interval [-1, 1] is bounded by -// -//   E(x) <= E(x0) / E1(x0) -// -// since whether the error is modeled using E1 or E2, the resulting function -// has the same maximum value (namely E(x0) / E1(x0)). If it is modeled as -// some other convex combination of E1 and E2, the maximum value can only -// decrease. -// -// Finally, since E2 is not symmetric about the y-axis, we must also allow for -// the possibility that the error is a convex combination of E1 and -E2. This -// can be handled by evaluating the error at E(-x0) as well, and then -// computing the final error bound as -// -//   E(x) <= max(E(x0), E(-x0)) / E1(x0) . -// -// Effectively, this method is simply evaluating the error at two points about -// 1/3 and 2/3 of the way along the edges, and then scaling the maximum of -// these two errors by a constant factor. Intuitively, the reason this works -// is that if the two edges cross somewhere in the interior, then at least one -// of these points will be far from the crossing. -// -// The actual algorithm implemented below has some additional refinements. -// First, edges longer than 90 degrees are always subdivided; this avoids -// various unusual situations that can happen with very long edges, and there -// is really no reason to avoid adding vertices to edges that are so long. -// -// Second, the error function E1 above needs to be modified to take into -// account spherical distortions. (It turns out that spherical distortions are -// beneficial in the case of E2, i.e. they only make its error estimates -// slightly more conservative.)  To do this, we model E1 as the maximum error -// in a Plate Carree edge of length 90 degrees or less. This turns out to be -// an edge from 45:-90 to 45:90 (in lat:lng format). The corresponding error -// as a function of "x" in the range [-1, 1] can be computed as the distance -// between the Plate Caree edge point (45, 90 * x) and the geodesic -// edge point (90 - 45 * abs(x), 90 * sgn(x)). Using the Haversine formula, -// the corresponding function E1 (normalized to have a maximum value of 1) is: -// -//   E1(x) = -//     asin(sqrt(sin(Pi / 8 * (1 - x)) ^ 2 + -//               sin(Pi / 4 * (1 - x)) ^ 2 * cos(Pi / 4) * sin(Pi / 4 * x))) / -//     asin(sqrt((1 - 1 / sqrt(2)) / 2)) -// -// Note that this function does not need to be evaluated at runtime, it -// simply affects the calculation of the value x0 where E1(x0) = E2(x0) -// and the corresponding scaling factor C = 1 / E1(x0). -// -// ------------------------------------------------------------------ -// -// In the case of the Mercator and Plate Carree projections this strategy -// produces a conservative upper bound (verified using 10 million random -// edges). Furthermore the bound is nearly tight; the scaling constant is -// C = 1.19289, whereas the maximum observed value was 1.19254. -// -// Compared to the simpler midpoint evaluation method, this strategy requires -// more function evaluations (currently twice as many, but with a smarter -// tessellation algorithm it will only be 50% more). It also results in a -// small amount of additional tessellation (about 1.5%) compared to the -// midpoint method, but this is due almost entirely to the fact that the -// midpoint method does not yield conservative error estimates. -// -// For random edges with a tolerance of 1 meter, the expected amount of -// overtessellation is as follows: -// -//                   Midpoint Method    Cubic Method -//   Plate Carree               1.8%            3.0% -//   Mercator                  15.8%           17.4% - -const ( -	// tessellationInterpolationFraction is the fraction at which the two edges -	// are evaluated in order to measure the error between them. (Edges are -	// evaluated at two points measured this fraction from either end.) -	tessellationInterpolationFraction = 0.31215691082248312 -	tessellationScaleFactor           = 0.83829992569888509 - -	// minTessellationTolerance is the minimum supported tolerance (which -	// corresponds to a distance less than 1 micrometer on the Earth's -	// surface, but is still much larger than the expected projection and -	// interpolation errors). -	minTessellationTolerance s1.Angle = 1e-13 -) - -// EdgeTessellator converts an edge in a given projection (e.g., Mercator) into -// a chain of spherical geodesic edges such that the maximum distance between -// the original edge and the geodesic edge chain is at most the requested -// tolerance. Similarly, it can convert a spherical geodesic edge into a chain -// of edges in a given 2D projection such that the maximum distance between the -// geodesic edge and the chain of projected edges is at most the requested tolerance. -// -//   Method      | Input                  | Output -//   ------------|------------------------|----------------------- -//   Projected   | S2 geodesics           | Planar projected edges -//   Unprojected | Planar projected edges | S2 geodesics -type EdgeTessellator struct { -	projection Projection - -	// The given tolerance scaled by a constant fraction so that it can be -	// compared against the result returned by estimateMaxError. -	scaledTolerance s1.ChordAngle -} - -// NewEdgeTessellator creates a new edge tessellator for the given projection and tolerance. -func NewEdgeTessellator(p Projection, tolerance s1.Angle) *EdgeTessellator { -	return &EdgeTessellator{ -		projection:      p, -		scaledTolerance: s1.ChordAngleFromAngle(maxAngle(tolerance, minTessellationTolerance)), -	} -} - -// AppendProjected converts the spherical geodesic edge AB to a chain of planar edges -// in the given projection and returns the corresponding vertices. -// -// If the given projection has one or more coordinate axes that wrap, then -// every vertex's coordinates will be as close as possible to the previous -// vertex's coordinates. Note that this may yield vertices whose -// coordinates are outside the usual range. For example, tessellating the -// edge (0:170, 0:-170) (in lat:lng notation) yields (0:170, 0:190). -func (e *EdgeTessellator) AppendProjected(a, b Point, vertices []r2.Point) []r2.Point { -	pa := e.projection.Project(a) -	if len(vertices) == 0 { -		vertices = []r2.Point{pa} -	} else { -		pa = e.projection.WrapDestination(vertices[len(vertices)-1], pa) -	} - -	pb := e.projection.Project(b) -	return e.appendProjected(pa, a, pb, b, vertices) -} - -// appendProjected splits a geodesic edge AB as necessary and returns the -// projected vertices appended to the given vertices. -// -// The maximum recursion depth is (math.Pi / minTessellationTolerance) < 45 -func (e *EdgeTessellator) appendProjected(pa r2.Point, a Point, pbIn r2.Point, b Point, vertices []r2.Point) []r2.Point { -	pb := e.projection.WrapDestination(pa, pbIn) -	if e.estimateMaxError(pa, a, pb, b) <= e.scaledTolerance { -		return append(vertices, pb) -	} - -	mid := Point{a.Add(b.Vector).Normalize()} -	pmid := e.projection.WrapDestination(pa, e.projection.Project(mid)) -	vertices = e.appendProjected(pa, a, pmid, mid, vertices) -	return e.appendProjected(pmid, mid, pb, b, vertices) -} - -// AppendUnprojected converts the planar edge AB in the given projection to a chain of -// spherical geodesic edges and returns the vertices. -// -// Note that to construct a Loop, you must eliminate the duplicate first and last -// vertex. Note also that if the given projection involves coordinate wrapping -// (e.g. across the 180 degree meridian) then the first and last vertices may not -// be exactly the same. -func (e *EdgeTessellator) AppendUnprojected(pa, pb r2.Point, vertices []Point) []Point { -	a := e.projection.Unproject(pa) -	b := e.projection.Unproject(pb) - -	if len(vertices) == 0 { -		vertices = []Point{a} -	} - -	// Note that coordinate wrapping can create a small amount of error. For -	// example in the edge chain "0:-175, 0:179, 0:-177", the first edge is -	// transformed into "0:-175, 0:-181" while the second is transformed into -	// "0:179, 0:183". The two coordinate pairs for the middle vertex -	// ("0:-181" and "0:179") may not yield exactly the same S2Point. -	return e.appendUnprojected(pa, a, pb, b, vertices) -} - -// appendUnprojected interpolates a projected edge and appends the corresponding -// points on the sphere. -func (e *EdgeTessellator) appendUnprojected(pa r2.Point, a Point, pbIn r2.Point, b Point, vertices []Point) []Point { -	pb := e.projection.WrapDestination(pa, pbIn) -	if e.estimateMaxError(pa, a, pb, b) <= e.scaledTolerance { -		return append(vertices, b) -	} - -	pmid := e.projection.Interpolate(0.5, pa, pb) -	mid := e.projection.Unproject(pmid) - -	vertices = e.appendUnprojected(pa, a, pmid, mid, vertices) -	return e.appendUnprojected(pmid, mid, pb, b, vertices) -} - -func (e *EdgeTessellator) estimateMaxError(pa r2.Point, a Point, pb r2.Point, b Point) s1.ChordAngle { -	// See the algorithm description at the top of this file. -	// We always tessellate edges longer than 90 degrees on the sphere, since the -	// approximation below is not robust enough to handle such edges. -	if a.Dot(b.Vector) < -1e-14 { -		return s1.InfChordAngle() -	} -	t1 := tessellationInterpolationFraction -	t2 := 1 - tessellationInterpolationFraction -	mid1 := Interpolate(t1, a, b) -	mid2 := Interpolate(t2, a, b) -	pmid1 := e.projection.Unproject(e.projection.Interpolate(t1, pa, pb)) -	pmid2 := e.projection.Unproject(e.projection.Interpolate(t2, pa, pb)) -	return maxChordAngle(ChordAngleBetweenPoints(mid1, pmid1), ChordAngleBetweenPoints(mid2, pmid2)) -} diff --git a/vendor/github.com/golang/geo/s2/encode.go b/vendor/github.com/golang/geo/s2/encode.go deleted file mode 100644 index 00d0adc71..000000000 --- a/vendor/github.com/golang/geo/s2/encode.go +++ /dev/null @@ -1,224 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"encoding/binary" -	"io" -	"math" -) - -const ( -	// encodingVersion is the current version of the encoding -	// format that is compatible with C++ and other S2 libraries. -	encodingVersion = int8(1) - -	// encodingCompressedVersion is the current version of the -	// compressed format. -	encodingCompressedVersion = int8(4) -) - -// encoder handles the specifics of encoding for S2 types. -type encoder struct { -	w   io.Writer // the real writer passed to Encode -	err error -} - -func (e *encoder) writeUvarint(x uint64) { -	if e.err != nil { -		return -	} -	var buf [binary.MaxVarintLen64]byte -	n := binary.PutUvarint(buf[:], x) -	_, e.err = e.w.Write(buf[:n]) -} - -func (e *encoder) writeBool(x bool) { -	if e.err != nil { -		return -	} -	var val int8 -	if x { -		val = 1 -	} -	e.err = binary.Write(e.w, binary.LittleEndian, val) -} - -func (e *encoder) writeInt8(x int8) { -	if e.err != nil { -		return -	} -	e.err = binary.Write(e.w, binary.LittleEndian, x) -} - -func (e *encoder) writeInt16(x int16) { -	if e.err != nil { -		return -	} -	e.err = binary.Write(e.w, binary.LittleEndian, x) -} - -func (e *encoder) writeInt32(x int32) { -	if e.err != nil { -		return -	} -	e.err = binary.Write(e.w, binary.LittleEndian, x) -} - -func (e *encoder) writeInt64(x int64) { -	if e.err != nil { -		return -	} -	e.err = binary.Write(e.w, binary.LittleEndian, x) -} - -func (e *encoder) writeUint8(x uint8) { -	if e.err != nil { -		return -	} -	_, e.err = e.w.Write([]byte{x}) -} - -func (e *encoder) writeUint32(x uint32) { -	if e.err != nil { -		return -	} -	e.err = binary.Write(e.w, binary.LittleEndian, x) -} - -func (e *encoder) writeUint64(x uint64) { -	if e.err != nil { -		return -	} -	e.err = binary.Write(e.w, binary.LittleEndian, x) -} - -func (e *encoder) writeFloat32(x float32) { -	if e.err != nil { -		return -	} -	e.err = binary.Write(e.w, binary.LittleEndian, x) -} - -func (e *encoder) writeFloat64(x float64) { -	if e.err != nil { -		return -	} -	e.err = binary.Write(e.w, binary.LittleEndian, x) -} - -type byteReader interface { -	io.Reader -	io.ByteReader -} - -// byteReaderAdapter embellishes an io.Reader with a ReadByte method, -// so that it implements the io.ByteReader interface. -type byteReaderAdapter struct { -	io.Reader -} - -func (b byteReaderAdapter) ReadByte() (byte, error) { -	buf := []byte{0} -	_, err := io.ReadFull(b, buf) -	return buf[0], err -} - -func asByteReader(r io.Reader) byteReader { -	if br, ok := r.(byteReader); ok { -		return br -	} -	return byteReaderAdapter{r} -} - -type decoder struct { -	r   byteReader // the real reader passed to Decode -	err error -	buf []byte -} - -// Get a buffer of size 8, to avoid allocating over and over. -func (d *decoder) buffer() []byte { -	if d.buf == nil { -		d.buf = make([]byte, 8) -	} -	return d.buf -} - -func (d *decoder) readBool() (x bool) { -	if d.err != nil { -		return -	} -	var val int8 -	d.err = binary.Read(d.r, binary.LittleEndian, &val) -	return val == 1 -} - -func (d *decoder) readInt8() (x int8) { -	if d.err != nil { -		return -	} -	d.err = binary.Read(d.r, binary.LittleEndian, &x) -	return -} - -func (d *decoder) readInt64() (x int64) { -	if d.err != nil { -		return -	} -	d.err = binary.Read(d.r, binary.LittleEndian, &x) -	return -} - -func (d *decoder) readUint8() (x uint8) { -	if d.err != nil { -		return -	} -	x, d.err = d.r.ReadByte() -	return -} - -func (d *decoder) readUint32() (x uint32) { -	if d.err != nil { -		return -	} -	d.err = binary.Read(d.r, binary.LittleEndian, &x) -	return -} - -func (d *decoder) readUint64() (x uint64) { -	if d.err != nil { -		return -	} -	d.err = binary.Read(d.r, binary.LittleEndian, &x) -	return -} - -func (d *decoder) readFloat64() float64 { -	if d.err != nil { -		return 0 -	} -	buf := d.buffer() -	_, d.err = io.ReadFull(d.r, buf) -	return math.Float64frombits(binary.LittleEndian.Uint64(buf)) -} - -func (d *decoder) readUvarint() (x uint64) { -	if d.err != nil { -		return -	} -	x, d.err = binary.ReadUvarint(d.r) -	return -} diff --git a/vendor/github.com/golang/geo/s2/interleave.go b/vendor/github.com/golang/geo/s2/interleave.go deleted file mode 100644 index 6ac6ef58d..000000000 --- a/vendor/github.com/golang/geo/s2/interleave.go +++ /dev/null @@ -1,143 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -/* -The lookup table below can convert a sequence of interleaved 8 bits into -non-interleaved 4 bits. The table can convert both odd and even bits at the -same time, and lut[x & 0x55] converts the even bits (bits 0, 2, 4 and 6), -while lut[x & 0xaa] converts the odd bits (bits 1, 3, 5 and 7). - -The lookup table below was generated using the following python code: - -	def deinterleave(bits): -	  if bits == 0: return 0 -	  if bits < 4: return 1 -	  return deinterleave(bits / 4) * 2 + deinterleave(bits & 3) - -	for i in range(256): print "0x%x," % deinterleave(i), -*/ -var deinterleaveLookup = [256]uint32{ -	0x0, 0x1, 0x1, 0x1, 0x2, 0x3, 0x3, 0x3, -	0x2, 0x3, 0x3, 0x3, 0x2, 0x3, 0x3, 0x3, -	0x4, 0x5, 0x5, 0x5, 0x6, 0x7, 0x7, 0x7, -	0x6, 0x7, 0x7, 0x7, 0x6, 0x7, 0x7, 0x7, -	0x4, 0x5, 0x5, 0x5, 0x6, 0x7, 0x7, 0x7, -	0x6, 0x7, 0x7, 0x7, 0x6, 0x7, 0x7, 0x7, -	0x4, 0x5, 0x5, 0x5, 0x6, 0x7, 0x7, 0x7, -	0x6, 0x7, 0x7, 0x7, 0x6, 0x7, 0x7, 0x7, - -	0x8, 0x9, 0x9, 0x9, 0xa, 0xb, 0xb, 0xb, -	0xa, 0xb, 0xb, 0xb, 0xa, 0xb, 0xb, 0xb, -	0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf, -	0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, -	0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf, -	0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, -	0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf, -	0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, - -	0x8, 0x9, 0x9, 0x9, 0xa, 0xb, 0xb, 0xb, -	0xa, 0xb, 0xb, 0xb, 0xa, 0xb, 0xb, 0xb, -	0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf, -	0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, -	0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf, -	0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, -	0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf, -	0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, - -	0x8, 0x9, 0x9, 0x9, 0xa, 0xb, 0xb, 0xb, -	0xa, 0xb, 0xb, 0xb, 0xa, 0xb, 0xb, 0xb, -	0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf, -	0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, -	0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf, -	0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, -	0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf, -	0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, -} - -// deinterleaveUint32 decodes the interleaved values. -func deinterleaveUint32(code uint64) (uint32, uint32) { -	x := (deinterleaveLookup[code&0x55]) | -		(deinterleaveLookup[(code>>8)&0x55] << 4) | -		(deinterleaveLookup[(code>>16)&0x55] << 8) | -		(deinterleaveLookup[(code>>24)&0x55] << 12) | -		(deinterleaveLookup[(code>>32)&0x55] << 16) | -		(deinterleaveLookup[(code>>40)&0x55] << 20) | -		(deinterleaveLookup[(code>>48)&0x55] << 24) | -		(deinterleaveLookup[(code>>56)&0x55] << 28) -	y := (deinterleaveLookup[code&0xaa]) | -		(deinterleaveLookup[(code>>8)&0xaa] << 4) | -		(deinterleaveLookup[(code>>16)&0xaa] << 8) | -		(deinterleaveLookup[(code>>24)&0xaa] << 12) | -		(deinterleaveLookup[(code>>32)&0xaa] << 16) | -		(deinterleaveLookup[(code>>40)&0xaa] << 20) | -		(deinterleaveLookup[(code>>48)&0xaa] << 24) | -		(deinterleaveLookup[(code>>56)&0xaa] << 28) -	return x, y -} - -var interleaveLookup = [256]uint64{ -	0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015, -	0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055, -	0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115, -	0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155, -	0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415, -	0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455, -	0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515, -	0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555, - -	0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015, -	0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055, -	0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115, -	0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155, -	0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415, -	0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455, -	0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515, -	0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555, - -	0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015, -	0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055, -	0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115, -	0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155, -	0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415, -	0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455, -	0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515, -	0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555, - -	0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015, -	0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055, -	0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115, -	0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155, -	0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415, -	0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455, -	0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515, -	0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555, -} - -// interleaveUint32 interleaves the given arguments into the return value. -// -// The 0-bit in val0 will be the 0-bit in the return value. -// The 0-bit in val1 will be the 1-bit in the return value. -// The 1-bit of val0 will be the 2-bit in the return value, and so on. -func interleaveUint32(x, y uint32) uint64 { -	return (interleaveLookup[x&0xff]) | -		(interleaveLookup[(x>>8)&0xff] << 16) | -		(interleaveLookup[(x>>16)&0xff] << 32) | -		(interleaveLookup[x>>24] << 48) | -		(interleaveLookup[y&0xff] << 1) | -		(interleaveLookup[(y>>8)&0xff] << 17) | -		(interleaveLookup[(y>>16)&0xff] << 33) | -		(interleaveLookup[y>>24] << 49) -} diff --git a/vendor/github.com/golang/geo/s2/latlng.go b/vendor/github.com/golang/geo/s2/latlng.go deleted file mode 100644 index a750304ab..000000000 --- a/vendor/github.com/golang/geo/s2/latlng.go +++ /dev/null @@ -1,101 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" -	"math" - -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -const ( -	northPoleLat = s1.Angle(math.Pi/2) * s1.Radian -	southPoleLat = -northPoleLat -) - -// LatLng represents a point on the unit sphere as a pair of angles. -type LatLng struct { -	Lat, Lng s1.Angle -} - -// LatLngFromDegrees returns a LatLng for the coordinates given in degrees. -func LatLngFromDegrees(lat, lng float64) LatLng { -	return LatLng{s1.Angle(lat) * s1.Degree, s1.Angle(lng) * s1.Degree} -} - -// IsValid returns true iff the LatLng is normalized, with Lat ∈ [-π/2,π/2] and Lng ∈ [-π,π]. -func (ll LatLng) IsValid() bool { -	return math.Abs(ll.Lat.Radians()) <= math.Pi/2 && math.Abs(ll.Lng.Radians()) <= math.Pi -} - -// Normalized returns the normalized version of the LatLng, -// with Lat clamped to [-π/2,π/2] and Lng wrapped in [-π,π]. -func (ll LatLng) Normalized() LatLng { -	lat := ll.Lat -	if lat > northPoleLat { -		lat = northPoleLat -	} else if lat < southPoleLat { -		lat = southPoleLat -	} -	lng := s1.Angle(math.Remainder(ll.Lng.Radians(), 2*math.Pi)) * s1.Radian -	return LatLng{lat, lng} -} - -func (ll LatLng) String() string { return fmt.Sprintf("[%v, %v]", ll.Lat, ll.Lng) } - -// Distance returns the angle between two LatLngs. -func (ll LatLng) Distance(ll2 LatLng) s1.Angle { -	// Haversine formula, as used in C++ S2LatLng::GetDistance. -	lat1, lat2 := ll.Lat.Radians(), ll2.Lat.Radians() -	lng1, lng2 := ll.Lng.Radians(), ll2.Lng.Radians() -	dlat := math.Sin(0.5 * (lat2 - lat1)) -	dlng := math.Sin(0.5 * (lng2 - lng1)) -	x := dlat*dlat + dlng*dlng*math.Cos(lat1)*math.Cos(lat2) -	return s1.Angle(2*math.Atan2(math.Sqrt(x), math.Sqrt(math.Max(0, 1-x)))) * s1.Radian -} - -// NOTE(mikeperrow): The C++ implementation publicly exposes latitude/longitude -// functions. Let's see if that's really necessary before exposing the same functionality. - -func latitude(p Point) s1.Angle { -	return s1.Angle(math.Atan2(p.Z, math.Sqrt(p.X*p.X+p.Y*p.Y))) * s1.Radian -} - -func longitude(p Point) s1.Angle { -	return s1.Angle(math.Atan2(p.Y, p.X)) * s1.Radian -} - -// PointFromLatLng returns an Point for the given LatLng. -// The maximum error in the result is 1.5 * dblEpsilon. (This does not -// include the error of converting degrees, E5, E6, or E7 into radians.) -func PointFromLatLng(ll LatLng) Point { -	phi := ll.Lat.Radians() -	theta := ll.Lng.Radians() -	cosphi := math.Cos(phi) -	return Point{r3.Vector{math.Cos(theta) * cosphi, math.Sin(theta) * cosphi, math.Sin(phi)}} -} - -// LatLngFromPoint returns an LatLng for a given Point. -func LatLngFromPoint(p Point) LatLng { -	return LatLng{latitude(p), longitude(p)} -} - -// ApproxEqual reports whether the latitude and longitude of the two LatLngs -// are the same up to a small tolerance. -func (ll LatLng) ApproxEqual(other LatLng) bool { -	return ll.Lat.ApproxEqual(other.Lat) && ll.Lng.ApproxEqual(other.Lng) -} diff --git a/vendor/github.com/golang/geo/s2/lexicon.go b/vendor/github.com/golang/geo/s2/lexicon.go deleted file mode 100644 index 41cbffdc2..000000000 --- a/vendor/github.com/golang/geo/s2/lexicon.go +++ /dev/null @@ -1,175 +0,0 @@ -// Copyright 2020 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"encoding/binary" -	"hash/adler32" -	"math" -	"sort" -) - -// TODO(roberts): If any of these are worth making public, change the -// method signatures and type names. - -// emptySetID represents the last ID that will ever be generated. -// (Non-negative IDs are reserved for singleton sets.) -var emptySetID = int32(math.MinInt32) - -// idSetLexicon compactly represents a set of non-negative -// integers such as array indices ("ID sets"). It is especially suitable when -// either (1) there are many duplicate sets, or (2) there are many singleton -// or empty sets. See also sequenceLexicon. -// -// Each distinct ID set is mapped to a 32-bit integer. Empty and singleton -// sets take up no additional space; the set itself is represented -// by the unique ID assigned to the set. Duplicate sets are automatically -// eliminated. Note also that ID sets are referred to using 32-bit integers -// rather than pointers. -type idSetLexicon struct { -	idSets *sequenceLexicon -} - -func newIDSetLexicon() *idSetLexicon { -	return &idSetLexicon{ -		idSets: newSequenceLexicon(), -	} -} - -// add adds the given set of integers to the lexicon if it is not already -// present, and return the unique ID for this set. The values are automatically -// sorted and duplicates are removed. -// -// The primary difference between this and sequenceLexicon are: -// 1. Empty and singleton sets are represented implicitly; they use no space. -// 2. Sets are represented rather than sequences; the ordering of values is -//    not important and duplicates are removed. -// 3. The values must be 32-bit non-negative integers only. -func (l *idSetLexicon) add(ids ...int32) int32 { -	// Empty sets have a special ID chosen not to conflict with other IDs. -	if len(ids) == 0 { -		return emptySetID -	} - -	// Singleton sets are represented by their element. -	if len(ids) == 1 { -		return ids[0] -	} - -	// Canonicalize the set by sorting and removing duplicates. -	// -	// Creates a new slice in order to not alter the supplied values. -	set := uniqueInt32s(ids) - -	// Non-singleton sets are represented by the bitwise complement of the ID -	// returned by the sequenceLexicon -	return ^l.idSets.add(set) -} - -// idSet returns the set of integers corresponding to an ID returned by add. -func (l *idSetLexicon) idSet(setID int32) []int32 { -	if setID >= 0 { -		return []int32{setID} -	} -	if setID == emptySetID { -		return []int32{} -	} - -	return l.idSets.sequence(^setID) -} - -func (l *idSetLexicon) clear() { -	l.idSets.clear() -} - -// sequenceLexicon compactly represents a sequence of values (e.g., tuples). -// It automatically eliminates duplicates slices, and maps the remaining -// sequences to sequentially increasing integer IDs. See also idSetLexicon. -// -// Each distinct sequence is mapped to a 32-bit integer. -type sequenceLexicon struct { -	values []int32 -	begins []uint32 - -	// idSet is a mapping of a sequence hash to sequence index in the lexicon. -	idSet map[uint32]int32 -} - -func newSequenceLexicon() *sequenceLexicon { -	return &sequenceLexicon{ -		begins: []uint32{0}, -		idSet:  make(map[uint32]int32), -	} -} - -// clears all data from the lexicon. -func (l *sequenceLexicon) clear() { -	l.values = nil -	l.begins = []uint32{0} -	l.idSet = make(map[uint32]int32) -} - -// add adds the given value to the lexicon if it is not already present, and -// returns its ID. IDs are assigned sequentially starting from zero. -func (l *sequenceLexicon) add(ids []int32) int32 { -	if id, ok := l.idSet[hashSet(ids)]; ok { -		return id -	} -	for _, v := range ids { -		l.values = append(l.values, v) -	} -	l.begins = append(l.begins, uint32(len(l.values))) - -	id := int32(len(l.begins)) - 2 -	l.idSet[hashSet(ids)] = id - -	return id -} - -// sequence returns the original sequence of values for the given ID. -func (l *sequenceLexicon) sequence(id int32) []int32 { -	return l.values[l.begins[id]:l.begins[id+1]] -} - -// size reports the number of value sequences in the lexicon. -func (l *sequenceLexicon) size() int { -	// Subtract one because the list of begins starts out with the first element set to 0. -	return len(l.begins) - 1 -} - -// hash returns a hash of this sequence of int32s. -func hashSet(s []int32) uint32 { -	// TODO(roberts): We just need a way to nicely hash all the values down to -	// a 32-bit value. To ensure no unnecessary dependencies we use the core -	// library types available to do this. Is there a better option? -	a := adler32.New() -	binary.Write(a, binary.LittleEndian, s) -	return a.Sum32() -} - -// uniqueInt32s returns the sorted and uniqued set of int32s from the input. -func uniqueInt32s(in []int32) []int32 { -	var vals []int32 -	m := make(map[int32]bool) -	for _, i := range in { -		if m[i] { -			continue -		} -		m[i] = true -		vals = append(vals, i) -	} -	sort.Slice(vals, func(i, j int) bool { return vals[i] < vals[j] }) -	return vals -} diff --git a/vendor/github.com/golang/geo/s2/loop.go b/vendor/github.com/golang/geo/s2/loop.go deleted file mode 100644 index bfb55ec1d..000000000 --- a/vendor/github.com/golang/geo/s2/loop.go +++ /dev/null @@ -1,1833 +0,0 @@ -// Copyright 2015 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" -	"io" -	"math" - -	"github.com/golang/geo/r1" -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -// Loop represents a simple spherical polygon. It consists of a sequence -// of vertices where the first vertex is implicitly connected to the -// last. All loops are defined to have a CCW orientation, i.e. the interior of -// the loop is on the left side of the edges. This implies that a clockwise -// loop enclosing a small area is interpreted to be a CCW loop enclosing a -// very large area. -// -// Loops are not allowed to have any duplicate vertices (whether adjacent or -// not).  Non-adjacent edges are not allowed to intersect, and furthermore edges -// of length 180 degrees are not allowed (i.e., adjacent vertices cannot be -// antipodal). Loops must have at least 3 vertices (except for the "empty" and -// "full" loops discussed below). -// -// There are two special loops: the "empty" loop contains no points and the -// "full" loop contains all points. These loops do not have any edges, but to -// preserve the invariant that every loop can be represented as a vertex -// chain, they are defined as having exactly one vertex each (see EmptyLoop -// and FullLoop). -type Loop struct { -	vertices []Point - -	// originInside keeps a precomputed value whether this loop contains the origin -	// versus computing from the set of vertices every time. -	originInside bool - -	// depth is the nesting depth of this Loop if it is contained by a Polygon -	// or other shape and is used to determine if this loop represents a hole -	// or a filled in portion. -	depth int - -	// bound is a conservative bound on all points contained by this loop. -	// If l.ContainsPoint(P), then l.bound.ContainsPoint(P). -	bound Rect - -	// Since bound is not exact, it is possible that a loop A contains -	// another loop B whose bounds are slightly larger. subregionBound -	// has been expanded sufficiently to account for this error, i.e. -	// if A.Contains(B), then A.subregionBound.Contains(B.bound). -	subregionBound Rect - -	// index is the spatial index for this Loop. -	index *ShapeIndex -} - -// LoopFromPoints constructs a loop from the given points. -func LoopFromPoints(pts []Point) *Loop { -	l := &Loop{ -		vertices: pts, -		index:    NewShapeIndex(), -	} - -	l.initOriginAndBound() -	return l -} - -// LoopFromCell constructs a loop corresponding to the given cell. -// -// Note that the loop and cell *do not* contain exactly the same set of -// points, because Loop and Cell have slightly different definitions of -// point containment. For example, a Cell vertex is contained by all -// four neighboring Cells, but it is contained by exactly one of four -// Loops constructed from those cells. As another example, the cell -// coverings of cell and LoopFromCell(cell) will be different, because the -// loop contains points on its boundary that actually belong to other cells -// (i.e., the covering will include a layer of neighboring cells). -func LoopFromCell(c Cell) *Loop { -	l := &Loop{ -		vertices: []Point{ -			c.Vertex(0), -			c.Vertex(1), -			c.Vertex(2), -			c.Vertex(3), -		}, -		index: NewShapeIndex(), -	} - -	l.initOriginAndBound() -	return l -} - -// These two points are used for the special Empty and Full loops. -var ( -	emptyLoopPoint = Point{r3.Vector{X: 0, Y: 0, Z: 1}} -	fullLoopPoint  = Point{r3.Vector{X: 0, Y: 0, Z: -1}} -) - -// EmptyLoop returns a special "empty" loop. -func EmptyLoop() *Loop { -	return LoopFromPoints([]Point{emptyLoopPoint}) -} - -// FullLoop returns a special "full" loop. -func FullLoop() *Loop { -	return LoopFromPoints([]Point{fullLoopPoint}) -} - -// initOriginAndBound sets the origin containment for the given point and then calls -// the initialization for the bounds objects and the internal index. -func (l *Loop) initOriginAndBound() { -	if len(l.vertices) < 3 { -		// Check for the special "empty" and "full" loops (which have one vertex). -		if !l.isEmptyOrFull() { -			l.originInside = false -			return -		} - -		// This is the special empty or full loop, so the origin depends on if -		// the vertex is in the southern hemisphere or not. -		l.originInside = l.vertices[0].Z < 0 -	} else { -		// Point containment testing is done by counting edge crossings starting -		// at a fixed point on the sphere (OriginPoint). We need to know whether -		// the reference point (OriginPoint) is inside or outside the loop before -		// we can construct the ShapeIndex. We do this by first guessing that -		// it is outside, and then seeing whether we get the correct containment -		// result for vertex 1. If the result is incorrect, the origin must be -		// inside the loop. -		// -		// A loop with consecutive vertices A,B,C contains vertex B if and only if -		// the fixed vector R = B.Ortho is contained by the wedge ABC. The -		// wedge is closed at A and open at C, i.e. the point B is inside the loop -		// if A = R but not if C = R. This convention is required for compatibility -		// with VertexCrossing. (Note that we can't use OriginPoint -		// as the fixed vector because of the possibility that B == OriginPoint.) -		l.originInside = false -		v1Inside := OrderedCCW(Point{l.vertices[1].Ortho()}, l.vertices[0], l.vertices[2], l.vertices[1]) -		if v1Inside != l.ContainsPoint(l.vertices[1]) { -			l.originInside = true -		} -	} - -	// We *must* call initBound before initializing the index, because -	// initBound calls ContainsPoint which does a bounds check before using -	// the index. -	l.initBound() - -	// Create a new index and add us to it. -	l.index = NewShapeIndex() -	l.index.Add(l) -} - -// initBound sets up the approximate bounding Rects for this loop. -func (l *Loop) initBound() { -	if len(l.vertices) == 0 { -		*l = *EmptyLoop() -		return -	} -	// Check for the special "empty" and "full" loops. -	if l.isEmptyOrFull() { -		if l.IsEmpty() { -			l.bound = EmptyRect() -		} else { -			l.bound = FullRect() -		} -		l.subregionBound = l.bound -		return -	} - -	// The bounding rectangle of a loop is not necessarily the same as the -	// bounding rectangle of its vertices. First, the maximal latitude may be -	// attained along the interior of an edge. Second, the loop may wrap -	// entirely around the sphere (e.g. a loop that defines two revolutions of a -	// candy-cane stripe). Third, the loop may include one or both poles. -	// Note that a small clockwise loop near the equator contains both poles. -	bounder := NewRectBounder() -	for i := 0; i <= len(l.vertices); i++ { // add vertex 0 twice -		bounder.AddPoint(l.Vertex(i)) -	} -	b := bounder.RectBound() - -	if l.ContainsPoint(Point{r3.Vector{0, 0, 1}}) { -		b = Rect{r1.Interval{b.Lat.Lo, math.Pi / 2}, s1.FullInterval()} -	} -	// If a loop contains the south pole, then either it wraps entirely -	// around the sphere (full longitude range), or it also contains the -	// north pole in which case b.Lng.IsFull() due to the test above. -	// Either way, we only need to do the south pole containment test if -	// b.Lng.IsFull(). -	if b.Lng.IsFull() && l.ContainsPoint(Point{r3.Vector{0, 0, -1}}) { -		b.Lat.Lo = -math.Pi / 2 -	} -	l.bound = b -	l.subregionBound = ExpandForSubregions(l.bound) -} - -// Validate checks whether this is a valid loop. -func (l *Loop) Validate() error { -	if err := l.findValidationErrorNoIndex(); err != nil { -		return err -	} - -	// Check for intersections between non-adjacent edges (including at vertices) -	// TODO(roberts): Once shapeutil gets findAnyCrossing uncomment this. -	// return findAnyCrossing(l.index) - -	return nil -} - -// findValidationErrorNoIndex reports whether this is not a valid loop, but -// skips checks that would require a ShapeIndex to be built for the loop. This -// is primarily used by Polygon to do validation so it doesn't trigger the -// creation of unneeded ShapeIndices. -func (l *Loop) findValidationErrorNoIndex() error { -	// All vertices must be unit length. -	for i, v := range l.vertices { -		if !v.IsUnit() { -			return fmt.Errorf("vertex %d is not unit length", i) -		} -	} - -	// Loops must have at least 3 vertices (except for empty and full). -	if len(l.vertices) < 3 { -		if l.isEmptyOrFull() { -			return nil // Skip remaining tests. -		} -		return fmt.Errorf("non-empty, non-full loops must have at least 3 vertices") -	} - -	// Loops are not allowed to have any duplicate vertices or edge crossings. -	// We split this check into two parts. First we check that no edge is -	// degenerate (identical endpoints). Then we check that there are no -	// intersections between non-adjacent edges (including at vertices). The -	// second check needs the ShapeIndex, so it does not fall within the scope -	// of this method. -	for i, v := range l.vertices { -		if v == l.Vertex(i+1) { -			return fmt.Errorf("edge %d is degenerate (duplicate vertex)", i) -		} - -		// Antipodal vertices are not allowed. -		if other := (Point{l.Vertex(i + 1).Mul(-1)}); v == other { -			return fmt.Errorf("vertices %d and %d are antipodal", i, -				(i+1)%len(l.vertices)) -		} -	} - -	return nil -} - -// Contains reports whether the region contained by this loop is a superset of the -// region contained by the given other loop. -func (l *Loop) Contains(o *Loop) bool { -	// For a loop A to contain the loop B, all of the following must -	// be true: -	// -	//  (1) There are no edge crossings between A and B except at vertices. -	// -	//  (2) At every vertex that is shared between A and B, the local edge -	//      ordering implies that A contains B. -	// -	//  (3) If there are no shared vertices, then A must contain a vertex of B -	//      and B must not contain a vertex of A. (An arbitrary vertex may be -	//      chosen in each case.) -	// -	// The second part of (3) is necessary to detect the case of two loops whose -	// union is the entire sphere, i.e. two loops that contains each other's -	// boundaries but not each other's interiors. -	if !l.subregionBound.Contains(o.bound) { -		return false -	} - -	// Special cases to handle either loop being empty or full. -	if l.isEmptyOrFull() || o.isEmptyOrFull() { -		return l.IsFull() || o.IsEmpty() -	} - -	// Check whether there are any edge crossings, and also check the loop -	// relationship at any shared vertices. -	relation := &containsRelation{} -	if hasCrossingRelation(l, o, relation) { -		return false -	} - -	// There are no crossings, and if there are any shared vertices then A -	// contains B locally at each shared vertex. -	if relation.foundSharedVertex { -		return true -	} - -	// Since there are no edge intersections or shared vertices, we just need to -	// test condition (3) above. We can skip this test if we discovered that A -	// contains at least one point of B while checking for edge crossings. -	if !l.ContainsPoint(o.Vertex(0)) { -		return false -	} - -	// We still need to check whether (A union B) is the entire sphere. -	// Normally this check is very cheap due to the bounding box precondition. -	if (o.subregionBound.Contains(l.bound) || o.bound.Union(l.bound).IsFull()) && -		o.ContainsPoint(l.Vertex(0)) { -		return false -	} -	return true -} - -// Intersects reports whether the region contained by this loop intersects the region -// contained by the other loop. -func (l *Loop) Intersects(o *Loop) bool { -	// Given two loops, A and B, A.Intersects(B) if and only if !A.Complement().Contains(B). -	// -	// This code is similar to Contains, but is optimized for the case -	// where both loops enclose less than half of the sphere. -	if !l.bound.Intersects(o.bound) { -		return false -	} - -	// Check whether there are any edge crossings, and also check the loop -	// relationship at any shared vertices. -	relation := &intersectsRelation{} -	if hasCrossingRelation(l, o, relation) { -		return true -	} -	if relation.foundSharedVertex { -		return false -	} - -	// Since there are no edge intersections or shared vertices, the loops -	// intersect only if A contains B, B contains A, or the two loops contain -	// each other's boundaries.  These checks are usually cheap because of the -	// bounding box preconditions.  Note that neither loop is empty (because of -	// the bounding box check above), so it is safe to access vertex(0). - -	// Check whether A contains B, or A and B contain each other's boundaries. -	// (Note that A contains all the vertices of B in either case.) -	if l.subregionBound.Contains(o.bound) || l.bound.Union(o.bound).IsFull() { -		if l.ContainsPoint(o.Vertex(0)) { -			return true -		} -	} -	// Check whether B contains A. -	if o.subregionBound.Contains(l.bound) { -		if o.ContainsPoint(l.Vertex(0)) { -			return true -		} -	} -	return false -} - -// Equal reports whether two loops have the same vertices in the same linear order -// (i.e., cyclic rotations are not allowed). -func (l *Loop) Equal(other *Loop) bool { -	if len(l.vertices) != len(other.vertices) { -		return false -	} - -	for i, v := range l.vertices { -		if v != other.Vertex(i) { -			return false -		} -	} -	return true -} - -// BoundaryEqual reports whether the two loops have the same boundary. This is -// true if and only if the loops have the same vertices in the same cyclic order -// (i.e., the vertices may be cyclically rotated). The empty and full loops are -// considered to have different boundaries. -func (l *Loop) BoundaryEqual(o *Loop) bool { -	if len(l.vertices) != len(o.vertices) { -		return false -	} - -	// Special case to handle empty or full loops.  Since they have the same -	// number of vertices, if one loop is empty/full then so is the other. -	if l.isEmptyOrFull() { -		return l.IsEmpty() == o.IsEmpty() -	} - -	// Loop through the vertices to find the first of ours that matches the -	// starting vertex of the other loop. Use that offset to then 'align' the -	// vertices for comparison. -	for offset, vertex := range l.vertices { -		if vertex == o.Vertex(0) { -			// There is at most one starting offset since loop vertices are unique. -			for i := 0; i < len(l.vertices); i++ { -				if l.Vertex(i+offset) != o.Vertex(i) { -					return false -				} -			} -			return true -		} -	} -	return false -} - -// compareBoundary returns +1 if this loop contains the boundary of the other loop, -// -1 if it excludes the boundary of the other, and 0 if the boundaries of the two -// loops cross. Shared edges are handled as follows: -// -//   If XY is a shared edge, define Reversed(XY) to be true if XY -//     appears in opposite directions in both loops. -//   Then this loop contains XY if and only if Reversed(XY) == the other loop is a hole. -//   (Intuitively, this checks whether this loop contains a vanishingly small region -//   extending from the boundary of the other toward the interior of the polygon to -//   which the other belongs.) -// -// This function is used for testing containment and intersection of -// multi-loop polygons. Note that this method is not symmetric, since the -// result depends on the direction of this loop but not on the direction of -// the other loop (in the absence of shared edges). -// -// This requires that neither loop is empty, and if other loop IsFull, then it must not -// be a hole. -func (l *Loop) compareBoundary(o *Loop) int { -	// The bounds must intersect for containment or crossing. -	if !l.bound.Intersects(o.bound) { -		return -1 -	} - -	// Full loops are handled as though the loop surrounded the entire sphere. -	if l.IsFull() { -		return 1 -	} -	if o.IsFull() { -		return -1 -	} - -	// Check whether there are any edge crossings, and also check the loop -	// relationship at any shared vertices. -	relation := newCompareBoundaryRelation(o.IsHole()) -	if hasCrossingRelation(l, o, relation) { -		return 0 -	} -	if relation.foundSharedVertex { -		if relation.containsEdge { -			return 1 -		} -		return -1 -	} - -	// There are no edge intersections or shared vertices, so we can check -	// whether A contains an arbitrary vertex of B. -	if l.ContainsPoint(o.Vertex(0)) { -		return 1 -	} -	return -1 -} - -// ContainsOrigin reports true if this loop contains s2.OriginPoint(). -func (l *Loop) ContainsOrigin() bool { -	return l.originInside -} - -// ReferencePoint returns the reference point for this loop. -func (l *Loop) ReferencePoint() ReferencePoint { -	return OriginReferencePoint(l.originInside) -} - -// NumEdges returns the number of edges in this shape. -func (l *Loop) NumEdges() int { -	if l.isEmptyOrFull() { -		return 0 -	} -	return len(l.vertices) -} - -// Edge returns the endpoints for the given edge index. -func (l *Loop) Edge(i int) Edge { -	return Edge{l.Vertex(i), l.Vertex(i + 1)} -} - -// NumChains reports the number of contiguous edge chains in the Loop. -func (l *Loop) NumChains() int { -	if l.IsEmpty() { -		return 0 -	} -	return 1 -} - -// Chain returns the i-th edge chain in the Shape. -func (l *Loop) Chain(chainID int) Chain { -	return Chain{0, l.NumEdges()} -} - -// ChainEdge returns the j-th edge of the i-th edge chain. -func (l *Loop) ChainEdge(chainID, offset int) Edge { -	return Edge{l.Vertex(offset), l.Vertex(offset + 1)} -} - -// ChainPosition returns a ChainPosition pair (i, j) such that edgeID is the -// j-th edge of the Loop. -func (l *Loop) ChainPosition(edgeID int) ChainPosition { -	return ChainPosition{0, edgeID} -} - -// Dimension returns the dimension of the geometry represented by this Loop. -func (l *Loop) Dimension() int { return 2 } - -func (l *Loop) typeTag() typeTag { return typeTagNone } - -func (l *Loop) privateInterface() {} - -// IsEmpty reports true if this is the special empty loop that contains no points. -func (l *Loop) IsEmpty() bool { -	return l.isEmptyOrFull() && !l.ContainsOrigin() -} - -// IsFull reports true if this is the special full loop that contains all points. -func (l *Loop) IsFull() bool { -	return l.isEmptyOrFull() && l.ContainsOrigin() -} - -// isEmptyOrFull reports true if this loop is either the "empty" or "full" special loops. -func (l *Loop) isEmptyOrFull() bool { -	return len(l.vertices) == 1 -} - -// Vertices returns the vertices in the loop. -func (l *Loop) Vertices() []Point { -	return l.vertices -} - -// RectBound returns a tight bounding rectangle. If the loop contains the point, -// the bound also contains it. -func (l *Loop) RectBound() Rect { -	return l.bound -} - -// CapBound returns a bounding cap that may have more padding than the corresponding -// RectBound. The bound is conservative such that if the loop contains a point P, -// the bound also contains it. -func (l *Loop) CapBound() Cap { -	return l.bound.CapBound() -} - -// Vertex returns the vertex for the given index. For convenience, the vertex indices -// wrap automatically for methods that do index math such as Edge. -// i.e., Vertex(NumEdges() + n) is the same as Vertex(n). -func (l *Loop) Vertex(i int) Point { -	return l.vertices[i%len(l.vertices)] -} - -// OrientedVertex returns the vertex in reverse order if the loop represents a polygon -// hole. For example, arguments 0, 1, 2 are mapped to vertices n-1, n-2, n-3, where -// n == len(vertices). This ensures that the interior of the polygon is always to -// the left of the vertex chain. -// -// This requires: 0 <= i < 2 * len(vertices) -func (l *Loop) OrientedVertex(i int) Point { -	j := i - len(l.vertices) -	if j < 0 { -		j = i -	} -	if l.IsHole() { -		j = len(l.vertices) - 1 - j -	} -	return l.Vertex(j) -} - -// NumVertices returns the number of vertices in this loop. -func (l *Loop) NumVertices() int { -	return len(l.vertices) -} - -// bruteForceContainsPoint reports if the given point is contained by this loop. -// This method does not use the ShapeIndex, so it is only preferable below a certain -// size of loop. -func (l *Loop) bruteForceContainsPoint(p Point) bool { -	origin := OriginPoint() -	inside := l.originInside -	crosser := NewChainEdgeCrosser(origin, p, l.Vertex(0)) -	for i := 1; i <= len(l.vertices); i++ { // add vertex 0 twice -		inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(i)) -	} -	return inside -} - -// ContainsPoint returns true if the loop contains the point. -func (l *Loop) ContainsPoint(p Point) bool { -	if !l.index.IsFresh() && !l.bound.ContainsPoint(p) { -		return false -	} - -	// For small loops it is faster to just check all the crossings.  We also -	// use this method during loop initialization because InitOriginAndBound() -	// calls Contains() before InitIndex().  Otherwise, we keep track of the -	// number of calls to Contains() and only build the index when enough calls -	// have been made so that we think it is worth the effort.  Note that the -	// code below is structured so that if many calls are made in parallel only -	// one thread builds the index, while the rest continue using brute force -	// until the index is actually available. - -	const maxBruteForceVertices = 32 -	// TODO(roberts): add unindexed contains calls tracking - -	if len(l.index.shapes) == 0 || // Index has not been initialized yet. -		len(l.vertices) <= maxBruteForceVertices { -		return l.bruteForceContainsPoint(p) -	} - -	// Otherwise, look up the point in the index. -	it := l.index.Iterator() -	if !it.LocatePoint(p) { -		return false -	} -	return l.iteratorContainsPoint(it, p) -} - -// ContainsCell reports whether the given Cell is contained by this Loop. -func (l *Loop) ContainsCell(target Cell) bool { -	it := l.index.Iterator() -	relation := it.LocateCellID(target.ID()) - -	// If "target" is disjoint from all index cells, it is not contained. -	// Similarly, if "target" is subdivided into one or more index cells then it -	// is not contained, since index cells are subdivided only if they (nearly) -	// intersect a sufficient number of edges.  (But note that if "target" itself -	// is an index cell then it may be contained, since it could be a cell with -	// no edges in the loop interior.) -	if relation != Indexed { -		return false -	} - -	// Otherwise check if any edges intersect "target". -	if l.boundaryApproxIntersects(it, target) { -		return false -	} - -	// Otherwise check if the loop contains the center of "target". -	return l.iteratorContainsPoint(it, target.Center()) -} - -// IntersectsCell reports whether this Loop intersects the given cell. -func (l *Loop) IntersectsCell(target Cell) bool { -	it := l.index.Iterator() -	relation := it.LocateCellID(target.ID()) - -	// If target does not overlap any index cell, there is no intersection. -	if relation == Disjoint { -		return false -	} -	// If target is subdivided into one or more index cells, there is an -	// intersection to within the ShapeIndex error bound (see Contains). -	if relation == Subdivided { -		return true -	} -	// If target is an index cell, there is an intersection because index cells -	// are created only if they have at least one edge or they are entirely -	// contained by the loop. -	if it.CellID() == target.id { -		return true -	} -	// Otherwise check if any edges intersect target. -	if l.boundaryApproxIntersects(it, target) { -		return true -	} -	// Otherwise check if the loop contains the center of target. -	return l.iteratorContainsPoint(it, target.Center()) -} - -// CellUnionBound computes a covering of the Loop. -func (l *Loop) CellUnionBound() []CellID { -	return l.CapBound().CellUnionBound() -} - -// boundaryApproxIntersects reports if the loop's boundary intersects target. -// It may also return true when the loop boundary does not intersect target but -// some edge comes within the worst-case error tolerance. -// -// This requires that it.Locate(target) returned Indexed. -func (l *Loop) boundaryApproxIntersects(it *ShapeIndexIterator, target Cell) bool { -	aClipped := it.IndexCell().findByShapeID(0) - -	// If there are no edges, there is no intersection. -	if len(aClipped.edges) == 0 { -		return false -	} - -	// We can save some work if target is the index cell itself. -	if it.CellID() == target.ID() { -		return true -	} - -	// Otherwise check whether any of the edges intersect target. -	maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist) -	bound := target.BoundUV().ExpandedByMargin(maxError) -	for _, ai := range aClipped.edges { -		v0, v1, ok := ClipToPaddedFace(l.Vertex(ai), l.Vertex(ai+1), target.Face(), maxError) -		if ok && edgeIntersectsRect(v0, v1, bound) { -			return true -		} -	} -	return false -} - -// iteratorContainsPoint reports if the iterator that is positioned at the ShapeIndexCell -// that may contain p, contains the point p. -func (l *Loop) iteratorContainsPoint(it *ShapeIndexIterator, p Point) bool { -	// Test containment by drawing a line segment from the cell center to the -	// given point and counting edge crossings. -	aClipped := it.IndexCell().findByShapeID(0) -	inside := aClipped.containsCenter -	if len(aClipped.edges) > 0 { -		center := it.Center() -		crosser := NewEdgeCrosser(center, p) -		aiPrev := -2 -		for _, ai := range aClipped.edges { -			if ai != aiPrev+1 { -				crosser.RestartAt(l.Vertex(ai)) -			} -			aiPrev = ai -			inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(ai+1)) -		} -	} -	return inside -} - -// RegularLoop creates a loop with the given number of vertices, all -// located on a circle of the specified radius around the given center. -func RegularLoop(center Point, radius s1.Angle, numVertices int) *Loop { -	return RegularLoopForFrame(getFrame(center), radius, numVertices) -} - -// RegularLoopForFrame creates a loop centered around the z-axis of the given -// coordinate frame, with the first vertex in the direction of the positive x-axis. -func RegularLoopForFrame(frame matrix3x3, radius s1.Angle, numVertices int) *Loop { -	return LoopFromPoints(regularPointsForFrame(frame, radius, numVertices)) -} - -// CanonicalFirstVertex returns a first index and a direction (either +1 or -1) -// such that the vertex sequence (first, first+dir, ..., first+(n-1)*dir) does -// not change when the loop vertex order is rotated or inverted. This allows the -// loop vertices to be traversed in a canonical order. The return values are -// chosen such that (first, ..., first+n*dir) are in the range [0, 2*n-1] as -// expected by the Vertex method. -func (l *Loop) CanonicalFirstVertex() (firstIdx, direction int) { -	firstIdx = 0 -	n := len(l.vertices) -	for i := 1; i < n; i++ { -		if l.Vertex(i).Cmp(l.Vertex(firstIdx).Vector) == -1 { -			firstIdx = i -		} -	} - -	// 0 <= firstIdx <= n-1, so (firstIdx+n*dir) <= 2*n-1. -	if l.Vertex(firstIdx+1).Cmp(l.Vertex(firstIdx+n-1).Vector) == -1 { -		return firstIdx, 1 -	} - -	// n <= firstIdx <= 2*n-1, so (firstIdx+n*dir) >= 0. -	firstIdx += n -	return firstIdx, -1 -} - -// TurningAngle returns the sum of the turning angles at each vertex. The return -// value is positive if the loop is counter-clockwise, negative if the loop is -// clockwise, and zero if the loop is a great circle. Degenerate and -// nearly-degenerate loops are handled consistently with Sign. So for example, -// if a loop has zero area (i.e., it is a very small CCW loop) then the turning -// angle will always be negative. -// -// This quantity is also called the "geodesic curvature" of the loop. -func (l *Loop) TurningAngle() float64 { -	// For empty and full loops, we return the limit value as the loop area -	// approaches 0 or 4*Pi respectively. -	if l.isEmptyOrFull() { -		if l.ContainsOrigin() { -			return -2 * math.Pi -		} -		return 2 * math.Pi -	} - -	// Don't crash even if the loop is not well-defined. -	if len(l.vertices) < 3 { -		return 0 -	} - -	// To ensure that we get the same result when the vertex order is rotated, -	// and that the result is negated when the vertex order is reversed, we need -	// to add up the individual turn angles in a consistent order. (In general, -	// adding up a set of numbers in a different order can change the sum due to -	// rounding errors.) -	// -	// Furthermore, if we just accumulate an ordinary sum then the worst-case -	// error is quadratic in the number of vertices. (This can happen with -	// spiral shapes, where the partial sum of the turning angles can be linear -	// in the number of vertices.) To avoid this we use the Kahan summation -	// algorithm (http://en.wikipedia.org/wiki/Kahan_summation_algorithm). -	n := len(l.vertices) -	i, dir := l.CanonicalFirstVertex() -	sum := TurnAngle(l.Vertex((i+n-dir)%n), l.Vertex(i), l.Vertex((i+dir)%n)) - -	compensation := s1.Angle(0) -	for n-1 > 0 { -		i += dir -		angle := TurnAngle(l.Vertex(i-dir), l.Vertex(i), l.Vertex(i+dir)) -		oldSum := sum -		angle += compensation -		sum += angle -		compensation = (oldSum - sum) + angle -		n-- -	} - -	const maxCurvature = 2*math.Pi - 4*dblEpsilon - -	return math.Max(-maxCurvature, math.Min(maxCurvature, float64(dir)*float64(sum+compensation))) -} - -// turningAngleMaxError return the maximum error in TurningAngle. The value is not -// constant; it depends on the loop. -func (l *Loop) turningAngleMaxError() float64 { -	// The maximum error can be bounded as follows: -	//   3.00 * dblEpsilon    for RobustCrossProd(b, a) -	//   3.00 * dblEpsilon    for RobustCrossProd(c, b) -	//   3.25 * dblEpsilon    for Angle() -	//   2.00 * dblEpsilon    for each addition in the Kahan summation -	//   ------------------ -	//  11.25 * dblEpsilon -	maxErrorPerVertex := 11.25 * dblEpsilon -	return maxErrorPerVertex * float64(len(l.vertices)) -} - -// IsHole reports whether this loop represents a hole in its containing polygon. -func (l *Loop) IsHole() bool { return l.depth&1 != 0 } - -// Sign returns -1 if this Loop represents a hole in its containing polygon, and +1 otherwise. -func (l *Loop) Sign() int { -	if l.IsHole() { -		return -1 -	} -	return 1 -} - -// IsNormalized reports whether the loop area is at most 2*pi. Degenerate loops are -// handled consistently with Sign, i.e., if a loop can be -// expressed as the union of degenerate or nearly-degenerate CCW triangles, -// then it will always be considered normalized. -func (l *Loop) IsNormalized() bool { -	// Optimization: if the longitude span is less than 180 degrees, then the -	// loop covers less than half the sphere and is therefore normalized. -	if l.bound.Lng.Length() < math.Pi { -		return true -	} - -	// We allow some error so that hemispheres are always considered normalized. -	// TODO(roberts): This is no longer required by the Polygon implementation, -	// so alternatively we could create the invariant that a loop is normalized -	// if and only if its complement is not normalized. -	return l.TurningAngle() >= -l.turningAngleMaxError() -} - -// Normalize inverts the loop if necessary so that the area enclosed by the loop -// is at most 2*pi. -func (l *Loop) Normalize() { -	if !l.IsNormalized() { -		l.Invert() -	} -} - -// Invert reverses the order of the loop vertices, effectively complementing the -// region represented by the loop. For example, the loop ABCD (with edges -// AB, BC, CD, DA) becomes the loop DCBA (with edges DC, CB, BA, AD). -// Notice that the last edge is the same in both cases except that its -// direction has been reversed. -func (l *Loop) Invert() { -	l.index.Reset() -	if l.isEmptyOrFull() { -		if l.IsFull() { -			l.vertices[0] = emptyLoopPoint -		} else { -			l.vertices[0] = fullLoopPoint -		} -	} else { -		// For non-special loops, reverse the slice of vertices. -		for i := len(l.vertices)/2 - 1; i >= 0; i-- { -			opp := len(l.vertices) - 1 - i -			l.vertices[i], l.vertices[opp] = l.vertices[opp], l.vertices[i] -		} -	} - -	// originInside must be set correctly before building the ShapeIndex. -	l.originInside = !l.originInside -	if l.bound.Lat.Lo > -math.Pi/2 && l.bound.Lat.Hi < math.Pi/2 { -		// The complement of this loop contains both poles. -		l.bound = FullRect() -		l.subregionBound = l.bound -	} else { -		l.initBound() -	} -	l.index.Add(l) -} - -// findVertex returns the index of the vertex at the given Point in the range -// 1..numVertices, and a boolean indicating if a vertex was found. -func (l *Loop) findVertex(p Point) (index int, ok bool) { -	const notFound = 0 -	if len(l.vertices) < 10 { -		// Exhaustive search for loops below a small threshold. -		for i := 1; i <= len(l.vertices); i++ { -			if l.Vertex(i) == p { -				return i, true -			} -		} -		return notFound, false -	} - -	it := l.index.Iterator() -	if !it.LocatePoint(p) { -		return notFound, false -	} - -	aClipped := it.IndexCell().findByShapeID(0) -	for i := aClipped.numEdges() - 1; i >= 0; i-- { -		ai := aClipped.edges[i] -		if l.Vertex(ai) == p { -			if ai == 0 { -				return len(l.vertices), true -			} -			return ai, true -		} - -		if l.Vertex(ai+1) == p { -			return ai + 1, true -		} -	} -	return notFound, false -} - -// ContainsNested reports whether the given loops is contained within this loop. -// This function does not test for edge intersections. The two loops must meet -// all of the Polygon requirements; for example this implies that their -// boundaries may not cross or have any shared edges (although they may have -// shared vertices). -func (l *Loop) ContainsNested(other *Loop) bool { -	if !l.subregionBound.Contains(other.bound) { -		return false -	} - -	// Special cases to handle either loop being empty or full.  Also bail out -	// when B has no vertices to avoid heap overflow on the vertex(1) call -	// below.  (This method is called during polygon initialization before the -	// client has an opportunity to call IsValid().) -	if l.isEmptyOrFull() || other.NumVertices() < 2 { -		return l.IsFull() || other.IsEmpty() -	} - -	// We are given that A and B do not share any edges, and that either one -	// loop contains the other or they do not intersect. -	m, ok := l.findVertex(other.Vertex(1)) -	if !ok { -		// Since other.vertex(1) is not shared, we can check whether A contains it. -		return l.ContainsPoint(other.Vertex(1)) -	} - -	// Check whether the edge order around other.Vertex(1) is compatible with -	// A containing B. -	return WedgeContains(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1), other.Vertex(0), other.Vertex(2)) -} - -// surfaceIntegralFloat64 computes the oriented surface integral of some quantity f(x) -// over the loop interior, given a function f(A,B,C) that returns the -// corresponding integral over the spherical triangle ABC. Here "oriented -// surface integral" means: -// -// (1) f(A,B,C) must be the integral of f if ABC is counterclockwise, -//     and the integral of -f if ABC is clockwise. -// -// (2) The result of this function is *either* the integral of f over the -//     loop interior, or the integral of (-f) over the loop exterior. -// -// Note that there are at least two common situations where it easy to work -// around property (2) above: -// -//  - If the integral of f over the entire sphere is zero, then it doesn't -//    matter which case is returned because they are always equal. -// -//  - If f is non-negative, then it is easy to detect when the integral over -//    the loop exterior has been returned, and the integral over the loop -//    interior can be obtained by adding the integral of f over the entire -//    unit sphere (a constant) to the result. -// -// Any changes to this method may need corresponding changes to surfaceIntegralPoint as well. -func (l *Loop) surfaceIntegralFloat64(f func(a, b, c Point) float64) float64 { -	// We sum f over a collection T of oriented triangles, possibly -	// overlapping. Let the sign of a triangle be +1 if it is CCW and -1 -	// otherwise, and let the sign of a point x be the sum of the signs of the -	// triangles containing x. Then the collection of triangles T is chosen -	// such that either: -	// -	//  (1) Each point in the loop interior has sign +1, and sign 0 otherwise; or -	//  (2) Each point in the loop exterior has sign -1, and sign 0 otherwise. -	// -	// The triangles basically consist of a fan from vertex 0 to every loop -	// edge that does not include vertex 0. These triangles will always satisfy -	// either (1) or (2). However, what makes this a bit tricky is that -	// spherical edges become numerically unstable as their length approaches -	// 180 degrees. Of course there is not much we can do if the loop itself -	// contains such edges, but we would like to make sure that all the triangle -	// edges under our control (i.e., the non-loop edges) are stable. For -	// example, consider a loop around the equator consisting of four equally -	// spaced points. This is a well-defined loop, but we cannot just split it -	// into two triangles by connecting vertex 0 to vertex 2. -	// -	// We handle this type of situation by moving the origin of the triangle fan -	// whenever we are about to create an unstable edge. We choose a new -	// location for the origin such that all relevant edges are stable. We also -	// create extra triangles with the appropriate orientation so that the sum -	// of the triangle signs is still correct at every point. - -	// The maximum length of an edge for it to be considered numerically stable. -	// The exact value is fairly arbitrary since it depends on the stability of -	// the function f. The value below is quite conservative but could be -	// reduced further if desired. -	const maxLength = math.Pi - 1e-5 - -	var sum float64 -	origin := l.Vertex(0) -	for i := 1; i+1 < len(l.vertices); i++ { -		// Let V_i be vertex(i), let O be the current origin, and let length(A,B) -		// be the length of edge (A,B). At the start of each loop iteration, the -		// "leading edge" of the triangle fan is (O,V_i), and we want to extend -		// the triangle fan so that the leading edge is (O,V_i+1). -		// -		// Invariants: -		//  1. length(O,V_i) < maxLength for all (i > 1). -		//  2. Either O == V_0, or O is approximately perpendicular to V_0. -		//  3. "sum" is the oriented integral of f over the area defined by -		//     (O, V_0, V_1, ..., V_i). -		if l.Vertex(i+1).Angle(origin.Vector) > maxLength { -			// We are about to create an unstable edge, so choose a new origin O' -			// for the triangle fan. -			oldOrigin := origin -			if origin == l.Vertex(0) { -				// The following point is well-separated from V_i and V_0 (and -				// therefore V_i+1 as well). -				origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()} -			} else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength { -				// All edges of the triangle (O, V_0, V_i) are stable, so we can -				// revert to using V_0 as the origin. -				origin = l.Vertex(0) -			} else { -				// (O, V_i+1) and (V_0, V_i) are antipodal pairs, and O and V_0 are -				// perpendicular. Therefore V_0.CrossProd(O) is approximately -				// perpendicular to all of {O, V_0, V_i, V_i+1}, and we can choose -				// this point O' as the new origin. -				origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)} - -				// Advance the edge (V_0,O) to (V_0,O'). -				sum += f(l.Vertex(0), oldOrigin, origin) -			} -			// Advance the edge (O,V_i) to (O',V_i). -			sum += f(oldOrigin, l.Vertex(i), origin) -		} -		// Advance the edge (O,V_i) to (O,V_i+1). -		sum += f(origin, l.Vertex(i), l.Vertex(i+1)) -	} -	// If the origin is not V_0, we need to sum one more triangle. -	if origin != l.Vertex(0) { -		// Advance the edge (O,V_n-1) to (O,V_0). -		sum += f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0)) -	} -	return sum -} - -// surfaceIntegralPoint mirrors the surfaceIntegralFloat64 method but over Points; -// see that method for commentary. The C++ version uses a templated method. -// Any changes to this method may need corresponding changes to surfaceIntegralFloat64 as well. -func (l *Loop) surfaceIntegralPoint(f func(a, b, c Point) Point) Point { -	const maxLength = math.Pi - 1e-5 -	var sum r3.Vector - -	origin := l.Vertex(0) -	for i := 1; i+1 < len(l.vertices); i++ { -		if l.Vertex(i+1).Angle(origin.Vector) > maxLength { -			oldOrigin := origin -			if origin == l.Vertex(0) { -				origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()} -			} else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength { -				origin = l.Vertex(0) -			} else { -				origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)} -				sum = sum.Add(f(l.Vertex(0), oldOrigin, origin).Vector) -			} -			sum = sum.Add(f(oldOrigin, l.Vertex(i), origin).Vector) -		} -		sum = sum.Add(f(origin, l.Vertex(i), l.Vertex(i+1)).Vector) -	} -	if origin != l.Vertex(0) { -		sum = sum.Add(f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0)).Vector) -	} -	return Point{sum} -} - -// Area returns the area of the loop interior, i.e. the region on the left side of -// the loop. The return value is between 0 and 4*pi. (Note that the return -// value is not affected by whether this loop is a "hole" or a "shell".) -func (l *Loop) Area() float64 { -	// It is surprisingly difficult to compute the area of a loop robustly. The -	// main issues are (1) whether degenerate loops are considered to be CCW or -	// not (i.e., whether their area is close to 0 or 4*pi), and (2) computing -	// the areas of small loops with good relative accuracy. -	// -	// With respect to degeneracies, we would like Area to be consistent -	// with ContainsPoint in that loops that contain many points -	// should have large areas, and loops that contain few points should have -	// small areas. For example, if a degenerate triangle is considered CCW -	// according to s2predicates Sign, then it will contain very few points and -	// its area should be approximately zero. On the other hand if it is -	// considered clockwise, then it will contain virtually all points and so -	// its area should be approximately 4*pi. -	// -	// More precisely, let U be the set of Points for which IsUnitLength -	// is true, let P(U) be the projection of those points onto the mathematical -	// unit sphere, and let V(P(U)) be the Voronoi diagram of the projected -	// points. Then for every loop x, we would like Area to approximately -	// equal the sum of the areas of the Voronoi regions of the points p for -	// which x.ContainsPoint(p) is true. -	// -	// The second issue is that we want to compute the area of small loops -	// accurately. This requires having good relative precision rather than -	// good absolute precision. For example, if the area of a loop is 1e-12 and -	// the error is 1e-15, then the area only has 3 digits of accuracy. (For -	// reference, 1e-12 is about 40 square meters on the surface of the earth.) -	// We would like to have good relative accuracy even for small loops. -	// -	// To achieve these goals, we combine two different methods of computing the -	// area. This first method is based on the Gauss-Bonnet theorem, which says -	// that the area enclosed by the loop equals 2*pi minus the total geodesic -	// curvature of the loop (i.e., the sum of the "turning angles" at all the -	// loop vertices). The big advantage of this method is that as long as we -	// use Sign to compute the turning angle at each vertex, then -	// degeneracies are always handled correctly. In other words, if a -	// degenerate loop is CCW according to the symbolic perturbations used by -	// Sign, then its turning angle will be approximately 2*pi. -	// -	// The disadvantage of the Gauss-Bonnet method is that its absolute error is -	// about 2e-15 times the number of vertices (see turningAngleMaxError). -	// So, it cannot compute the area of small loops accurately. -	// -	// The second method is based on splitting the loop into triangles and -	// summing the area of each triangle. To avoid the difficulty and expense -	// of decomposing the loop into a union of non-overlapping triangles, -	// instead we compute a signed sum over triangles that may overlap (see the -	// comments for surfaceIntegral). The advantage of this method -	// is that the area of each triangle can be computed with much better -	// relative accuracy (using l'Huilier's theorem). The disadvantage is that -	// the result is a signed area: CCW loops may yield a small positive value, -	// while CW loops may yield a small negative value (which is converted to a -	// positive area by adding 4*pi). This means that small errors in computing -	// the signed area may translate into a very large error in the result (if -	// the sign of the sum is incorrect). -	// -	// So, our strategy is to combine these two methods as follows. First we -	// compute the area using the "signed sum over triangles" approach (since it -	// is generally more accurate). We also estimate the maximum error in this -	// result. If the signed area is too close to zero (i.e., zero is within -	// the error bounds), then we double-check the sign of the result using the -	// Gauss-Bonnet method. (In fact we just call IsNormalized, which is -	// based on this method.) If the two methods disagree, we return either 0 -	// or 4*pi based on the result of IsNormalized. Otherwise we return the -	// area that we computed originally. -	if l.isEmptyOrFull() { -		if l.ContainsOrigin() { -			return 4 * math.Pi -		} -		return 0 -	} -	area := l.surfaceIntegralFloat64(SignedArea) - -	// TODO(roberts): This error estimate is very approximate. There are two -	// issues: (1) SignedArea needs some improvements to ensure that its error -	// is actually never higher than GirardArea, and (2) although the number of -	// triangles in the sum is typically N-2, in theory it could be as high as -	// 2*N for pathological inputs. But in other respects this error bound is -	// very conservative since it assumes that the maximum error is achieved on -	// every triangle. -	maxError := l.turningAngleMaxError() - -	// The signed area should be between approximately -4*pi and 4*pi. -	if area < 0 { -		// We have computed the negative of the area of the loop exterior. -		area += 4 * math.Pi -	} - -	if area > 4*math.Pi { -		area = 4 * math.Pi -	} -	if area < 0 { -		area = 0 -	} - -	// If the area is close enough to zero or 4*pi so that the loop orientation -	// is ambiguous, then we compute the loop orientation explicitly. -	if area < maxError && !l.IsNormalized() { -		return 4 * math.Pi -	} else if area > (4*math.Pi-maxError) && l.IsNormalized() { -		return 0 -	} - -	return area -} - -// Centroid returns the true centroid of the loop multiplied by the area of the -// loop. The result is not unit length, so you may want to normalize it. Also -// note that in general, the centroid may not be contained by the loop. -// -// We prescale by the loop area for two reasons: (1) it is cheaper to -// compute this way, and (2) it makes it easier to compute the centroid of -// more complicated shapes (by splitting them into disjoint regions and -// adding their centroids). -// -// Note that the return value is not affected by whether this loop is a -// "hole" or a "shell". -func (l *Loop) Centroid() Point { -	// surfaceIntegralPoint() returns either the integral of position over loop -	// interior, or the negative of the integral of position over the loop -	// exterior. But these two values are the same (!), because the integral of -	// position over the entire sphere is (0, 0, 0). -	return l.surfaceIntegralPoint(TrueCentroid) -} - -// Encode encodes the Loop. -func (l Loop) Encode(w io.Writer) error { -	e := &encoder{w: w} -	l.encode(e) -	return e.err -} - -func (l Loop) encode(e *encoder) { -	e.writeInt8(encodingVersion) -	e.writeUint32(uint32(len(l.vertices))) -	for _, v := range l.vertices { -		e.writeFloat64(v.X) -		e.writeFloat64(v.Y) -		e.writeFloat64(v.Z) -	} - -	e.writeBool(l.originInside) -	e.writeInt32(int32(l.depth)) - -	// Encode the bound. -	l.bound.encode(e) -} - -// Decode decodes a loop. -func (l *Loop) Decode(r io.Reader) error { -	*l = Loop{} -	d := &decoder{r: asByteReader(r)} -	l.decode(d) -	return d.err -} - -func (l *Loop) decode(d *decoder) { -	version := int8(d.readUint8()) -	if d.err != nil { -		return -	} -	if version != encodingVersion { -		d.err = fmt.Errorf("cannot decode version %d", version) -		return -	} - -	// Empty loops are explicitly allowed here: a newly created loop has zero vertices -	// and such loops encode and decode properly. -	nvertices := d.readUint32() -	if nvertices > maxEncodedVertices { -		if d.err == nil { -			d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices) - -		} -		return -	} -	l.vertices = make([]Point, nvertices) -	for i := range l.vertices { -		l.vertices[i].X = d.readFloat64() -		l.vertices[i].Y = d.readFloat64() -		l.vertices[i].Z = d.readFloat64() -	} -	l.index = NewShapeIndex() -	l.originInside = d.readBool() -	l.depth = int(d.readUint32()) -	l.bound.decode(d) -	l.subregionBound = ExpandForSubregions(l.bound) - -	l.index.Add(l) -} - -// Bitmasks to read from properties. -const ( -	originInside = 1 << iota -	boundEncoded -) - -func (l *Loop) xyzFaceSiTiVertices() []xyzFaceSiTi { -	ret := make([]xyzFaceSiTi, len(l.vertices)) -	for i, v := range l.vertices { -		ret[i].xyz = v -		ret[i].face, ret[i].si, ret[i].ti, ret[i].level = xyzToFaceSiTi(v) -	} -	return ret -} - -func (l *Loop) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) { -	if len(l.vertices) != len(vertices) { -		panic("encodeCompressed: vertices must be the same length as l.vertices") -	} -	if len(vertices) > maxEncodedVertices { -		if e.err == nil { -			e.err = fmt.Errorf("too many vertices (%d; max is %d)", len(vertices), maxEncodedVertices) -		} -		return -	} -	e.writeUvarint(uint64(len(vertices))) -	encodePointsCompressed(e, vertices, snapLevel) - -	props := l.compressedEncodingProperties() -	e.writeUvarint(props) -	e.writeUvarint(uint64(l.depth)) -	if props&boundEncoded != 0 { -		l.bound.encode(e) -	} -} - -func (l *Loop) compressedEncodingProperties() uint64 { -	var properties uint64 -	if l.originInside { -		properties |= originInside -	} - -	// Write whether there is a bound so we can change the threshold later. -	// Recomputing the bound multiplies the decode time taken per vertex -	// by a factor of about 3.5.  Without recomputing the bound, decode -	// takes approximately 125 ns / vertex.  A loop with 63 vertices -	// encoded without the bound will take ~30us to decode, which is -	// acceptable.  At ~3.5 bytes / vertex without the bound, adding -	// the bound will increase the size by <15%, which is also acceptable. -	const minVerticesForBound = 64 -	if len(l.vertices) >= minVerticesForBound { -		properties |= boundEncoded -	} - -	return properties -} - -func (l *Loop) decodeCompressed(d *decoder, snapLevel int) { -	nvertices := d.readUvarint() -	if d.err != nil { -		return -	} -	if nvertices > maxEncodedVertices { -		d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices) -		return -	} -	l.vertices = make([]Point, nvertices) -	decodePointsCompressed(d, snapLevel, l.vertices) -	properties := d.readUvarint() - -	// Make sure values are valid before using. -	if d.err != nil { -		return -	} - -	l.index = NewShapeIndex() -	l.originInside = (properties & originInside) != 0 - -	l.depth = int(d.readUvarint()) - -	if (properties & boundEncoded) != 0 { -		l.bound.decode(d) -		if d.err != nil { -			return -		} -		l.subregionBound = ExpandForSubregions(l.bound) -	} else { -		l.initBound() -	} - -	l.index.Add(l) -} - -// crossingTarget is an enum representing the possible crossing target cases for relations. -type crossingTarget int - -const ( -	crossingTargetDontCare crossingTarget = iota -	crossingTargetDontCross -	crossingTargetCross -) - -// loopRelation defines the interface for checking a type of relationship between two loops. -// Some examples of relations are Contains, Intersects, or CompareBoundary. -type loopRelation interface { -	// Optionally, aCrossingTarget and bCrossingTarget can specify an early-exit -	// condition for the loop relation. If any point P is found such that -	// -	//   A.ContainsPoint(P) == aCrossingTarget() && -	//   B.ContainsPoint(P) == bCrossingTarget() -	// -	// then the loop relation is assumed to be the same as if a pair of crossing -	// edges were found. For example, the ContainsPoint relation has -	// -	//   aCrossingTarget() == crossingTargetDontCross -	//   bCrossingTarget() == crossingTargetCross -	// -	// because if A.ContainsPoint(P) == false and B.ContainsPoint(P) == true -	// for any point P, then it is equivalent to finding an edge crossing (i.e., -	// since Contains returns false in both cases). -	// -	// Loop relations that do not have an early-exit condition of this form -	// should return crossingTargetDontCare for both crossing targets. - -	// aCrossingTarget reports whether loop A crosses the target point with -	// the given relation type. -	aCrossingTarget() crossingTarget -	// bCrossingTarget reports whether loop B crosses the target point with -	// the given relation type. -	bCrossingTarget() crossingTarget - -	// wedgesCross reports if a shared vertex ab1 and the two associated wedges -	// (a0, ab1, b2) and (b0, ab1, b2) are equivalent to an edge crossing. -	// The loop relation is also allowed to maintain its own internal state, and -	// can return true if it observes any sequence of wedges that are equivalent -	// to an edge crossing. -	wedgesCross(a0, ab1, a2, b0, b2 Point) bool -} - -// loopCrosser is a helper type for determining whether two loops cross. -// It is instantiated twice for each pair of loops to be tested, once for the -// pair (A,B) and once for the pair (B,A), in order to be able to process -// edges in either loop nesting order. -type loopCrosser struct { -	a, b            *Loop -	relation        loopRelation -	swapped         bool -	aCrossingTarget crossingTarget -	bCrossingTarget crossingTarget - -	// state maintained by startEdge and edgeCrossesCell. -	crosser    *EdgeCrosser -	aj, bjPrev int - -	// temporary data declared here to avoid repeated memory allocations. -	bQuery *CrossingEdgeQuery -	bCells []*ShapeIndexCell -} - -// newLoopCrosser creates a loopCrosser from the given values. If swapped is true, -// the loops A and B have been swapped. This affects how arguments are passed to -// the given loop relation, since for example A.Contains(B) is not the same as -// B.Contains(A). -func newLoopCrosser(a, b *Loop, relation loopRelation, swapped bool) *loopCrosser { -	l := &loopCrosser{ -		a:               a, -		b:               b, -		relation:        relation, -		swapped:         swapped, -		aCrossingTarget: relation.aCrossingTarget(), -		bCrossingTarget: relation.bCrossingTarget(), -		bQuery:          NewCrossingEdgeQuery(b.index), -	} -	if swapped { -		l.aCrossingTarget, l.bCrossingTarget = l.bCrossingTarget, l.aCrossingTarget -	} - -	return l -} - -// startEdge sets the crossers state for checking the given edge of loop A. -func (l *loopCrosser) startEdge(aj int) { -	l.crosser = NewEdgeCrosser(l.a.Vertex(aj), l.a.Vertex(aj+1)) -	l.aj = aj -	l.bjPrev = -2 -} - -// edgeCrossesCell reports whether the current edge of loop A has any crossings with -// edges of the index cell of loop B. -func (l *loopCrosser) edgeCrossesCell(bClipped *clippedShape) bool { -	// Test the current edge of A against all edges of bClipped -	bNumEdges := bClipped.numEdges() -	for j := 0; j < bNumEdges; j++ { -		bj := bClipped.edges[j] -		if bj != l.bjPrev+1 { -			l.crosser.RestartAt(l.b.Vertex(bj)) -		} -		l.bjPrev = bj -		if crossing := l.crosser.ChainCrossingSign(l.b.Vertex(bj + 1)); crossing == DoNotCross { -			continue -		} else if crossing == Cross { -			return true -		} - -		// We only need to check each shared vertex once, so we only -		// consider the case where l.aVertex(l.aj+1) == l.b.Vertex(bj+1). -		if l.a.Vertex(l.aj+1) == l.b.Vertex(bj+1) { -			if l.swapped { -				if l.relation.wedgesCross(l.b.Vertex(bj), l.b.Vertex(bj+1), l.b.Vertex(bj+2), l.a.Vertex(l.aj), l.a.Vertex(l.aj+2)) { -					return true -				} -			} else { -				if l.relation.wedgesCross(l.a.Vertex(l.aj), l.a.Vertex(l.aj+1), l.a.Vertex(l.aj+2), l.b.Vertex(bj), l.b.Vertex(bj+2)) { -					return true -				} -			} -		} -	} - -	return false -} - -// cellCrossesCell reports whether there are any edge crossings or wedge crossings -// within the two given cells. -func (l *loopCrosser) cellCrossesCell(aClipped, bClipped *clippedShape) bool { -	// Test all edges of aClipped against all edges of bClipped. -	for _, edge := range aClipped.edges { -		l.startEdge(edge) -		if l.edgeCrossesCell(bClipped) { -			return true -		} -	} - -	return false -} - -// cellCrossesAnySubcell reports whether given an index cell of A, if there are any -// edge or wedge crossings with any index cell of B contained within bID. -func (l *loopCrosser) cellCrossesAnySubcell(aClipped *clippedShape, bID CellID) bool { -	// Test all edges of aClipped against all edges of B. The relevant B -	// edges are guaranteed to be children of bID, which lets us find the -	// correct index cells more efficiently. -	bRoot := PaddedCellFromCellID(bID, 0) -	for _, aj := range aClipped.edges { -		// Use an CrossingEdgeQuery starting at bRoot to find the index cells -		// of B that might contain crossing edges. -		l.bCells = l.bQuery.getCells(l.a.Vertex(aj), l.a.Vertex(aj+1), bRoot) -		if len(l.bCells) == 0 { -			continue -		} -		l.startEdge(aj) -		for c := 0; c < len(l.bCells); c++ { -			if l.edgeCrossesCell(l.bCells[c].shapes[0]) { -				return true -			} -		} -	} - -	return false -} - -// hasCrossing reports whether given two iterators positioned such that -// ai.cellID().ContainsCellID(bi.cellID()), there is an edge or wedge crossing -// anywhere within ai.cellID(). This function advances bi only past ai.cellID(). -func (l *loopCrosser) hasCrossing(ai, bi *rangeIterator) bool { -	// If ai.CellID() intersects many edges of B, then it is faster to use -	// CrossingEdgeQuery to narrow down the candidates. But if it intersects -	// only a few edges, it is faster to check all the crossings directly. -	// We handle this by advancing bi and keeping track of how many edges we -	// would need to test. -	const edgeQueryMinEdges = 20 // Tuned from benchmarks. -	var totalEdges int -	l.bCells = nil - -	for { -		if n := bi.it.IndexCell().shapes[0].numEdges(); n > 0 { -			totalEdges += n -			if totalEdges >= edgeQueryMinEdges { -				// There are too many edges to test them directly, so use CrossingEdgeQuery. -				if l.cellCrossesAnySubcell(ai.it.IndexCell().shapes[0], ai.cellID()) { -					return true -				} -				bi.seekBeyond(ai) -				return false -			} -			l.bCells = append(l.bCells, bi.indexCell()) -		} -		bi.next() -		if bi.cellID() > ai.rangeMax { -			break -		} -	} - -	// Test all the edge crossings directly. -	for _, c := range l.bCells { -		if l.cellCrossesCell(ai.it.IndexCell().shapes[0], c.shapes[0]) { -			return true -		} -	} - -	return false -} - -// containsCenterMatches reports if the clippedShapes containsCenter boolean corresponds -// to the crossing target type given. (This is to work around C++ allowing false == 0, -// true == 1 type implicit conversions and comparisons) -func containsCenterMatches(a *clippedShape, target crossingTarget) bool { -	return (!a.containsCenter && target == crossingTargetDontCross) || -		(a.containsCenter && target == crossingTargetCross) -} - -// hasCrossingRelation reports whether given two iterators positioned such that -// ai.cellID().ContainsCellID(bi.cellID()), there is a crossing relationship -// anywhere within ai.cellID(). Specifically, this method returns true if there -// is an edge crossing, a wedge crossing, or a point P that matches both relations -// crossing targets. This function advances both iterators past ai.cellID. -func (l *loopCrosser) hasCrossingRelation(ai, bi *rangeIterator) bool { -	aClipped := ai.it.IndexCell().shapes[0] -	if aClipped.numEdges() != 0 { -		// The current cell of A has at least one edge, so check for crossings. -		if l.hasCrossing(ai, bi) { -			return true -		} -		ai.next() -		return false -	} - -	if containsCenterMatches(aClipped, l.aCrossingTarget) { -		// The crossing target for A is not satisfied, so we skip over these cells of B. -		bi.seekBeyond(ai) -		ai.next() -		return false -	} - -	// All points within ai.cellID() satisfy the crossing target for A, so it's -	// worth iterating through the cells of B to see whether any cell -	// centers also satisfy the crossing target for B. -	for bi.cellID() <= ai.rangeMax { -		bClipped := bi.it.IndexCell().shapes[0] -		if containsCenterMatches(bClipped, l.bCrossingTarget) { -			return true -		} -		bi.next() -	} -	ai.next() -	return false -} - -// hasCrossingRelation checks all edges of loop A for intersection against all edges -// of loop B and reports if there are any that satisfy the given relation. If there -// is any shared vertex, the wedges centered at this vertex are sent to the given -// relation to be tested. -// -// If the two loop boundaries cross, this method is guaranteed to return -// true. It also returns true in certain cases if the loop relationship is -// equivalent to crossing. For example, if the relation is Contains and a -// point P is found such that B contains P but A does not contain P, this -// method will return true to indicate that the result is the same as though -// a pair of crossing edges were found (since Contains returns false in -// both cases). -// -// See Contains, Intersects and CompareBoundary for the three uses of this function. -func hasCrossingRelation(a, b *Loop, relation loopRelation) bool { -	// We look for CellID ranges where the indexes of A and B overlap, and -	// then test those edges for crossings. -	ai := newRangeIterator(a.index) -	bi := newRangeIterator(b.index) - -	ab := newLoopCrosser(a, b, relation, false) // Tests edges of A against B -	ba := newLoopCrosser(b, a, relation, true)  // Tests edges of B against A - -	for !ai.done() || !bi.done() { -		if ai.rangeMax < bi.rangeMin { -			// The A and B cells don't overlap, and A precedes B. -			ai.seekTo(bi) -		} else if bi.rangeMax < ai.rangeMin { -			// The A and B cells don't overlap, and B precedes A. -			bi.seekTo(ai) -		} else { -			// One cell contains the other. Determine which cell is larger. -			abRelation := int64(ai.it.CellID().lsb() - bi.it.CellID().lsb()) -			if abRelation > 0 { -				// A's index cell is larger. -				if ab.hasCrossingRelation(ai, bi) { -					return true -				} -			} else if abRelation < 0 { -				// B's index cell is larger. -				if ba.hasCrossingRelation(bi, ai) { -					return true -				} -			} else { -				// The A and B cells are the same. Since the two cells -				// have the same center point P, check whether P satisfies -				// the crossing targets. -				aClipped := ai.it.IndexCell().shapes[0] -				bClipped := bi.it.IndexCell().shapes[0] -				if containsCenterMatches(aClipped, ab.aCrossingTarget) && -					containsCenterMatches(bClipped, ab.bCrossingTarget) { -					return true -				} -				// Otherwise test all the edge crossings directly. -				if aClipped.numEdges() > 0 && bClipped.numEdges() > 0 && ab.cellCrossesCell(aClipped, bClipped) { -					return true -				} -				ai.next() -				bi.next() -			} -		} -	} -	return false -} - -// containsRelation implements loopRelation for a contains operation. If -// A.ContainsPoint(P) == false && B.ContainsPoint(P) == true, it is equivalent -// to having an edge crossing (i.e., Contains returns false). -type containsRelation struct { -	foundSharedVertex bool -} - -func (c *containsRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCross } -func (c *containsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross } -func (c *containsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool { -	c.foundSharedVertex = true -	return !WedgeContains(a0, ab1, a2, b0, b2) -} - -// intersectsRelation implements loopRelation for an intersects operation. Given -// two loops, A and B, if A.ContainsPoint(P) == true && B.ContainsPoint(P) == true, -// it is equivalent to having an edge crossing (i.e., Intersects returns true). -type intersectsRelation struct { -	foundSharedVertex bool -} - -func (i *intersectsRelation) aCrossingTarget() crossingTarget { return crossingTargetCross } -func (i *intersectsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross } -func (i *intersectsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool { -	i.foundSharedVertex = true -	return WedgeIntersects(a0, ab1, a2, b0, b2) -} - -// compareBoundaryRelation implements loopRelation for comparing boundaries. -// -// The compare boundary relation does not have a useful early-exit condition, -// so we return crossingTargetDontCare for both crossing targets. -// -// Aside: A possible early exit condition could be based on the following. -//   If A contains a point of both B and ~B, then A intersects Boundary(B). -//   If ~A contains a point of both B and ~B, then ~A intersects Boundary(B). -//   So if the intersections of {A, ~A} with {B, ~B} are all non-empty, -//   the return value is 0, i.e., Boundary(A) intersects Boundary(B). -// Unfortunately it isn't worth detecting this situation because by the -// time we have seen a point in all four intersection regions, we are also -// guaranteed to have seen at least one pair of crossing edges. -type compareBoundaryRelation struct { -	reverse           bool // True if the other loop should be reversed. -	foundSharedVertex bool // True if any wedge was processed. -	containsEdge      bool // True if any edge of the other loop is contained by this loop. -	excludesEdge      bool // True if any edge of the other loop is excluded by this loop. -} - -func newCompareBoundaryRelation(reverse bool) *compareBoundaryRelation { -	return &compareBoundaryRelation{reverse: reverse} -} - -func (c *compareBoundaryRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCare } -func (c *compareBoundaryRelation) bCrossingTarget() crossingTarget { return crossingTargetDontCare } -func (c *compareBoundaryRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool { -	// Because we don't care about the interior of the other, only its boundary, -	// it is sufficient to check whether this one contains the semiwedge (ab1, b2). -	c.foundSharedVertex = true -	if wedgeContainsSemiwedge(a0, ab1, a2, b2, c.reverse) { -		c.containsEdge = true -	} else { -		c.excludesEdge = true -	} -	return c.containsEdge && c.excludesEdge -} - -// wedgeContainsSemiwedge reports whether the wedge (a0, ab1, a2) contains the -// "semiwedge" defined as any non-empty open set of rays immediately CCW from -// the edge (ab1, b2). If reverse is true, then substitute clockwise for CCW; -// this simulates what would happen if the direction of the other loop was reversed. -func wedgeContainsSemiwedge(a0, ab1, a2, b2 Point, reverse bool) bool { -	if b2 == a0 || b2 == a2 { -		// We have a shared or reversed edge. -		return (b2 == a0) == reverse -	} -	return OrderedCCW(a0, a2, b2, ab1) -} - -// containsNonCrossingBoundary reports whether given two loops whose boundaries -// do not cross (see compareBoundary), if this loop contains the boundary of the -// other loop. If reverse is true, the boundary of the other loop is reversed -// first (which only affects the result when there are shared edges). This method -// is cheaper than compareBoundary because it does not test for edge intersections. -// -// This function requires that neither loop is empty, and that if the other is full, -// then reverse == false. -func (l *Loop) containsNonCrossingBoundary(other *Loop, reverseOther bool) bool { -	// The bounds must intersect for containment. -	if !l.bound.Intersects(other.bound) { -		return false -	} - -	// Full loops are handled as though the loop surrounded the entire sphere. -	if l.IsFull() { -		return true -	} -	if other.IsFull() { -		return false -	} - -	m, ok := l.findVertex(other.Vertex(0)) -	if !ok { -		// Since the other loops vertex 0 is not shared, we can check if this contains it. -		return l.ContainsPoint(other.Vertex(0)) -	} -	// Otherwise check whether the edge (b0, b1) is contained by this loop. -	return wedgeContainsSemiwedge(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1), -		other.Vertex(1), reverseOther) -} - -// TODO(roberts): Differences from the C++ version: -// DistanceToPoint -// DistanceToBoundary -// Project -// ProjectToBoundary -// BoundaryApproxEqual -// BoundaryNear diff --git a/vendor/github.com/golang/geo/s2/matrix3x3.go b/vendor/github.com/golang/geo/s2/matrix3x3.go deleted file mode 100644 index 01696fe83..000000000 --- a/vendor/github.com/golang/geo/s2/matrix3x3.go +++ /dev/null @@ -1,127 +0,0 @@ -// Copyright 2015 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" - -	"github.com/golang/geo/r3" -) - -// matrix3x3 represents a traditional 3x3 matrix of floating point values. -// This is not a full fledged matrix. It only contains the pieces needed -// to satisfy the computations done within the s2 package. -type matrix3x3 [3][3]float64 - -// col returns the given column as a Point. -func (m *matrix3x3) col(col int) Point { -	return Point{r3.Vector{m[0][col], m[1][col], m[2][col]}} -} - -// row returns the given row as a Point. -func (m *matrix3x3) row(row int) Point { -	return Point{r3.Vector{m[row][0], m[row][1], m[row][2]}} -} - -// setCol sets the specified column to the value in the given Point. -func (m *matrix3x3) setCol(col int, p Point) *matrix3x3 { -	m[0][col] = p.X -	m[1][col] = p.Y -	m[2][col] = p.Z - -	return m -} - -// setRow sets the specified row to the value in the given Point. -func (m *matrix3x3) setRow(row int, p Point) *matrix3x3 { -	m[row][0] = p.X -	m[row][1] = p.Y -	m[row][2] = p.Z - -	return m -} - -// scale multiplies the matrix by the given value. -func (m *matrix3x3) scale(f float64) *matrix3x3 { -	return &matrix3x3{ -		[3]float64{f * m[0][0], f * m[0][1], f * m[0][2]}, -		[3]float64{f * m[1][0], f * m[1][1], f * m[1][2]}, -		[3]float64{f * m[2][0], f * m[2][1], f * m[2][2]}, -	} -} - -// mul returns the multiplication of m by the Point p and converts the -// resulting 1x3 matrix into a Point. -func (m *matrix3x3) mul(p Point) Point { -	return Point{r3.Vector{ -		m[0][0]*p.X + m[0][1]*p.Y + m[0][2]*p.Z, -		m[1][0]*p.X + m[1][1]*p.Y + m[1][2]*p.Z, -		m[2][0]*p.X + m[2][1]*p.Y + m[2][2]*p.Z, -	}} -} - -// det returns the determinant of this matrix. -func (m *matrix3x3) det() float64 { -	//      | a  b  c | -	//  det | d  e  f | = aei + bfg + cdh - ceg - bdi - afh -	//      | g  h  i | -	return m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1] - -		m[0][2]*m[1][1]*m[2][0] - m[0][1]*m[1][0]*m[2][2] - m[0][0]*m[1][2]*m[2][1] -} - -// transpose reflects the matrix along its diagonal and returns the result. -func (m *matrix3x3) transpose() *matrix3x3 { -	m[0][1], m[1][0] = m[1][0], m[0][1] -	m[0][2], m[2][0] = m[2][0], m[0][2] -	m[1][2], m[2][1] = m[2][1], m[1][2] - -	return m -} - -// String formats the matrix into an easier to read layout. -func (m *matrix3x3) String() string { -	return fmt.Sprintf("[ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ]", -		m[0][0], m[0][1], m[0][2], -		m[1][0], m[1][1], m[1][2], -		m[2][0], m[2][1], m[2][2], -	) -} - -// getFrame returns the orthonormal frame for the given point on the unit sphere. -func getFrame(p Point) matrix3x3 { -	// Given the point p on the unit sphere, extend this into a right-handed -	// coordinate frame of unit-length column vectors m = (x,y,z).  Note that -	// the vectors (x,y) are an orthonormal frame for the tangent space at point p, -	// while p itself is an orthonormal frame for the normal space at p. -	m := matrix3x3{} -	m.setCol(2, p) -	m.setCol(1, Point{p.Ortho()}) -	m.setCol(0, Point{m.col(1).Cross(p.Vector)}) -	return m -} - -// toFrame returns the coordinates of the given point with respect to its orthonormal basis m. -// The resulting point q satisfies the identity (m * q == p). -func toFrame(m matrix3x3, p Point) Point { -	// The inverse of an orthonormal matrix is its transpose. -	return m.transpose().mul(p) -} - -// fromFrame returns the coordinates of the given point in standard axis-aligned basis -// from its orthonormal basis m. -// The resulting point p satisfies the identity (p == m * q). -func fromFrame(m matrix3x3, q Point) Point { -	return m.mul(q) -} diff --git a/vendor/github.com/golang/geo/s2/max_distance_targets.go b/vendor/github.com/golang/geo/s2/max_distance_targets.go deleted file mode 100644 index 92e916d98..000000000 --- a/vendor/github.com/golang/geo/s2/max_distance_targets.go +++ /dev/null @@ -1,306 +0,0 @@ -// Copyright 2019 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" - -	"github.com/golang/geo/s1" -) - -// maxDistance implements distance as the supplementary distance (Pi - x) to find -// results that are the furthest using the distance related algorithms. -type maxDistance s1.ChordAngle - -func (m maxDistance) chordAngle() s1.ChordAngle { return s1.ChordAngle(m) } -func (m maxDistance) zero() distance            { return maxDistance(s1.StraightChordAngle) } -func (m maxDistance) negative() distance        { return maxDistance(s1.InfChordAngle()) } -func (m maxDistance) infinity() distance        { return maxDistance(s1.NegativeChordAngle) } -func (m maxDistance) less(other distance) bool  { return m.chordAngle() > other.chordAngle() } -func (m maxDistance) sub(other distance) distance { -	return maxDistance(m.chordAngle() + other.chordAngle()) -} -func (m maxDistance) chordAngleBound() s1.ChordAngle { -	return s1.StraightChordAngle - m.chordAngle() -} -func (m maxDistance) updateDistance(dist distance) (distance, bool) { -	if dist.less(m) { -		m = maxDistance(dist.chordAngle()) -		return m, true -	} -	return m, false -} - -func (m maxDistance) fromChordAngle(o s1.ChordAngle) distance { -	return maxDistance(o) -} - -// MaxDistanceToPointTarget is used for computing the maximum distance to a Point. -type MaxDistanceToPointTarget struct { -	point Point -	dist  distance -} - -// NewMaxDistanceToPointTarget returns a new target for the given Point. -func NewMaxDistanceToPointTarget(point Point) *MaxDistanceToPointTarget { -	m := maxDistance(0) -	return &MaxDistanceToPointTarget{point: point, dist: &m} -} - -func (m *MaxDistanceToPointTarget) capBound() Cap { -	return CapFromCenterChordAngle(Point{m.point.Mul(-1)}, (s1.ChordAngle(0))) -} - -func (m *MaxDistanceToPointTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { -	return dist.updateDistance(maxDistance(ChordAngleBetweenPoints(p, m.point))) -} - -func (m *MaxDistanceToPointTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { -	if d, ok := UpdateMaxDistance(m.point, edge.V0, edge.V1, dist.chordAngle()); ok { -		dist, _ = dist.updateDistance(maxDistance(d)) -		return dist, true -	} -	return dist, false -} - -func (m *MaxDistanceToPointTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { -	return dist.updateDistance(maxDistance(cell.MaxDistance(m.point))) -} - -func (m *MaxDistanceToPointTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { -	// For furthest points, we visit the polygons whose interior contains -	// the antipode of the target point. These are the polygons whose -	// distance to the target is maxDistance.zero() -	q := NewContainsPointQuery(index, VertexModelSemiOpen) -	return q.visitContainingShapes(Point{m.point.Mul(-1)}, func(shape Shape) bool { -		return v(shape, m.point) -	}) -} - -func (m *MaxDistanceToPointTarget) setMaxError(maxErr s1.ChordAngle) bool { return false } -func (m *MaxDistanceToPointTarget) maxBruteForceIndexSize() int           { return 30 } -func (m *MaxDistanceToPointTarget) distance() distance                    { return m.dist } - -// MaxDistanceToEdgeTarget is used for computing the maximum distance to an Edge. -type MaxDistanceToEdgeTarget struct { -	e    Edge -	dist distance -} - -// NewMaxDistanceToEdgeTarget returns a new target for the given Edge. -func NewMaxDistanceToEdgeTarget(e Edge) *MaxDistanceToEdgeTarget { -	m := maxDistance(0) -	return &MaxDistanceToEdgeTarget{e: e, dist: m} -} - -// capBound returns a Cap that bounds the antipode of the target. (This -// is the set of points whose maxDistance to the target is maxDistance.zero) -func (m *MaxDistanceToEdgeTarget) capBound() Cap { -	// The following computes a radius equal to half the edge length in an -	// efficient and numerically stable way. -	d2 := float64(ChordAngleBetweenPoints(m.e.V0, m.e.V1)) -	r2 := (0.5 * d2) / (1 + math.Sqrt(1-0.25*d2)) -	return CapFromCenterChordAngle(Point{m.e.V0.Add(m.e.V1.Vector).Mul(-1).Normalize()}, s1.ChordAngleFromSquaredLength(r2)) -} - -func (m *MaxDistanceToEdgeTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { -	if d, ok := UpdateMaxDistance(p, m.e.V0, m.e.V1, dist.chordAngle()); ok { -		dist, _ = dist.updateDistance(maxDistance(d)) -		return dist, true -	} -	return dist, false -} - -func (m *MaxDistanceToEdgeTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { -	if d, ok := updateEdgePairMaxDistance(m.e.V0, m.e.V1, edge.V0, edge.V1, dist.chordAngle()); ok { -		dist, _ = dist.updateDistance(maxDistance(d)) -		return dist, true -	} -	return dist, false -} - -func (m *MaxDistanceToEdgeTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { -	return dist.updateDistance(maxDistance(cell.MaxDistanceToEdge(m.e.V0, m.e.V1))) -} - -func (m *MaxDistanceToEdgeTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { -	// We only need to test one edge point. That is because the method *must* -	// visit a polygon if it fully contains the target, and *is allowed* to -	// visit a polygon if it intersects the target. If the tested vertex is not -	// contained, we know the full edge is not contained; if the tested vertex is -	// contained, then the edge either is fully contained (must be visited) or it -	// intersects (is allowed to be visited). We visit the center of the edge so -	// that edge AB gives identical results to BA. -	target := NewMaxDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}) -	return target.visitContainingShapes(index, v) -} - -func (m *MaxDistanceToEdgeTarget) setMaxError(maxErr s1.ChordAngle) bool { return false } -func (m *MaxDistanceToEdgeTarget) maxBruteForceIndexSize() int           { return 30 } -func (m *MaxDistanceToEdgeTarget) distance() distance                    { return m.dist } - -// MaxDistanceToCellTarget is used for computing the maximum distance to a Cell. -type MaxDistanceToCellTarget struct { -	cell Cell -	dist distance -} - -// NewMaxDistanceToCellTarget returns a new target for the given Cell. -func NewMaxDistanceToCellTarget(cell Cell) *MaxDistanceToCellTarget { -	m := maxDistance(0) -	return &MaxDistanceToCellTarget{cell: cell, dist: m} -} - -func (m *MaxDistanceToCellTarget) capBound() Cap { -	c := m.cell.CapBound() -	return CapFromCenterAngle(Point{c.Center().Mul(-1)}, c.Radius()) -} - -func (m *MaxDistanceToCellTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { -	return dist.updateDistance(maxDistance(m.cell.MaxDistance(p))) -} - -func (m *MaxDistanceToCellTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { -	return dist.updateDistance(maxDistance(m.cell.MaxDistanceToEdge(edge.V0, edge.V1))) -} - -func (m *MaxDistanceToCellTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { -	return dist.updateDistance(maxDistance(m.cell.MaxDistanceToCell(cell))) -} - -func (m *MaxDistanceToCellTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { -	// We only need to check one point here - cell center is simplest. -	// See comment at MaxDistanceToEdgeTarget's visitContainingShapes. -	target := NewMaxDistanceToPointTarget(m.cell.Center()) -	return target.visitContainingShapes(index, v) -} - -func (m *MaxDistanceToCellTarget) setMaxError(maxErr s1.ChordAngle) bool { return false } -func (m *MaxDistanceToCellTarget) maxBruteForceIndexSize() int           { return 30 } -func (m *MaxDistanceToCellTarget) distance() distance                    { return m.dist } - -// MaxDistanceToShapeIndexTarget is used for computing the maximum distance to a ShapeIndex. -type MaxDistanceToShapeIndexTarget struct { -	index *ShapeIndex -	query *EdgeQuery -	dist  distance -} - -// NewMaxDistanceToShapeIndexTarget returns a new target for the given ShapeIndex. -func NewMaxDistanceToShapeIndexTarget(index *ShapeIndex) *MaxDistanceToShapeIndexTarget { -	m := maxDistance(0) -	return &MaxDistanceToShapeIndexTarget{ -		index: index, -		dist:  m, -		query: NewFurthestEdgeQuery(index, NewFurthestEdgeQueryOptions()), -	} -} - -// capBound returns a Cap that bounds the antipode of the target. This -// is the set of points whose maxDistance to the target is maxDistance.zero() -func (m *MaxDistanceToShapeIndexTarget) capBound() Cap { -	// TODO(roberts): Depends on ShapeIndexRegion -	// c := makeShapeIndexRegion(m.index).CapBound() -	// return CapFromCenterRadius(Point{c.Center.Mul(-1)}, c.Radius()) -	panic("not implemented yet") -} - -func (m *MaxDistanceToShapeIndexTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { -	m.query.opts.distanceLimit = dist.chordAngle() -	target := NewMaxDistanceToPointTarget(p) -	r := m.query.findEdge(target, m.query.opts) -	if r.shapeID < 0 { -		return dist, false -	} -	return r.distance, true -} - -func (m *MaxDistanceToShapeIndexTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { -	m.query.opts.distanceLimit = dist.chordAngle() -	target := NewMaxDistanceToEdgeTarget(edge) -	r := m.query.findEdge(target, m.query.opts) -	if r.shapeID < 0 { -		return dist, false -	} -	return r.distance, true -} - -func (m *MaxDistanceToShapeIndexTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { -	m.query.opts.distanceLimit = dist.chordAngle() -	target := NewMaxDistanceToCellTarget(cell) -	r := m.query.findEdge(target, m.query.opts) -	if r.shapeID < 0 { -		return dist, false -	} -	return r.distance, true -} - -// visitContainingShapes returns the polygons containing the antipodal -// reflection of *any* connected component for target types consisting of -// multiple connected components. It is sufficient to test containment of -// one vertex per connected component, since this allows us to also return -// any polygon whose boundary has distance.zero() to the target. -func (m *MaxDistanceToShapeIndexTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { -	// It is sufficient to find the set of chain starts in the target index -	// (i.e., one vertex per connected component of edges) that are contained by -	// the query index, except for one special case to handle full polygons. -	// -	// TODO(roberts): Do this by merge-joining the two ShapeIndexes and share -	// the code with BooleanOperation. -	for _, shape := range m.index.shapes { -		numChains := shape.NumChains() -		// Shapes that don't have any edges require a special case (below). -		testedPoint := false -		for c := 0; c < numChains; c++ { -			chain := shape.Chain(c) -			if chain.Length == 0 { -				continue -			} -			testedPoint = true -			target := NewMaxDistanceToPointTarget(shape.ChainEdge(c, 0).V0) -			if !target.visitContainingShapes(index, v) { -				return false -			} -		} -		if !testedPoint { -			// Special case to handle full polygons. -			ref := shape.ReferencePoint() -			if !ref.Contained { -				continue -			} -			target := NewMaxDistanceToPointTarget(ref.Point) -			if !target.visitContainingShapes(index, v) { -				return false -			} -		} -	} -	return true -} - -func (m *MaxDistanceToShapeIndexTarget) setMaxError(maxErr s1.ChordAngle) bool { -	m.query.opts.maxError = maxErr -	return true -} -func (m *MaxDistanceToShapeIndexTarget) maxBruteForceIndexSize() int { return 30 } -func (m *MaxDistanceToShapeIndexTarget) distance() distance          { return m.dist } -func (m *MaxDistanceToShapeIndexTarget) setIncludeInteriors(b bool) { -	m.query.opts.includeInteriors = b -} -func (m *MaxDistanceToShapeIndexTarget) setUseBruteForce(b bool) { m.query.opts.useBruteForce = b } - -// TODO(roberts): Remaining methods -// -// func (m *MaxDistanceToShapeIndexTarget) capBound() Cap { -// CellUnionTarget diff --git a/vendor/github.com/golang/geo/s2/metric.go b/vendor/github.com/golang/geo/s2/metric.go deleted file mode 100644 index 53db3d317..000000000 --- a/vendor/github.com/golang/geo/s2/metric.go +++ /dev/null @@ -1,164 +0,0 @@ -// Copyright 2015 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// This file implements functions for various S2 measurements. - -import "math" - -// A Metric is a measure for cells. It is used to describe the shape and size -// of cells. They are useful for deciding which cell level to use in order to -// satisfy a given condition (e.g. that cell vertices must be no further than -// "x" apart). You can use the Value(level) method to compute the corresponding -// length or area on the unit sphere for cells at a given level. The minimum -// and maximum bounds are valid for cells at all levels, but they may be -// somewhat conservative for very large cells (e.g. face cells). -type Metric struct { -	// Dim is either 1 or 2, for a 1D or 2D metric respectively. -	Dim int -	// Deriv is the scaling factor for the metric. -	Deriv float64 -} - -// Defined metrics. -// Of the projection methods defined in C++, Go only supports the quadratic projection. - -// Each cell is bounded by four planes passing through its four edges and -// the center of the sphere. These metrics relate to the angle between each -// pair of opposite bounding planes, or equivalently, between the planes -// corresponding to two different s-values or two different t-values. -var ( -	MinAngleSpanMetric = Metric{1, 4.0 / 3} -	AvgAngleSpanMetric = Metric{1, math.Pi / 2} -	MaxAngleSpanMetric = Metric{1, 1.704897179199218452} -) - -// The width of geometric figure is defined as the distance between two -// parallel bounding lines in a given direction. For cells, the minimum -// width is always attained between two opposite edges, and the maximum -// width is attained between two opposite vertices. However, for our -// purposes we redefine the width of a cell as the perpendicular distance -// between a pair of opposite edges. A cell therefore has two widths, one -// in each direction. The minimum width according to this definition agrees -// with the classic geometric one, but the maximum width is different. (The -// maximum geometric width corresponds to MaxDiag defined below.) -// -// The average width in both directions for all cells at level k is approximately -// AvgWidthMetric.Value(k). -// -// The width is useful for bounding the minimum or maximum distance from a -// point on one edge of a cell to the closest point on the opposite edge. -// For example, this is useful when growing regions by a fixed distance. -var ( -	MinWidthMetric = Metric{1, 2 * math.Sqrt2 / 3} -	AvgWidthMetric = Metric{1, 1.434523672886099389} -	MaxWidthMetric = Metric{1, MaxAngleSpanMetric.Deriv} -) - -// The edge length metrics can be used to bound the minimum, maximum, -// or average distance from the center of one cell to the center of one of -// its edge neighbors. In particular, it can be used to bound the distance -// between adjacent cell centers along the space-filling Hilbert curve for -// cells at any given level. -var ( -	MinEdgeMetric = Metric{1, 2 * math.Sqrt2 / 3} -	AvgEdgeMetric = Metric{1, 1.459213746386106062} -	MaxEdgeMetric = Metric{1, MaxAngleSpanMetric.Deriv} - -	// MaxEdgeAspect is the maximum edge aspect ratio over all cells at any level, -	// where the edge aspect ratio of a cell is defined as the ratio of its longest -	// edge length to its shortest edge length. -	MaxEdgeAspect = 1.442615274452682920 - -	MinAreaMetric = Metric{2, 8 * math.Sqrt2 / 9} -	AvgAreaMetric = Metric{2, 4 * math.Pi / 6} -	MaxAreaMetric = Metric{2, 2.635799256963161491} -) - -// The maximum diagonal is also the maximum diameter of any cell, -// and also the maximum geometric width (see the comment for widths). For -// example, the distance from an arbitrary point to the closest cell center -// at a given level is at most half the maximum diagonal length. -var ( -	MinDiagMetric = Metric{1, 8 * math.Sqrt2 / 9} -	AvgDiagMetric = Metric{1, 2.060422738998471683} -	MaxDiagMetric = Metric{1, 2.438654594434021032} - -	// MaxDiagAspect is the maximum diagonal aspect ratio over all cells at any -	// level, where the diagonal aspect ratio of a cell is defined as the ratio -	// of its longest diagonal length to its shortest diagonal length. -	MaxDiagAspect = math.Sqrt(3) -) - -// Value returns the value of the metric at the given level. -func (m Metric) Value(level int) float64 { -	return math.Ldexp(m.Deriv, -m.Dim*level) -} - -// MinLevel returns the minimum level such that the metric is at most -// the given value, or maxLevel (30) if there is no such level. -// -// For example, MinLevel(0.1) returns the minimum level such that all cell diagonal -// lengths are 0.1 or smaller. The returned value is always a valid level. -// -// In C++, this is called GetLevelForMaxValue. -func (m Metric) MinLevel(val float64) int { -	if val < 0 { -		return maxLevel -	} - -	level := -(math.Ilogb(val/m.Deriv) >> uint(m.Dim-1)) -	if level > maxLevel { -		level = maxLevel -	} -	if level < 0 { -		level = 0 -	} -	return level -} - -// MaxLevel returns the maximum level such that the metric is at least -// the given value, or zero if there is no such level. -// -// For example, MaxLevel(0.1) returns the maximum level such that all cells have a -// minimum width of 0.1 or larger. The returned value is always a valid level. -// -// In C++, this is called GetLevelForMinValue. -func (m Metric) MaxLevel(val float64) int { -	if val <= 0 { -		return maxLevel -	} - -	level := math.Ilogb(m.Deriv/val) >> uint(m.Dim-1) -	if level > maxLevel { -		level = maxLevel -	} -	if level < 0 { -		level = 0 -	} -	return level -} - -// ClosestLevel returns the level at which the metric has approximately the given -// value. The return value is always a valid level. For example, -// AvgEdgeMetric.ClosestLevel(0.1) returns the level at which the average cell edge -// length is approximately 0.1. -func (m Metric) ClosestLevel(val float64) int { -	x := math.Sqrt2 -	if m.Dim == 2 { -		x = 2 -	} -	return m.MinLevel(x * val) -} diff --git a/vendor/github.com/golang/geo/s2/min_distance_targets.go b/vendor/github.com/golang/geo/s2/min_distance_targets.go deleted file mode 100644 index b4cbd43ef..000000000 --- a/vendor/github.com/golang/geo/s2/min_distance_targets.go +++ /dev/null @@ -1,362 +0,0 @@ -// Copyright 2019 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" - -	"github.com/golang/geo/s1" -) - -// minDistance implements distance interface to find closest distance types. -type minDistance s1.ChordAngle - -func (m minDistance) chordAngle() s1.ChordAngle { return s1.ChordAngle(m) } -func (m minDistance) zero() distance            { return minDistance(0) } -func (m minDistance) negative() distance        { return minDistance(s1.NegativeChordAngle) } -func (m minDistance) infinity() distance        { return minDistance(s1.InfChordAngle()) } -func (m minDistance) less(other distance) bool  { return m.chordAngle() < other.chordAngle() } -func (m minDistance) sub(other distance) distance { -	return minDistance(m.chordAngle() - other.chordAngle()) -} -func (m minDistance) chordAngleBound() s1.ChordAngle { -	return m.chordAngle().Expanded(m.chordAngle().MaxAngleError()) -} - -// updateDistance updates its own value if the other value is less() than it is, -// and reports if it updated. -func (m minDistance) updateDistance(dist distance) (distance, bool) { -	if dist.less(m) { -		m = minDistance(dist.chordAngle()) -		return m, true -	} -	return m, false -} - -func (m minDistance) fromChordAngle(o s1.ChordAngle) distance { -	return minDistance(o) -} - -// MinDistanceToPointTarget is a type for computing the minimum distance to a Point. -type MinDistanceToPointTarget struct { -	point Point -	dist  distance -} - -// NewMinDistanceToPointTarget returns a new target for the given Point. -func NewMinDistanceToPointTarget(point Point) *MinDistanceToPointTarget { -	m := minDistance(0) -	return &MinDistanceToPointTarget{point: point, dist: &m} -} - -func (m *MinDistanceToPointTarget) capBound() Cap { -	return CapFromCenterChordAngle(m.point, s1.ChordAngle(0)) -} - -func (m *MinDistanceToPointTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { -	var ok bool -	dist, ok = dist.updateDistance(minDistance(ChordAngleBetweenPoints(p, m.point))) -	return dist, ok -} - -func (m *MinDistanceToPointTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { -	if d, ok := UpdateMinDistance(m.point, edge.V0, edge.V1, dist.chordAngle()); ok { -		dist, _ = dist.updateDistance(minDistance(d)) -		return dist, true -	} -	return dist, false -} - -func (m *MinDistanceToPointTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { -	var ok bool -	dist, ok = dist.updateDistance(minDistance(cell.Distance(m.point))) -	return dist, ok -} - -func (m *MinDistanceToPointTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { -	// For furthest points, we visit the polygons whose interior contains -	// the antipode of the target point. These are the polygons whose -	// distance to the target is maxDistance.zero() -	q := NewContainsPointQuery(index, VertexModelSemiOpen) -	return q.visitContainingShapes(m.point, func(shape Shape) bool { -		return v(shape, m.point) -	}) -} - -func (m *MinDistanceToPointTarget) setMaxError(maxErr s1.ChordAngle) bool { return false } -func (m *MinDistanceToPointTarget) maxBruteForceIndexSize() int           { return 30 } -func (m *MinDistanceToPointTarget) distance() distance                    { return m.dist } - -// ---------------------------------------------------------- - -// MinDistanceToEdgeTarget is a type for computing the minimum distance to an Edge. -type MinDistanceToEdgeTarget struct { -	e    Edge -	dist distance -} - -// NewMinDistanceToEdgeTarget returns a new target for the given Edge. -func NewMinDistanceToEdgeTarget(e Edge) *MinDistanceToEdgeTarget { -	m := minDistance(0) -	return &MinDistanceToEdgeTarget{e: e, dist: m} -} - -// capBound returns a Cap that bounds the antipode of the target. (This -// is the set of points whose maxDistance to the target is maxDistance.zero) -func (m *MinDistanceToEdgeTarget) capBound() Cap { -	// The following computes a radius equal to half the edge length in an -	// efficient and numerically stable way. -	d2 := float64(ChordAngleBetweenPoints(m.e.V0, m.e.V1)) -	r2 := (0.5 * d2) / (1 + math.Sqrt(1-0.25*d2)) -	return CapFromCenterChordAngle(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}, s1.ChordAngleFromSquaredLength(r2)) -} - -func (m *MinDistanceToEdgeTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { -	if d, ok := UpdateMinDistance(p, m.e.V0, m.e.V1, dist.chordAngle()); ok { -		dist, _ = dist.updateDistance(minDistance(d)) -		return dist, true -	} -	return dist, false -} - -func (m *MinDistanceToEdgeTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { -	if d, ok := updateEdgePairMinDistance(m.e.V0, m.e.V1, edge.V0, edge.V1, dist.chordAngle()); ok { -		dist, _ = dist.updateDistance(minDistance(d)) -		return dist, true -	} -	return dist, false -} - -func (m *MinDistanceToEdgeTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { -	return dist.updateDistance(minDistance(cell.DistanceToEdge(m.e.V0, m.e.V1))) -} - -func (m *MinDistanceToEdgeTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { -	// We test the center of the edge in order to ensure that edge targets AB -	// and BA yield identical results (which is not guaranteed by the API but -	// users might expect).  Other options would be to test both endpoints, or -	// return different results for AB and BA in some cases. -	target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}) -	return target.visitContainingShapes(index, v) -} - -func (m *MinDistanceToEdgeTarget) setMaxError(maxErr s1.ChordAngle) bool { return false } -func (m *MinDistanceToEdgeTarget) maxBruteForceIndexSize() int           { return 30 } -func (m *MinDistanceToEdgeTarget) distance() distance                    { return m.dist } - -// ---------------------------------------------------------- - -// MinDistanceToCellTarget is a type for computing the minimum distance to a Cell. -type MinDistanceToCellTarget struct { -	cell Cell -	dist distance -} - -// NewMinDistanceToCellTarget returns a new target for the given Cell. -func NewMinDistanceToCellTarget(cell Cell) *MinDistanceToCellTarget { -	m := minDistance(0) -	return &MinDistanceToCellTarget{cell: cell, dist: m} -} - -func (m *MinDistanceToCellTarget) capBound() Cap { -	return m.cell.CapBound() -} - -func (m *MinDistanceToCellTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { -	return dist.updateDistance(minDistance(m.cell.Distance(p))) -} - -func (m *MinDistanceToCellTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { -	return dist.updateDistance(minDistance(m.cell.DistanceToEdge(edge.V0, edge.V1))) -} - -func (m *MinDistanceToCellTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { -	return dist.updateDistance(minDistance(m.cell.DistanceToCell(cell))) -} - -func (m *MinDistanceToCellTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { -	// The simplest approach is simply to return the polygons that contain the -	// cell center.  Alternatively, if the index cell is smaller than the target -	// cell then we could return all polygons that are present in the -	// shapeIndexCell, but since the index is built conservatively this may -	// include some polygons that don't quite intersect the cell.  So we would -	// either need to recheck for intersection more accurately, or weaken the -	// VisitContainingShapes contract so that it only guarantees approximate -	// intersection, neither of which seems like a good tradeoff. -	target := NewMinDistanceToPointTarget(m.cell.Center()) -	return target.visitContainingShapes(index, v) -} -func (m *MinDistanceToCellTarget) setMaxError(maxErr s1.ChordAngle) bool { return false } -func (m *MinDistanceToCellTarget) maxBruteForceIndexSize() int           { return 30 } -func (m *MinDistanceToCellTarget) distance() distance                    { return m.dist } - -// ---------------------------------------------------------- - -/* -// MinDistanceToCellUnionTarget is a type for computing the minimum distance to a CellUnion. -type MinDistanceToCellUnionTarget struct { -	cu    CellUnion -	query *ClosestCellQuery -	dist  distance -} - -// NewMinDistanceToCellUnionTarget returns a new target for the given CellUnion. -func NewMinDistanceToCellUnionTarget(cu CellUnion) *MinDistanceToCellUnionTarget { -	m := minDistance(0) -	return &MinDistanceToCellUnionTarget{cu: cu, dist: m} -} - -func (m *MinDistanceToCellUnionTarget) capBound() Cap { -	return m.cu.CapBound() -} - -func (m *MinDistanceToCellUnionTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { -	m.query.opts.DistanceLimit = dist.chordAngle() -	target := NewMinDistanceToPointTarget(p) -	r := m.query.findEdge(target) -	if r.ShapeID < 0 { -		return dist, false -	} -	return minDistance(r.Distance), true -} - -func (m *MinDistanceToCellUnionTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { -	// We test the center of the edge in order to ensure that edge targets AB -	// and BA yield identical results (which is not guaranteed by the API but -	// users might expect).  Other options would be to test both endpoints, or -	// return different results for AB and BA in some cases. -	target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}) -	return target.visitContainingShapes(index, v) -} -func (m *MinDistanceToCellUnionTarget) setMaxError(maxErr s1.ChordAngle) bool { -	m.query.opts.MaxError = maxErr -	return true -} -func (m *MinDistanceToCellUnionTarget) maxBruteForceIndexSize() int           { return 30 } -func (m *MinDistanceToCellUnionTarget) distance() distance                    { return m.dist } -*/ - -// ---------------------------------------------------------- - -// MinDistanceToShapeIndexTarget is a type for computing the minimum distance to a ShapeIndex. -type MinDistanceToShapeIndexTarget struct { -	index *ShapeIndex -	query *EdgeQuery -	dist  distance -} - -// NewMinDistanceToShapeIndexTarget returns a new target for the given ShapeIndex. -func NewMinDistanceToShapeIndexTarget(index *ShapeIndex) *MinDistanceToShapeIndexTarget { -	m := minDistance(0) -	return &MinDistanceToShapeIndexTarget{ -		index: index, -		dist:  m, -		query: NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions()), -	} -} - -func (m *MinDistanceToShapeIndexTarget) capBound() Cap { -	// TODO(roberts): Depends on ShapeIndexRegion existing. -	// c := makeS2ShapeIndexRegion(m.index).CapBound() -	// return CapFromCenterRadius(Point{c.Center.Mul(-1)}, c.Radius()) -	panic("not implemented yet") -} - -func (m *MinDistanceToShapeIndexTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { -	m.query.opts.distanceLimit = dist.chordAngle() -	target := NewMinDistanceToPointTarget(p) -	r := m.query.findEdge(target, m.query.opts) -	if r.shapeID < 0 { -		return dist, false -	} -	return r.distance, true -} - -func (m *MinDistanceToShapeIndexTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { -	m.query.opts.distanceLimit = dist.chordAngle() -	target := NewMinDistanceToEdgeTarget(edge) -	r := m.query.findEdge(target, m.query.opts) -	if r.shapeID < 0 { -		return dist, false -	} -	return r.distance, true -} - -func (m *MinDistanceToShapeIndexTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { -	m.query.opts.distanceLimit = dist.chordAngle() -	target := NewMinDistanceToCellTarget(cell) -	r := m.query.findEdge(target, m.query.opts) -	if r.shapeID < 0 { -		return dist, false -	} -	return r.distance, true -} - -// For target types consisting of multiple connected components (such as this one), -// this method should return the polygons containing the antipodal reflection of -// *any* connected component. (It is sufficient to test containment of one vertex per -// connected component, since this allows us to also return any polygon whose -// boundary has distance.zero() to the target.) -func (m *MinDistanceToShapeIndexTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { -	// It is sufficient to find the set of chain starts in the target index -	// (i.e., one vertex per connected component of edges) that are contained by -	// the query index, except for one special case to handle full polygons. -	// -	// TODO(roberts): Do this by merge-joining the two ShapeIndexes. -	for _, shape := range m.index.shapes { -		numChains := shape.NumChains() -		// Shapes that don't have any edges require a special case (below). -		testedPoint := false -		for c := 0; c < numChains; c++ { -			chain := shape.Chain(c) -			if chain.Length == 0 { -				continue -			} -			testedPoint = true -			target := NewMinDistanceToPointTarget(shape.ChainEdge(c, 0).V0) -			if !target.visitContainingShapes(index, v) { -				return false -			} -		} -		if !testedPoint { -			// Special case to handle full polygons. -			ref := shape.ReferencePoint() -			if !ref.Contained { -				continue -			} -			target := NewMinDistanceToPointTarget(ref.Point) -			if !target.visitContainingShapes(index, v) { -				return false -			} -		} -	} -	return true -} - -func (m *MinDistanceToShapeIndexTarget) setMaxError(maxErr s1.ChordAngle) bool { -	m.query.opts.maxError = maxErr -	return true -} -func (m *MinDistanceToShapeIndexTarget) maxBruteForceIndexSize() int { return 25 } -func (m *MinDistanceToShapeIndexTarget) distance() distance          { return m.dist } -func (m *MinDistanceToShapeIndexTarget) setIncludeInteriors(b bool) { -	m.query.opts.includeInteriors = b -} -func (m *MinDistanceToShapeIndexTarget) setUseBruteForce(b bool) { m.query.opts.useBruteForce = b } - -// TODO(roberts): Remaining methods -// -// func (m *MinDistanceToShapeIndexTarget) capBound() Cap { -// CellUnionTarget diff --git a/vendor/github.com/golang/geo/s2/nthderivative.go b/vendor/github.com/golang/geo/s2/nthderivative.go deleted file mode 100644 index 73445d6c9..000000000 --- a/vendor/github.com/golang/geo/s2/nthderivative.go +++ /dev/null @@ -1,88 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// nthDerivativeCoder provides Nth Derivative Coding. -//   (In signal processing disciplines, this is known as N-th Delta Coding.) -// -// Good for varint coding integer sequences with polynomial trends. -// -// Instead of coding a sequence of values directly, code its nth-order discrete -// derivative.  Overflow in integer addition and subtraction makes this a -// lossless transform. -// -//                                       constant     linear      quadratic -//                                        trend       trend         trend -//                                      /        \  /        \  /           \_ -// input                               |0  0  0  0  1  2  3  4  9  16  25  36 -// 0th derivative(identity)            |0  0  0  0  1  2  3  4  9  16  25  36 -// 1st derivative(delta coding)        |   0  0  0  1  1  1  1  5   7   9  11 -// 2nd derivative(linear prediction)   |      0  0  1  0  0  0  4   2   2   2 -//                                      ------------------------------------- -//                                      0  1  2  3  4  5  6  7  8   9  10  11 -//                                                  n in sequence -// -// Higher-order codings can break even or be detrimental on other sequences. -// -//                                           random            oscillating -//                                      /               \  /                  \_ -// input                               |5  9  6  1   8  8  2 -2   4  -4   6  -6 -// 0th derivative(identity)            |5  9  6  1   8  8  2 -2   4  -4   6  -6 -// 1st derivative(delta coding)        |   4 -3 -5   7  0 -6 -4   6  -8  10 -12 -// 2nd derivative(linear prediction)   |     -7 -2  12 -7 -6  2  10 -14  18 -22 -//                                      --------------------------------------- -//                                      0  1  2  3  4   5  6  7   8   9  10  11 -//                                                  n in sequence -// -// Note that the nth derivative isn't available until sequence item n.  Earlier -// values are coded at lower order.  For the above table, read 5 4 -7 -2 12 ... -type nthDerivativeCoder struct { -	n, m   int -	memory [10]int32 -} - -// newNthDerivativeCoder returns a new coder, where n is the derivative order of the encoder (the N in NthDerivative). -// n must be within [0,10]. -func newNthDerivativeCoder(n int) *nthDerivativeCoder { -	c := &nthDerivativeCoder{n: n} -	if n < 0 || n > len(c.memory) { -		panic("unsupported n. Must be within [0,10].") -	} -	return c -} - -func (c *nthDerivativeCoder) encode(k int32) int32 { -	for i := 0; i < c.m; i++ { -		delta := k - c.memory[i] -		c.memory[i] = k -		k = delta -	} -	if c.m < c.n { -		c.memory[c.m] = k -		c.m++ -	} -	return k -} - -func (c *nthDerivativeCoder) decode(k int32) int32 { -	if c.m < c.n { -		c.m++ -	} -	for i := c.m - 1; i >= 0; i-- { -		c.memory[i] += k -		k = c.memory[i] -	} -	return k -} diff --git a/vendor/github.com/golang/geo/s2/paddedcell.go b/vendor/github.com/golang/geo/s2/paddedcell.go deleted file mode 100644 index ac304a6cc..000000000 --- a/vendor/github.com/golang/geo/s2/paddedcell.go +++ /dev/null @@ -1,252 +0,0 @@ -// Copyright 2016 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"github.com/golang/geo/r1" -	"github.com/golang/geo/r2" -) - -// PaddedCell represents a Cell whose (u,v)-range has been expanded on -// all sides by a given amount of "padding". Unlike Cell, its methods and -// representation are optimized for clipping edges against Cell boundaries -// to determine which cells are intersected by a given set of edges. -type PaddedCell struct { -	id          CellID -	padding     float64 -	bound       r2.Rect -	middle      r2.Rect // A rect in (u, v)-space that belongs to all four children. -	iLo, jLo    int     // Minimum (i,j)-coordinates of this cell before padding -	orientation int     // Hilbert curve orientation of this cell. -	level       int -} - -// PaddedCellFromCellID constructs a padded cell with the given padding. -func PaddedCellFromCellID(id CellID, padding float64) *PaddedCell { -	p := &PaddedCell{ -		id:      id, -		padding: padding, -		middle:  r2.EmptyRect(), -	} - -	// Fast path for constructing a top-level face (the most common case). -	if id.isFace() { -		limit := padding + 1 -		p.bound = r2.Rect{r1.Interval{-limit, limit}, r1.Interval{-limit, limit}} -		p.middle = r2.Rect{r1.Interval{-padding, padding}, r1.Interval{-padding, padding}} -		p.orientation = id.Face() & 1 -		return p -	} - -	_, p.iLo, p.jLo, p.orientation = id.faceIJOrientation() -	p.level = id.Level() -	p.bound = ijLevelToBoundUV(p.iLo, p.jLo, p.level).ExpandedByMargin(padding) -	ijSize := sizeIJ(p.level) -	p.iLo &= -ijSize -	p.jLo &= -ijSize - -	return p -} - -// PaddedCellFromParentIJ constructs the child of parent with the given (i,j) index. -// The four child cells have indices of (0,0), (0,1), (1,0), (1,1), where the i and j -// indices correspond to increasing u- and v-values respectively. -func PaddedCellFromParentIJ(parent *PaddedCell, i, j int) *PaddedCell { -	// Compute the position and orientation of the child incrementally from the -	// orientation of the parent. -	pos := ijToPos[parent.orientation][2*i+j] - -	p := &PaddedCell{ -		id:          parent.id.Children()[pos], -		padding:     parent.padding, -		bound:       parent.bound, -		orientation: parent.orientation ^ posToOrientation[pos], -		level:       parent.level + 1, -		middle:      r2.EmptyRect(), -	} - -	ijSize := sizeIJ(p.level) -	p.iLo = parent.iLo + i*ijSize -	p.jLo = parent.jLo + j*ijSize - -	// For each child, one corner of the bound is taken directly from the parent -	// while the diagonally opposite corner is taken from middle(). -	middle := parent.Middle() -	if i == 1 { -		p.bound.X.Lo = middle.X.Lo -	} else { -		p.bound.X.Hi = middle.X.Hi -	} -	if j == 1 { -		p.bound.Y.Lo = middle.Y.Lo -	} else { -		p.bound.Y.Hi = middle.Y.Hi -	} - -	return p -} - -// CellID returns the CellID this padded cell represents. -func (p PaddedCell) CellID() CellID { -	return p.id -} - -// Padding returns the amount of padding on this cell. -func (p PaddedCell) Padding() float64 { -	return p.padding -} - -// Level returns the level this cell is at. -func (p PaddedCell) Level() int { -	return p.level -} - -// Center returns the center of this cell. -func (p PaddedCell) Center() Point { -	ijSize := sizeIJ(p.level) -	si := uint32(2*p.iLo + ijSize) -	ti := uint32(2*p.jLo + ijSize) -	return Point{faceSiTiToXYZ(p.id.Face(), si, ti).Normalize()} -} - -// Middle returns the rectangle in the middle of this cell that belongs to -// all four of its children in (u,v)-space. -func (p *PaddedCell) Middle() r2.Rect { -	// We compute this field lazily because it is not needed the majority of the -	// time (i.e., for cells where the recursion terminates). -	if p.middle.IsEmpty() { -		ijSize := sizeIJ(p.level) -		u := stToUV(siTiToST(uint32(2*p.iLo + ijSize))) -		v := stToUV(siTiToST(uint32(2*p.jLo + ijSize))) -		p.middle = r2.Rect{ -			r1.Interval{u - p.padding, u + p.padding}, -			r1.Interval{v - p.padding, v + p.padding}, -		} -	} -	return p.middle -} - -// Bound returns the bounds for this cell in (u,v)-space including padding. -func (p PaddedCell) Bound() r2.Rect { -	return p.bound -} - -// ChildIJ returns the (i,j) coordinates for the child cell at the given traversal -// position. The traversal position corresponds to the order in which child -// cells are visited by the Hilbert curve. -func (p PaddedCell) ChildIJ(pos int) (i, j int) { -	ij := posToIJ[p.orientation][pos] -	return ij >> 1, ij & 1 -} - -// EntryVertex return the vertex where the space-filling curve enters this cell. -func (p PaddedCell) EntryVertex() Point { -	// The curve enters at the (0,0) vertex unless the axis directions are -	// reversed, in which case it enters at the (1,1) vertex. -	i := p.iLo -	j := p.jLo -	if p.orientation&invertMask != 0 { -		ijSize := sizeIJ(p.level) -		i += ijSize -		j += ijSize -	} -	return Point{faceSiTiToXYZ(p.id.Face(), uint32(2*i), uint32(2*j)).Normalize()} -} - -// ExitVertex returns the vertex where the space-filling curve exits this cell. -func (p PaddedCell) ExitVertex() Point { -	// The curve exits at the (1,0) vertex unless the axes are swapped or -	// inverted but not both, in which case it exits at the (0,1) vertex. -	i := p.iLo -	j := p.jLo -	ijSize := sizeIJ(p.level) -	if p.orientation == 0 || p.orientation == swapMask+invertMask { -		i += ijSize -	} else { -		j += ijSize -	} -	return Point{faceSiTiToXYZ(p.id.Face(), uint32(2*i), uint32(2*j)).Normalize()} -} - -// ShrinkToFit returns the smallest CellID that contains all descendants of this -// padded cell whose bounds intersect the given rect. For algorithms that use -// recursive subdivision to find the cells that intersect a particular object, this -// method can be used to skip all of the initial subdivision steps where only -// one child needs to be expanded. -// -// Note that this method is not the same as returning the smallest cell that contains -// the intersection of this cell with rect. Because of the padding, even if one child -// completely contains rect it is still possible that a neighboring child may also -// intersect the given rect. -// -// The provided Rect must intersect the bounds of this cell. -func (p *PaddedCell) ShrinkToFit(rect r2.Rect) CellID { -	// Quick rejection test: if rect contains the center of this cell along -	// either axis, then no further shrinking is possible. -	if p.level == 0 { -		// Fast path (most calls to this function start with a face cell). -		if rect.X.Contains(0) || rect.Y.Contains(0) { -			return p.id -		} -	} - -	ijSize := sizeIJ(p.level) -	if rect.X.Contains(stToUV(siTiToST(uint32(2*p.iLo+ijSize)))) || -		rect.Y.Contains(stToUV(siTiToST(uint32(2*p.jLo+ijSize)))) { -		return p.id -	} - -	// Otherwise we expand rect by the given padding on all sides and find -	// the range of coordinates that it spans along the i- and j-axes. We then -	// compute the highest bit position at which the min and max coordinates -	// differ. This corresponds to the first cell level at which at least two -	// children intersect rect. - -	// Increase the padding to compensate for the error in uvToST. -	// (The constant below is a provable upper bound on the additional error.) -	padded := rect.ExpandedByMargin(p.padding + 1.5*dblEpsilon) -	iMin, jMin := p.iLo, p.jLo // Min i- or j- coordinate spanned by padded -	var iXor, jXor int         // XOR of the min and max i- or j-coordinates - -	if iMin < stToIJ(uvToST(padded.X.Lo)) { -		iMin = stToIJ(uvToST(padded.X.Lo)) -	} -	if a, b := p.iLo+ijSize-1, stToIJ(uvToST(padded.X.Hi)); a <= b { -		iXor = iMin ^ a -	} else { -		iXor = iMin ^ b -	} - -	if jMin < stToIJ(uvToST(padded.Y.Lo)) { -		jMin = stToIJ(uvToST(padded.Y.Lo)) -	} -	if a, b := p.jLo+ijSize-1, stToIJ(uvToST(padded.Y.Hi)); a <= b { -		jXor = jMin ^ a -	} else { -		jXor = jMin ^ b -	} - -	// Compute the highest bit position where the two i- or j-endpoints differ, -	// and then choose the cell level that includes both of these endpoints. So -	// if both pairs of endpoints are equal we choose maxLevel; if they differ -	// only at bit 0, we choose (maxLevel - 1), and so on. -	levelMSB := uint64(((iXor | jXor) << 1) + 1) -	level := maxLevel - findMSBSetNonZero64(levelMSB) -	if level <= p.level { -		return p.id -	} - -	return cellIDFromFaceIJ(p.id.Face(), iMin, jMin).Parent(level) -} diff --git a/vendor/github.com/golang/geo/s2/point.go b/vendor/github.com/golang/geo/s2/point.go deleted file mode 100644 index 89e7ae0ed..000000000 --- a/vendor/github.com/golang/geo/s2/point.go +++ /dev/null @@ -1,258 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" -	"io" -	"math" -	"sort" - -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -// Point represents a point on the unit sphere as a normalized 3D vector. -// Fields should be treated as read-only. Use one of the factory methods for creation. -type Point struct { -	r3.Vector -} - -// sortPoints sorts the slice of Points in place. -func sortPoints(e []Point) { -	sort.Sort(points(e)) -} - -// points implements the Sort interface for slices of Point. -type points []Point - -func (p points) Len() int           { return len(p) } -func (p points) Swap(i, j int)      { p[i], p[j] = p[j], p[i] } -func (p points) Less(i, j int) bool { return p[i].Cmp(p[j].Vector) == -1 } - -// PointFromCoords creates a new normalized point from coordinates. -// -// This always returns a valid point. If the given coordinates can not be normalized -// the origin point will be returned. -// -// This behavior is different from the C++ construction of a S2Point from coordinates -// (i.e. S2Point(x, y, z)) in that in C++ they do not Normalize. -func PointFromCoords(x, y, z float64) Point { -	if x == 0 && y == 0 && z == 0 { -		return OriginPoint() -	} -	return Point{r3.Vector{x, y, z}.Normalize()} -} - -// OriginPoint returns a unique "origin" on the sphere for operations that need a fixed -// reference point. In particular, this is the "point at infinity" used for -// point-in-polygon testing (by counting the number of edge crossings). -// -// It should *not* be a point that is commonly used in edge tests in order -// to avoid triggering code to handle degenerate cases (this rules out the -// north and south poles). It should also not be on the boundary of any -// low-level S2Cell for the same reason. -func OriginPoint() Point { -	return Point{r3.Vector{-0.0099994664350250197, 0.0025924542609324121, 0.99994664350250195}} -} - -// PointCross returns a Point that is orthogonal to both p and op. This is similar to -// p.Cross(op) (the true cross product) except that it does a better job of -// ensuring orthogonality when the Point is nearly parallel to op, it returns -// a non-zero result even when p == op or p == -op and the result is a Point. -// -// It satisfies the following properties (f == PointCross): -// -//   (1) f(p, op) != 0 for all p, op -//   (2) f(op,p) == -f(p,op) unless p == op or p == -op -//   (3) f(-p,op) == -f(p,op) unless p == op or p == -op -//   (4) f(p,-op) == -f(p,op) unless p == op or p == -op -func (p Point) PointCross(op Point) Point { -	// NOTE(dnadasi): In the C++ API the equivalent method here was known as "RobustCrossProd", -	// but PointCross more accurately describes how this method is used. -	x := p.Add(op.Vector).Cross(op.Sub(p.Vector)) - -	// Compare exactly to the 0 vector. -	if x == (r3.Vector{}) { -		// The only result that makes sense mathematically is to return zero, but -		// we find it more convenient to return an arbitrary orthogonal vector. -		return Point{p.Ortho()} -	} - -	return Point{x} -} - -// OrderedCCW returns true if the edges OA, OB, and OC are encountered in that -// order while sweeping CCW around the point O. -// -// You can think of this as testing whether A <= B <= C with respect to the -// CCW ordering around O that starts at A, or equivalently, whether B is -// contained in the range of angles (inclusive) that starts at A and extends -// CCW to C. Properties: -// -//  (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b -//  (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c -//  (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c -//  (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true -//  (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false -func OrderedCCW(a, b, c, o Point) bool { -	sum := 0 -	if RobustSign(b, o, a) != Clockwise { -		sum++ -	} -	if RobustSign(c, o, b) != Clockwise { -		sum++ -	} -	if RobustSign(a, o, c) == CounterClockwise { -		sum++ -	} -	return sum >= 2 -} - -// Distance returns the angle between two points. -func (p Point) Distance(b Point) s1.Angle { -	return p.Vector.Angle(b.Vector) -} - -// ApproxEqual reports whether the two points are similar enough to be equal. -func (p Point) ApproxEqual(other Point) bool { -	return p.approxEqual(other, s1.Angle(epsilon)) -} - -// approxEqual reports whether the two points are within the given epsilon. -func (p Point) approxEqual(other Point, eps s1.Angle) bool { -	return p.Vector.Angle(other.Vector) <= eps -} - -// ChordAngleBetweenPoints constructs a ChordAngle corresponding to the distance -// between the two given points. The points must be unit length. -func ChordAngleBetweenPoints(x, y Point) s1.ChordAngle { -	return s1.ChordAngle(math.Min(4.0, x.Sub(y.Vector).Norm2())) -} - -// regularPoints generates a slice of points shaped as a regular polygon with -// the numVertices vertices, all located on a circle of the specified angular radius -// around the center. The radius is the actual distance from center to each vertex. -func regularPoints(center Point, radius s1.Angle, numVertices int) []Point { -	return regularPointsForFrame(getFrame(center), radius, numVertices) -} - -// regularPointsForFrame generates a slice of points shaped as a regular polygon -// with numVertices vertices, all on a circle of the specified angular radius around -// the center. The radius is the actual distance from the center to each vertex. -func regularPointsForFrame(frame matrix3x3, radius s1.Angle, numVertices int) []Point { -	// We construct the loop in the given frame coordinates, with the center at -	// (0, 0, 1). For a loop of radius r, the loop vertices have the form -	// (x, y, z) where x^2 + y^2 = sin(r) and z = cos(r). The distance on the -	// sphere (arc length) from each vertex to the center is acos(cos(r)) = r. -	z := math.Cos(radius.Radians()) -	r := math.Sin(radius.Radians()) -	radianStep := 2 * math.Pi / float64(numVertices) -	var vertices []Point - -	for i := 0; i < numVertices; i++ { -		angle := float64(i) * radianStep -		p := Point{r3.Vector{r * math.Cos(angle), r * math.Sin(angle), z}} -		vertices = append(vertices, Point{fromFrame(frame, p).Normalize()}) -	} - -	return vertices -} - -// CapBound returns a bounding cap for this point. -func (p Point) CapBound() Cap { -	return CapFromPoint(p) -} - -// RectBound returns a bounding latitude-longitude rectangle from this point. -func (p Point) RectBound() Rect { -	return RectFromLatLng(LatLngFromPoint(p)) -} - -// ContainsCell returns false as Points do not contain any other S2 types. -func (p Point) ContainsCell(c Cell) bool { return false } - -// IntersectsCell reports whether this Point intersects the given cell. -func (p Point) IntersectsCell(c Cell) bool { -	return c.ContainsPoint(p) -} - -// ContainsPoint reports if this Point contains the other Point. -// (This method is named to satisfy the Region interface.) -func (p Point) ContainsPoint(other Point) bool { -	return p.Contains(other) -} - -// CellUnionBound computes a covering of the Point. -func (p Point) CellUnionBound() []CellID { -	return p.CapBound().CellUnionBound() -} - -// Contains reports if this Point contains the other Point. -// (This method matches all other s2 types where the reflexive Contains -// method does not contain the type's name.) -func (p Point) Contains(other Point) bool { return p == other } - -// Encode encodes the Point. -func (p Point) Encode(w io.Writer) error { -	e := &encoder{w: w} -	p.encode(e) -	return e.err -} - -func (p Point) encode(e *encoder) { -	e.writeInt8(encodingVersion) -	e.writeFloat64(p.X) -	e.writeFloat64(p.Y) -	e.writeFloat64(p.Z) -} - -// Decode decodes the Point. -func (p *Point) Decode(r io.Reader) error { -	d := &decoder{r: asByteReader(r)} -	p.decode(d) -	return d.err -} - -func (p *Point) decode(d *decoder) { -	version := d.readInt8() -	if d.err != nil { -		return -	} -	if version != encodingVersion { -		d.err = fmt.Errorf("only version %d is supported", encodingVersion) -		return -	} -	p.X = d.readFloat64() -	p.Y = d.readFloat64() -	p.Z = d.readFloat64() -} - -// Rotate the given point about the given axis by the given angle. p and -// axis must be unit length; angle has no restrictions (e.g., it can be -// positive, negative, greater than 360 degrees, etc). -func Rotate(p, axis Point, angle s1.Angle) Point { -	// Let M be the plane through P that is perpendicular to axis, and let -	// center be the point where M intersects axis. We construct a -	// right-handed orthogonal frame (dx, dy, center) such that dx is the -	// vector from center to P, and dy has the same length as dx. The -	// result can then be expressed as (cos(angle)*dx + sin(angle)*dy + center). -	center := axis.Mul(p.Dot(axis.Vector)) -	dx := p.Sub(center) -	dy := axis.Cross(p.Vector) -	// Mathematically the result is unit length, but normalization is necessary -	// to ensure that numerical errors don't accumulate. -	return Point{dx.Mul(math.Cos(angle.Radians())).Add(dy.Mul(math.Sin(angle.Radians()))).Add(center).Normalize()} -} diff --git a/vendor/github.com/golang/geo/s2/point_measures.go b/vendor/github.com/golang/geo/s2/point_measures.go deleted file mode 100644 index 6fa9b7ae4..000000000 --- a/vendor/github.com/golang/geo/s2/point_measures.go +++ /dev/null @@ -1,149 +0,0 @@ -// Copyright 2018 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" - -	"github.com/golang/geo/s1" -) - -// PointArea returns the area of triangle ABC. This method combines two different -// algorithms to get accurate results for both large and small triangles. -// The maximum error is about 5e-15 (about 0.25 square meters on the Earth's -// surface), the same as GirardArea below, but unlike that method it is -// also accurate for small triangles. Example: when the true area is 100 -// square meters, PointArea yields an error about 1 trillion times smaller than -// GirardArea. -// -// All points should be unit length, and no two points should be antipodal. -// The area is always positive. -func PointArea(a, b, c Point) float64 { -	// This method is based on l'Huilier's theorem, -	// -	//   tan(E/4) = sqrt(tan(s/2) tan((s-a)/2) tan((s-b)/2) tan((s-c)/2)) -	// -	// where E is the spherical excess of the triangle (i.e. its area), -	//       a, b, c are the side lengths, and -	//       s is the semiperimeter (a + b + c) / 2. -	// -	// The only significant source of error using l'Huilier's method is the -	// cancellation error of the terms (s-a), (s-b), (s-c). This leads to a -	// *relative* error of about 1e-16 * s / min(s-a, s-b, s-c). This compares -	// to a relative error of about 1e-15 / E using Girard's formula, where E is -	// the true area of the triangle. Girard's formula can be even worse than -	// this for very small triangles, e.g. a triangle with a true area of 1e-30 -	// might evaluate to 1e-5. -	// -	// So, we prefer l'Huilier's formula unless dmin < s * (0.1 * E), where -	// dmin = min(s-a, s-b, s-c). This basically includes all triangles -	// except for extremely long and skinny ones. -	// -	// Since we don't know E, we would like a conservative upper bound on -	// the triangle area in terms of s and dmin. It's possible to show that -	// E <= k1 * s * sqrt(s * dmin), where k1 = 2*sqrt(3)/Pi (about 1). -	// Using this, it's easy to show that we should always use l'Huilier's -	// method if dmin >= k2 * s^5, where k2 is about 1e-2. Furthermore, -	// if dmin < k2 * s^5, the triangle area is at most k3 * s^4, where -	// k3 is about 0.1. Since the best case error using Girard's formula -	// is about 1e-15, this means that we shouldn't even consider it unless -	// s >= 3e-4 or so. -	sa := float64(b.Angle(c.Vector)) -	sb := float64(c.Angle(a.Vector)) -	sc := float64(a.Angle(b.Vector)) -	s := 0.5 * (sa + sb + sc) -	if s >= 3e-4 { -		// Consider whether Girard's formula might be more accurate. -		dmin := s - math.Max(sa, math.Max(sb, sc)) -		if dmin < 1e-2*s*s*s*s*s { -			// This triangle is skinny enough to use Girard's formula. -			area := GirardArea(a, b, c) -			if dmin < s*0.1*area { -				return area -			} -		} -	} - -	// Use l'Huilier's formula. -	return 4 * math.Atan(math.Sqrt(math.Max(0.0, math.Tan(0.5*s)*math.Tan(0.5*(s-sa))* -		math.Tan(0.5*(s-sb))*math.Tan(0.5*(s-sc))))) -} - -// GirardArea returns the area of the triangle computed using Girard's formula. -// All points should be unit length, and no two points should be antipodal. -// -// This method is about twice as fast as PointArea() but has poor relative -// accuracy for small triangles. The maximum error is about 5e-15 (about -// 0.25 square meters on the Earth's surface) and the average error is about -// 1e-15. These bounds apply to triangles of any size, even as the maximum -// edge length of the triangle approaches 180 degrees. But note that for -// such triangles, tiny perturbations of the input points can change the -// true mathematical area dramatically. -func GirardArea(a, b, c Point) float64 { -	// This is equivalent to the usual Girard's formula but is slightly more -	// accurate, faster to compute, and handles a == b == c without a special -	// case. PointCross is necessary to get good accuracy when two of -	// the input points are very close together. -	ab := a.PointCross(b) -	bc := b.PointCross(c) -	ac := a.PointCross(c) - -	area := float64(ab.Angle(ac.Vector) - ab.Angle(bc.Vector) + bc.Angle(ac.Vector)) -	if area < 0 { -		area = 0 -	} -	return area -} - -// SignedArea returns a positive value for counterclockwise triangles and a negative -// value otherwise (similar to PointArea). -func SignedArea(a, b, c Point) float64 { -	return float64(RobustSign(a, b, c)) * PointArea(a, b, c) -} - -// Angle returns the interior angle at the vertex B in the triangle ABC. The -// return value is always in the range [0, pi]. All points should be -// normalized. Ensures that Angle(a,b,c) == Angle(c,b,a) for all a,b,c. -// -// The angle is undefined if A or C is diametrically opposite from B, and -// becomes numerically unstable as the length of edge AB or BC approaches -// 180 degrees. -func Angle(a, b, c Point) s1.Angle { -	// PointCross is necessary to get good accuracy when two of the input -	// points are very close together. -	return a.PointCross(b).Angle(c.PointCross(b).Vector) -} - -// TurnAngle returns the exterior angle at vertex B in the triangle ABC. The -// return value is positive if ABC is counterclockwise and negative otherwise. -// If you imagine an ant walking from A to B to C, this is the angle that the -// ant turns at vertex B (positive = left = CCW, negative = right = CW). -// This quantity is also known as the "geodesic curvature" at B. -// -// Ensures that TurnAngle(a,b,c) == -TurnAngle(c,b,a) for all distinct -// a,b,c. The result is undefined if (a == b || b == c), but is either -// -Pi or Pi if (a == c). All points should be normalized. -func TurnAngle(a, b, c Point) s1.Angle { -	// We use PointCross to get good accuracy when two points are very -	// close together, and RobustSign to ensure that the sign is correct for -	// turns that are close to 180 degrees. -	angle := a.PointCross(b).Angle(b.PointCross(c).Vector) - -	// Don't return RobustSign * angle because it is legal to have (a == c). -	if RobustSign(a, b, c) == CounterClockwise { -		return angle -	} -	return -angle -} diff --git a/vendor/github.com/golang/geo/s2/point_vector.go b/vendor/github.com/golang/geo/s2/point_vector.go deleted file mode 100644 index f8e6f65b5..000000000 --- a/vendor/github.com/golang/geo/s2/point_vector.go +++ /dev/null @@ -1,42 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// Shape interface enforcement -var ( -	_ Shape = (*PointVector)(nil) -) - -// PointVector is a Shape representing a set of Points. Each point -// is represented as a degenerate edge with the same starting and ending -// vertices. -// -// This type is useful for adding a collection of points to an ShapeIndex. -// -// Its methods are on *PointVector due to implementation details of ShapeIndex. -type PointVector []Point - -func (p *PointVector) NumEdges() int                     { return len(*p) } -func (p *PointVector) Edge(i int) Edge                   { return Edge{(*p)[i], (*p)[i]} } -func (p *PointVector) ReferencePoint() ReferencePoint    { return OriginReferencePoint(false) } -func (p *PointVector) NumChains() int                    { return len(*p) } -func (p *PointVector) Chain(i int) Chain                 { return Chain{i, 1} } -func (p *PointVector) ChainEdge(i, j int) Edge           { return Edge{(*p)[i], (*p)[j]} } -func (p *PointVector) ChainPosition(e int) ChainPosition { return ChainPosition{e, 0} } -func (p *PointVector) Dimension() int                    { return 0 } -func (p *PointVector) IsEmpty() bool                     { return defaultShapeIsEmpty(p) } -func (p *PointVector) IsFull() bool                      { return defaultShapeIsFull(p) } -func (p *PointVector) typeTag() typeTag                  { return typeTagPointVector } -func (p *PointVector) privateInterface()                 {} diff --git a/vendor/github.com/golang/geo/s2/pointcompression.go b/vendor/github.com/golang/geo/s2/pointcompression.go deleted file mode 100644 index 018381799..000000000 --- a/vendor/github.com/golang/geo/s2/pointcompression.go +++ /dev/null @@ -1,319 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"errors" -	"fmt" - -	"github.com/golang/geo/r3" -) - -// maxEncodedVertices is the maximum number of vertices, in a row, to be encoded or decoded. -// On decode, this defends against malicious encodings that try and have us exceed RAM. -const maxEncodedVertices = 50000000 - -// xyzFaceSiTi represents the The XYZ and face,si,ti coordinates of a Point -// and, if this point is equal to the center of a Cell, the level of this cell -// (-1 otherwise). This is used for Loops and Polygons to store data in a more -// compressed format. -type xyzFaceSiTi struct { -	xyz    Point -	face   int -	si, ti uint32 -	level  int -} - -const derivativeEncodingOrder = 2 - -func appendFace(faces []faceRun, face int) []faceRun { -	if len(faces) == 0 || faces[len(faces)-1].face != face { -		return append(faces, faceRun{face, 1}) -	} -	faces[len(faces)-1].count++ -	return faces -} - -// encodePointsCompressed uses an optimized compressed format to encode the given values. -func encodePointsCompressed(e *encoder, vertices []xyzFaceSiTi, level int) { -	var faces []faceRun -	for _, v := range vertices { -		faces = appendFace(faces, v.face) -	} -	encodeFaces(e, faces) - -	type piQi struct { -		pi, qi uint32 -	} -	verticesPiQi := make([]piQi, len(vertices)) -	for i, v := range vertices { -		verticesPiQi[i] = piQi{siTitoPiQi(v.si, level), siTitoPiQi(v.ti, level)} -	} -	piCoder, qiCoder := newNthDerivativeCoder(derivativeEncodingOrder), newNthDerivativeCoder(derivativeEncodingOrder) -	for i, v := range verticesPiQi { -		f := encodePointCompressed -		if i == 0 { -			// The first point will be just the (pi, qi) coordinates -			// of the Point. NthDerivativeCoder will not save anything -			// in that case, so we encode in fixed format rather than varint -			// to avoid the varint overhead. -			f = encodeFirstPointFixedLength -		} -		f(e, v.pi, v.qi, level, piCoder, qiCoder) -	} - -	var offCenter []int -	for i, v := range vertices { -		if v.level != level { -			offCenter = append(offCenter, i) -		} -	} -	e.writeUvarint(uint64(len(offCenter))) -	for _, idx := range offCenter { -		e.writeUvarint(uint64(idx)) -		e.writeFloat64(vertices[idx].xyz.X) -		e.writeFloat64(vertices[idx].xyz.Y) -		e.writeFloat64(vertices[idx].xyz.Z) -	} -} - -func encodeFirstPointFixedLength(e *encoder, pi, qi uint32, level int, piCoder, qiCoder *nthDerivativeCoder) { -	// Do not ZigZagEncode the first point, since it cannot be negative. -	codedPi, codedQi := piCoder.encode(int32(pi)), qiCoder.encode(int32(qi)) -	// Interleave to reduce overhead from two partial bytes to one. -	interleaved := interleaveUint32(uint32(codedPi), uint32(codedQi)) - -	// Write as little endian. -	bytesRequired := (level + 7) / 8 * 2 -	for i := 0; i < bytesRequired; i++ { -		e.writeUint8(uint8(interleaved)) -		interleaved >>= 8 -	} -} - -// encodePointCompressed encodes points into e. -// Given a sequence of Points assumed to be the center of level-k cells, -// compresses it into a stream using the following method: -// - decompose the points into (face, si, ti) tuples. -// - run-length encode the faces, combining face number and count into a -//     varint32. See the faceRun struct. -// - right shift the (si, ti) to remove the part that's constant for all cells -//     of level-k. The result is called the (pi, qi) space. -// - 2nd derivative encode the pi and qi sequences (linear prediction) -// - zig-zag encode all derivative values but the first, which cannot be -//     negative -// - interleave the zig-zag encoded values -// - encode the first interleaved value in a fixed length encoding -//     (varint would make this value larger) -// - encode the remaining interleaved values as varint64s, as the -//     derivative encoding should make the values small. -// In addition, provides a lossless method to compress a sequence of points even -// if some points are not the center of level-k cells. These points are stored -// exactly, using 3 double precision values, after the above encoded string, -// together with their index in the sequence (this leads to some redundancy - it -// is expected that only a small fraction of the points are not cell centers). -// -// To encode leaf cells, this requires 8 bytes for the first vertex plus -// an average of 3.8 bytes for each additional vertex, when computed on -// Google's geographic repository. -func encodePointCompressed(e *encoder, pi, qi uint32, level int, piCoder, qiCoder *nthDerivativeCoder) { -	// ZigZagEncode, as varint requires the maximum number of bytes for -	// negative numbers. -	zzPi := zigzagEncode(piCoder.encode(int32(pi))) -	zzQi := zigzagEncode(qiCoder.encode(int32(qi))) -	// Interleave to reduce overhead from two partial bytes to one. -	interleaved := interleaveUint32(zzPi, zzQi) -	e.writeUvarint(interleaved) -} - -type faceRun struct { -	face, count int -} - -func decodeFaceRun(d *decoder) faceRun { -	faceAndCount := d.readUvarint() -	ret := faceRun{ -		face:  int(faceAndCount % numFaces), -		count: int(faceAndCount / numFaces), -	} -	if ret.count <= 0 && d.err == nil { -		d.err = errors.New("non-positive count for face run") -	} -	return ret -} - -func decodeFaces(numVertices int, d *decoder) []faceRun { -	var frs []faceRun -	for nparsed := 0; nparsed < numVertices; { -		fr := decodeFaceRun(d) -		if d.err != nil { -			return nil -		} -		frs = append(frs, fr) -		nparsed += fr.count -	} -	return frs -} - -// encodeFaceRun encodes each faceRun as a varint64 with value numFaces * count + face. -func encodeFaceRun(e *encoder, fr faceRun) { -	// It isn't necessary to encode the number of faces left for the last run, -	// but since this would only help if there were more than 21 faces, it will -	// be a small overall savings, much smaller than the bound encoding. -	coded := numFaces*uint64(fr.count) + uint64(fr.face) -	e.writeUvarint(coded) -} - -func encodeFaces(e *encoder, frs []faceRun) { -	for _, fr := range frs { -		encodeFaceRun(e, fr) -	} -} - -type facesIterator struct { -	faces []faceRun -	// How often have we yet shown the current face? -	numCurrentFaceShown int -	curFace             int -} - -func (fi *facesIterator) next() (ok bool) { -	if len(fi.faces) == 0 { -		return false -	} -	fi.curFace = fi.faces[0].face -	fi.numCurrentFaceShown++ - -	// Advance fs if needed. -	if fi.faces[0].count <= fi.numCurrentFaceShown { -		fi.faces = fi.faces[1:] -		fi.numCurrentFaceShown = 0 -	} - -	return true -} - -func decodePointsCompressed(d *decoder, level int, target []Point) { -	faces := decodeFaces(len(target), d) - -	piCoder := newNthDerivativeCoder(derivativeEncodingOrder) -	qiCoder := newNthDerivativeCoder(derivativeEncodingOrder) - -	iter := facesIterator{faces: faces} -	for i := range target { -		decodeFn := decodePointCompressed -		if i == 0 { -			decodeFn = decodeFirstPointFixedLength -		} -		pi, qi := decodeFn(d, level, piCoder, qiCoder) -		if ok := iter.next(); !ok && d.err == nil { -			d.err = fmt.Errorf("ran out of faces at target %d", i) -			return -		} -		target[i] = Point{facePiQitoXYZ(iter.curFace, pi, qi, level)} -	} - -	numOffCenter := int(d.readUvarint()) -	if d.err != nil { -		return -	} -	if numOffCenter > len(target) { -		d.err = fmt.Errorf("numOffCenter = %d, should be at most len(target) = %d", numOffCenter, len(target)) -		return -	} -	for i := 0; i < numOffCenter; i++ { -		idx := int(d.readUvarint()) -		if d.err != nil { -			return -		} -		if idx >= len(target) { -			d.err = fmt.Errorf("off center index = %d, should be < len(target) = %d", idx, len(target)) -			return -		} -		target[idx].X = d.readFloat64() -		target[idx].Y = d.readFloat64() -		target[idx].Z = d.readFloat64() -	} -} - -func decodeFirstPointFixedLength(d *decoder, level int, piCoder, qiCoder *nthDerivativeCoder) (pi, qi uint32) { -	bytesToRead := (level + 7) / 8 * 2 -	var interleaved uint64 -	for i := 0; i < bytesToRead; i++ { -		rr := d.readUint8() -		interleaved |= (uint64(rr) << uint(i*8)) -	} - -	piCoded, qiCoded := deinterleaveUint32(interleaved) - -	return uint32(piCoder.decode(int32(piCoded))), uint32(qiCoder.decode(int32(qiCoded))) -} - -func zigzagEncode(x int32) uint32 { -	return (uint32(x) << 1) ^ uint32(x>>31) -} - -func zigzagDecode(x uint32) int32 { -	return int32((x >> 1) ^ uint32((int32(x&1)<<31)>>31)) -} - -func decodePointCompressed(d *decoder, level int, piCoder, qiCoder *nthDerivativeCoder) (pi, qi uint32) { -	interleavedZigZagEncodedDerivPiQi := d.readUvarint() -	piZigzag, qiZigzag := deinterleaveUint32(interleavedZigZagEncodedDerivPiQi) -	return uint32(piCoder.decode(zigzagDecode(piZigzag))), uint32(qiCoder.decode(zigzagDecode(qiZigzag))) -} - -// We introduce a new coordinate system (pi, qi), which is (si, ti) -// with the bits that are constant for cells of that level shifted -// off to the right. -// si = round(s * 2^31) -// pi = si >> (31 - level) -//    = floor(s * 2^level) -// If the point has been snapped to the level, the bits that are -// shifted off will be a 1 in the msb, then 0s after that, so the -// fractional part discarded by the cast is (close to) 0.5. - -// stToPiQi returns the value transformed to the PiQi coordinate space. -func stToPiQi(s float64, level uint) uint32 { -	return uint32(s * float64(int(1)<<level)) -} - -// siTiToPiQi returns the value transformed into the PiQi coordinate spade. -// encodeFirstPointFixedLength encodes the return value using level bits, -// so we clamp si to the range [0, 2**level - 1] before trying to encode -// it. This is okay because if si == maxSiTi, then it is not a cell center -// anyway and will be encoded separately as an off-center point. -func siTitoPiQi(siTi uint32, level int) uint32 { -	s := uint(siTi) -	const max = maxSiTi - 1 -	if s > max { -		s = max -	} - -	return uint32(s >> (maxLevel + 1 - uint(level))) -} - -// piQiToST returns the value transformed to ST space. -func piQiToST(pi uint32, level int) float64 { -	// We want to recover the position at the center of the cell. If the point -	// was snapped to the center of the cell, then math.Modf(s * 2^level) == 0.5. -	// Inverting STtoPiQi gives: -	// s = (pi + 0.5) / 2^level. -	return (float64(pi) + 0.5) / float64(int(1)<<uint(level)) -} - -func facePiQitoXYZ(face int, pi, qi uint32, level int) r3.Vector { -	return faceUVToXYZ(face, stToUV(piQiToST(pi, level)), stToUV(piQiToST(qi, level))).Normalize() -} diff --git a/vendor/github.com/golang/geo/s2/polygon.go b/vendor/github.com/golang/geo/s2/polygon.go deleted file mode 100644 index c691ec083..000000000 --- a/vendor/github.com/golang/geo/s2/polygon.go +++ /dev/null @@ -1,1213 +0,0 @@ -// Copyright 2015 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" -	"io" -	"math" -) - -// Polygon represents a sequence of zero or more loops; recall that the -// interior of a loop is defined to be its left-hand side (see Loop). -// -// When the polygon is initialized, the given loops are automatically converted -// into a canonical form consisting of "shells" and "holes". Shells and holes -// are both oriented CCW, and are nested hierarchically. The loops are -// reordered to correspond to a pre-order traversal of the nesting hierarchy. -// -// Polygons may represent any region of the sphere with a polygonal boundary, -// including the entire sphere (known as the "full" polygon). The full polygon -// consists of a single full loop (see Loop), whereas the empty polygon has no -// loops at all. -// -// Use FullPolygon() to construct a full polygon. The zero value of Polygon is -// treated as the empty polygon. -// -// Polygons have the following restrictions: -// -//  - Loops may not cross, i.e. the boundary of a loop may not intersect -//    both the interior and exterior of any other loop. -// -//  - Loops may not share edges, i.e. if a loop contains an edge AB, then -//    no other loop may contain AB or BA. -// -//  - Loops may share vertices, however no vertex may appear twice in a -//    single loop (see Loop). -// -//  - No loop may be empty. The full loop may appear only in the full polygon. -type Polygon struct { -	loops []*Loop - -	// index is a spatial index of all the polygon loops. -	index *ShapeIndex - -	// hasHoles tracks if this polygon has at least one hole. -	hasHoles bool - -	// numVertices keeps the running total of all of the vertices of the contained loops. -	numVertices int - -	// numEdges tracks the total number of edges in all the loops in this polygon. -	numEdges int - -	// bound is a conservative bound on all points contained by this loop. -	// If l.ContainsPoint(P), then l.bound.ContainsPoint(P). -	bound Rect - -	// Since bound is not exact, it is possible that a loop A contains -	// another loop B whose bounds are slightly larger. subregionBound -	// has been expanded sufficiently to account for this error, i.e. -	// if A.Contains(B), then A.subregionBound.Contains(B.bound). -	subregionBound Rect - -	// A slice where element i is the cumulative number of edges in the -	// preceding loops in the polygon. This field is used for polygons that -	// have a large number of loops, and may be empty for polygons with few loops. -	cumulativeEdges []int -} - -// PolygonFromLoops constructs a polygon from the given set of loops. The polygon -// interior consists of the points contained by an odd number of loops. (Recall -// that a loop contains the set of points on its left-hand side.) -// -// This method determines the loop nesting hierarchy and assigns every loop a -// depth. Shells have even depths, and holes have odd depths. -// -// Note: The given set of loops are reordered by this method so that the hierarchy -// can be traversed using Parent, LastDescendant and the loops depths. -func PolygonFromLoops(loops []*Loop) *Polygon { -	p := &Polygon{} -	// Empty polygons do not contain any loops, even the Empty loop. -	if len(loops) == 1 && loops[0].IsEmpty() { -		p.initLoopProperties() -		return p -	} -	p.loops = loops -	p.initNested() -	return p -} - -// PolygonFromOrientedLoops returns a Polygon from the given set of loops, -// like PolygonFromLoops. It expects loops to be oriented such that the polygon -// interior is on the left-hand side of all loops. This implies that shells -// and holes should have opposite orientations in the input to this method. -// (During initialization, loops representing holes will automatically be -// inverted.) -func PolygonFromOrientedLoops(loops []*Loop) *Polygon { -	// Here is the algorithm: -	// -	// 1. Remember which of the given loops contain OriginPoint. -	// -	// 2. Invert loops as necessary to ensure that they are nestable (i.e., no -	//    loop contains the complement of any other loop). This may result in a -	//    set of loops corresponding to the complement of the given polygon, but -	//    we will fix that problem later. -	// -	//    We make the loops nestable by first normalizing all the loops (i.e., -	//    inverting any loops whose turning angle is negative). This handles -	//    all loops except those whose turning angle is very close to zero -	//    (within the maximum error tolerance). Any such loops are inverted if -	//    and only if they contain OriginPoint(). (In theory this step is only -	//    necessary if there are at least two such loops.) The resulting set of -	//    loops is guaranteed to be nestable. -	// -	// 3. Build the polygon. This yields either the desired polygon or its -	//    complement. -	// -	// 4. If there is at least one loop, we find a loop L that is adjacent to -	//    OriginPoint() (where "adjacent" means that there exists a path -	//    connecting OriginPoint() to some vertex of L such that the path does -	//    not cross any loop). There may be a single such adjacent loop, or -	//    there may be several (in which case they should all have the same -	//    contains_origin() value). We choose L to be the loop containing the -	//    origin whose depth is greatest, or loop(0) (a top-level shell) if no -	//    such loop exists. -	// -	// 5. If (L originally contained origin) != (polygon contains origin), we -	//    invert the polygon. This is done by inverting a top-level shell whose -	//    turning angle is minimal and then fixing the nesting hierarchy. Note -	//    that because we normalized all the loops initially, this step is only -	//    necessary if the polygon requires at least one non-normalized loop to -	//    represent it. - -	containedOrigin := make(map[*Loop]bool) -	for _, l := range loops { -		containedOrigin[l] = l.ContainsOrigin() -	} - -	for _, l := range loops { -		angle := l.TurningAngle() -		if math.Abs(angle) > l.turningAngleMaxError() { -			// Normalize the loop. -			if angle < 0 { -				l.Invert() -			} -		} else { -			// Ensure that the loop does not contain the origin. -			if l.ContainsOrigin() { -				l.Invert() -			} -		} -	} - -	p := PolygonFromLoops(loops) - -	if p.NumLoops() > 0 { -		originLoop := p.Loop(0) -		polygonContainsOrigin := false -		for _, l := range p.Loops() { -			if l.ContainsOrigin() { -				polygonContainsOrigin = !polygonContainsOrigin - -				originLoop = l -			} -		} -		if containedOrigin[originLoop] != polygonContainsOrigin { -			p.Invert() -		} -	} - -	return p -} - -// Invert inverts the polygon (replaces it by its complement). -func (p *Polygon) Invert() { -	// Inverting any one loop will invert the polygon.  The best loop to invert -	// is the one whose area is largest, since this yields the smallest area -	// after inversion. The loop with the largest area is always at depth 0. -	// The descendents of this loop all have their depth reduced by 1, while the -	// former siblings of this loop all have their depth increased by 1. - -	// The empty and full polygons are handled specially. -	if p.IsEmpty() { -		*p = *FullPolygon() -		p.initLoopProperties() -		return -	} -	if p.IsFull() { -		*p = Polygon{} -		p.initLoopProperties() -		return -	} - -	// Find the loop whose area is largest (i.e., whose turning angle is -	// smallest), minimizing calls to TurningAngle(). In particular, for -	// polygons with a single shell at level 0 there is no need to call -	// TurningAngle() at all. (This method is relatively expensive.) -	best := 0 -	const none = 10.0 // Flag that means "not computed yet" -	bestAngle := none -	for i := 1; i < p.NumLoops(); i++ { -		if p.Loop(i).depth != 0 { -			continue -		} -		// We defer computing the turning angle of loop 0 until we discover -		// that the polygon has another top-level shell. -		if bestAngle == none { -			bestAngle = p.Loop(best).TurningAngle() -		} -		angle := p.Loop(i).TurningAngle() -		// We break ties deterministically in order to avoid having the output -		// depend on the input order of the loops. -		if angle < bestAngle || (angle == bestAngle && compareLoops(p.Loop(i), p.Loop(best)) < 0) { -			best = i -			bestAngle = angle -		} -	} -	// Build the new loops vector, starting with the inverted loop. -	p.Loop(best).Invert() -	newLoops := make([]*Loop, 0, p.NumLoops()) -	// Add the former siblings of this loop as descendants. -	lastBest := p.LastDescendant(best) -	newLoops = append(newLoops, p.Loop(best)) -	for i, l := range p.Loops() { -		if i < best || i > lastBest { -			l.depth++ -			newLoops = append(newLoops, l) -		} -	} -	// Add the former children of this loop as siblings. -	for i, l := range p.Loops() { -		if i > best && i <= lastBest { -			l.depth-- -			newLoops = append(newLoops, l) -		} -	} - -	p.loops = newLoops -	p.initLoopProperties() -} - -// Defines a total ordering on Loops that does not depend on the cyclic -// order of loop vertices. This function is used to choose which loop to -// invert in the case where several loops have exactly the same area. -func compareLoops(a, b *Loop) int { -	if na, nb := a.NumVertices(), b.NumVertices(); na != nb { -		return na - nb -	} -	ai, aDir := a.CanonicalFirstVertex() -	bi, bDir := b.CanonicalFirstVertex() -	if aDir != bDir { -		return aDir - bDir -	} -	for n := a.NumVertices() - 1; n >= 0; n, ai, bi = n-1, ai+aDir, bi+bDir { -		if cmp := a.Vertex(ai).Cmp(b.Vertex(bi).Vector); cmp != 0 { -			return cmp -		} -	} -	return 0 -} - -// PolygonFromCell returns a Polygon from a single loop created from the given Cell. -func PolygonFromCell(cell Cell) *Polygon { -	return PolygonFromLoops([]*Loop{LoopFromCell(cell)}) -} - -// initNested takes the set of loops in this polygon and performs the nesting -// computations to set the proper nesting and parent/child relationships. -func (p *Polygon) initNested() { -	if len(p.loops) == 1 { -		p.initOneLoop() -		return -	} - -	lm := make(loopMap) - -	for _, l := range p.loops { -		lm.insertLoop(l, nil) -	} -	// The loops have all been added to the loopMap for ordering. Clear the -	// loops slice because we add all the loops in-order in initLoops. -	p.loops = nil - -	// Reorder the loops in depth-first traversal order. -	p.initLoops(lm) -	p.initLoopProperties() -} - -// loopMap is a map of a loop to its immediate children with respect to nesting. -// It is used to determine which loops are shells and which are holes. -type loopMap map[*Loop][]*Loop - -// insertLoop adds the given loop to the loop map under the specified parent. -// All children of the new entry are checked to see if the need to move up to -// a different level. -func (lm loopMap) insertLoop(newLoop, parent *Loop) { -	var children []*Loop -	for done := false; !done; { -		children = lm[parent] -		done = true -		for _, child := range children { -			if child.ContainsNested(newLoop) { -				parent = child -				done = false -				break -			} -		} -	} - -	// Now, we have found a parent for this loop, it may be that some of the -	// children of the parent of this loop may now be children of the new loop. -	newChildren := lm[newLoop] -	for i := 0; i < len(children); { -		child := children[i] -		if newLoop.ContainsNested(child) { -			newChildren = append(newChildren, child) -			children = append(children[0:i], children[i+1:]...) -		} else { -			i++ -		} -	} - -	lm[newLoop] = newChildren -	lm[parent] = append(children, newLoop) -} - -// loopStack simplifies access to the loops while being initialized. -type loopStack []*Loop - -func (s *loopStack) push(v *Loop) { -	*s = append(*s, v) -} -func (s *loopStack) pop() *Loop { -	l := len(*s) -	r := (*s)[l-1] -	*s = (*s)[:l-1] -	return r -} - -// initLoops walks the mapping of loops to all of their children, and adds them in -// order into to the polygons set of loops. -func (p *Polygon) initLoops(lm loopMap) { -	var stack loopStack -	stack.push(nil) -	depth := -1 - -	for len(stack) > 0 { -		loop := stack.pop() -		if loop != nil { -			depth = loop.depth -			p.loops = append(p.loops, loop) -		} -		children := lm[loop] -		for i := len(children) - 1; i >= 0; i-- { -			child := children[i] -			child.depth = depth + 1 -			stack.push(child) -		} -	} -} - -// initOneLoop set the properties for a polygon made of a single loop. -// TODO(roberts): Can this be merged with initLoopProperties -func (p *Polygon) initOneLoop() { -	p.hasHoles = false -	p.numVertices = len(p.loops[0].vertices) -	p.bound = p.loops[0].RectBound() -	p.subregionBound = ExpandForSubregions(p.bound) -	// Ensure the loops depth is set correctly. -	p.loops[0].depth = 0 - -	p.initEdgesAndIndex() -} - -// initLoopProperties sets the properties for polygons with multiple loops. -func (p *Polygon) initLoopProperties() { -	p.numVertices = 0 -	// the loops depths are set by initNested/initOriented prior to this. -	p.bound = EmptyRect() -	p.hasHoles = false -	for _, l := range p.loops { -		if l.IsHole() { -			p.hasHoles = true -		} else { -			p.bound = p.bound.Union(l.RectBound()) -		} -		p.numVertices += l.NumVertices() -	} -	p.subregionBound = ExpandForSubregions(p.bound) - -	p.initEdgesAndIndex() -} - -// initEdgesAndIndex performs the shape related initializations and adds the final -// polygon to the index. -func (p *Polygon) initEdgesAndIndex() { -	p.numEdges = 0 -	p.cumulativeEdges = nil -	if p.IsFull() { -		return -	} -	const maxLinearSearchLoops = 12 // Based on benchmarks. -	if len(p.loops) > maxLinearSearchLoops { -		p.cumulativeEdges = make([]int, 0, len(p.loops)) -	} - -	for _, l := range p.loops { -		if p.cumulativeEdges != nil { -			p.cumulativeEdges = append(p.cumulativeEdges, p.numEdges) -		} -		p.numEdges += len(l.vertices) -	} - -	p.index = NewShapeIndex() -	p.index.Add(p) -} - -// FullPolygon returns a special "full" polygon. -func FullPolygon() *Polygon { -	ret := &Polygon{ -		loops: []*Loop{ -			FullLoop(), -		}, -		numVertices:    len(FullLoop().Vertices()), -		bound:          FullRect(), -		subregionBound: FullRect(), -	} -	ret.initEdgesAndIndex() -	return ret -} - -// Validate checks whether this is a valid polygon, -// including checking whether all the loops are themselves valid. -func (p *Polygon) Validate() error { -	for i, l := range p.loops { -		// Check for loop errors that don't require building a ShapeIndex. -		if err := l.findValidationErrorNoIndex(); err != nil { -			return fmt.Errorf("loop %d: %v", i, err) -		} -		// Check that no loop is empty, and that the full loop only appears in the -		// full polygon. -		if l.IsEmpty() { -			return fmt.Errorf("loop %d: empty loops are not allowed", i) -		} -		if l.IsFull() && len(p.loops) > 1 { -			return fmt.Errorf("loop %d: full loop appears in non-full polygon", i) -		} -	} - -	// TODO(roberts): Uncomment the remaining checks when they are completed. - -	// Check for loop self-intersections and loop pairs that cross -	// (including duplicate edges and vertices). -	// if findSelfIntersection(p.index) { -	//	return fmt.Errorf("polygon has loop pairs that cross") -	// } - -	// Check whether initOriented detected inconsistent loop orientations. -	// if p.hasInconsistentLoopOrientations { -	// 	return fmt.Errorf("inconsistent loop orientations detected") -	// } - -	// Finally, verify the loop nesting hierarchy. -	return p.findLoopNestingError() -} - -// findLoopNestingError reports if there is an error in the loop nesting hierarchy. -func (p *Polygon) findLoopNestingError() error { -	// First check that the loop depths make sense. -	lastDepth := -1 -	for i, l := range p.loops { -		depth := l.depth -		if depth < 0 || depth > lastDepth+1 { -			return fmt.Errorf("loop %d: invalid loop depth (%d)", i, depth) -		} -		lastDepth = depth -	} -	// Then check that they correspond to the actual loop nesting.  This test -	// is quadratic in the number of loops but the cost per iteration is small. -	for i, l := range p.loops { -		last := p.LastDescendant(i) -		for j, l2 := range p.loops { -			if i == j { -				continue -			} -			nested := (j >= i+1) && (j <= last) -			const reverseB = false - -			if l.containsNonCrossingBoundary(l2, reverseB) != nested { -				nestedStr := "" -				if !nested { -					nestedStr = "not " -				} -				return fmt.Errorf("invalid nesting: loop %d should %scontain loop %d", i, nestedStr, j) -			} -		} -	} -	return nil -} - -// IsEmpty reports whether this is the special "empty" polygon (consisting of no loops). -func (p *Polygon) IsEmpty() bool { -	return len(p.loops) == 0 -} - -// IsFull reports whether this is the special "full" polygon (consisting of a -// single loop that encompasses the entire sphere). -func (p *Polygon) IsFull() bool { -	return len(p.loops) == 1 && p.loops[0].IsFull() -} - -// NumLoops returns the number of loops in this polygon. -func (p *Polygon) NumLoops() int { -	return len(p.loops) -} - -// Loops returns the loops in this polygon. -func (p *Polygon) Loops() []*Loop { -	return p.loops -} - -// Loop returns the loop at the given index. Note that during initialization, -// the given loops are reordered according to a pre-order traversal of the loop -// nesting hierarchy. This implies that every loop is immediately followed by -// its descendants. This hierarchy can be traversed using the methods Parent, -// LastDescendant, and Loop.depth. -func (p *Polygon) Loop(k int) *Loop { -	return p.loops[k] -} - -// Parent returns the index of the parent of loop k. -// If the loop does not have a parent, ok=false is returned. -func (p *Polygon) Parent(k int) (index int, ok bool) { -	// See where we are on the depth hierarchy. -	depth := p.loops[k].depth -	if depth == 0 { -		return -1, false -	} - -	// There may be several loops at the same nesting level as us that share a -	// parent loop with us. (Imagine a slice of swiss cheese, of which we are one loop. -	// we don't know how many may be next to us before we get back to our parent loop.) -	// Move up one position from us, and then begin traversing back through the set of loops -	// until we find the one that is our parent or we get to the top of the polygon. -	for k--; k >= 0 && p.loops[k].depth <= depth; k-- { -	} -	return k, true -} - -// LastDescendant returns the index of the last loop that is contained within loop k. -// If k is negative, it returns the last loop in the polygon. -// Note that loops are indexed according to a pre-order traversal of the nesting -// hierarchy, so the immediate children of loop k can be found by iterating over -// the loops (k+1)..LastDescendant(k) and selecting those whose depth is equal -// to Loop(k).depth+1. -func (p *Polygon) LastDescendant(k int) int { -	if k < 0 { -		return len(p.loops) - 1 -	} - -	depth := p.loops[k].depth - -	// Find the next loop immediately past us in the set of loops, and then start -	// moving down the list until we either get to the end or find the next loop -	// that is higher up the hierarchy than we are. -	for k++; k < len(p.loops) && p.loops[k].depth > depth; k++ { -	} -	return k - 1 -} - -// CapBound returns a bounding spherical cap. -func (p *Polygon) CapBound() Cap { return p.bound.CapBound() } - -// RectBound returns a bounding latitude-longitude rectangle. -func (p *Polygon) RectBound() Rect { return p.bound } - -// ContainsPoint reports whether the polygon contains the point. -func (p *Polygon) ContainsPoint(point Point) bool { -	// NOTE: A bounds check slows down this function by about 50%. It is -	// worthwhile only when it might allow us to delay building the index. -	if !p.index.IsFresh() && !p.bound.ContainsPoint(point) { -		return false -	} - -	// For small polygons, and during initial construction, it is faster to just -	// check all the crossing. -	const maxBruteForceVertices = 32 -	if p.numVertices < maxBruteForceVertices || p.index == nil { -		inside := false -		for _, l := range p.loops { -			// use loops bruteforce to avoid building the index on each loop. -			inside = inside != l.bruteForceContainsPoint(point) -		} -		return inside -	} - -	// Otherwise we look up the ShapeIndex cell containing this point. -	return NewContainsPointQuery(p.index, VertexModelSemiOpen).Contains(point) -} - -// ContainsCell reports whether the polygon contains the given cell. -func (p *Polygon) ContainsCell(cell Cell) bool { -	it := p.index.Iterator() -	relation := it.LocateCellID(cell.ID()) - -	// If "cell" is disjoint from all index cells, it is not contained. -	// Similarly, if "cell" is subdivided into one or more index cells then it -	// is not contained, since index cells are subdivided only if they (nearly) -	// intersect a sufficient number of edges.  (But note that if "cell" itself -	// is an index cell then it may be contained, since it could be a cell with -	// no edges in the loop interior.) -	if relation != Indexed { -		return false -	} - -	// Otherwise check if any edges intersect "cell". -	if p.boundaryApproxIntersects(it, cell) { -		return false -	} - -	// Otherwise check if the loop contains the center of "cell". -	return p.iteratorContainsPoint(it, cell.Center()) -} - -// IntersectsCell reports whether the polygon intersects the given cell. -func (p *Polygon) IntersectsCell(cell Cell) bool { -	it := p.index.Iterator() -	relation := it.LocateCellID(cell.ID()) - -	// If cell does not overlap any index cell, there is no intersection. -	if relation == Disjoint { -		return false -	} -	// If cell is subdivided into one or more index cells, there is an -	// intersection to within the S2ShapeIndex error bound (see Contains). -	if relation == Subdivided { -		return true -	} -	// If cell is an index cell, there is an intersection because index cells -	// are created only if they have at least one edge or they are entirely -	// contained by the loop. -	if it.CellID() == cell.id { -		return true -	} -	// Otherwise check if any edges intersect cell. -	if p.boundaryApproxIntersects(it, cell) { -		return true -	} -	// Otherwise check if the loop contains the center of cell. -	return p.iteratorContainsPoint(it, cell.Center()) -} - -// CellUnionBound computes a covering of the Polygon. -func (p *Polygon) CellUnionBound() []CellID { -	// TODO(roberts): Use ShapeIndexRegion when it's available. -	return p.CapBound().CellUnionBound() -} - -// boundaryApproxIntersects reports whether the loop's boundary intersects cell. -// It may also return true when the loop boundary does not intersect cell but -// some edge comes within the worst-case error tolerance. -// -// This requires that it.Locate(cell) returned Indexed. -func (p *Polygon) boundaryApproxIntersects(it *ShapeIndexIterator, cell Cell) bool { -	aClipped := it.IndexCell().findByShapeID(0) - -	// If there are no edges, there is no intersection. -	if len(aClipped.edges) == 0 { -		return false -	} - -	// We can save some work if cell is the index cell itself. -	if it.CellID() == cell.ID() { -		return true -	} - -	// Otherwise check whether any of the edges intersect cell. -	maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist) -	bound := cell.BoundUV().ExpandedByMargin(maxError) -	for _, e := range aClipped.edges { -		edge := p.index.Shape(0).Edge(e) -		v0, v1, ok := ClipToPaddedFace(edge.V0, edge.V1, cell.Face(), maxError) -		if ok && edgeIntersectsRect(v0, v1, bound) { -			return true -		} -	} - -	return false -} - -// iteratorContainsPoint reports whether the iterator that is positioned at the -// ShapeIndexCell that may contain p, contains the point p. -func (p *Polygon) iteratorContainsPoint(it *ShapeIndexIterator, point Point) bool { -	// Test containment by drawing a line segment from the cell center to the -	// given point and counting edge crossings. -	aClipped := it.IndexCell().findByShapeID(0) -	inside := aClipped.containsCenter - -	if len(aClipped.edges) == 0 { -		return inside -	} - -	// This block requires ShapeIndex. -	crosser := NewEdgeCrosser(it.Center(), point) -	shape := p.index.Shape(0) -	for _, e := range aClipped.edges { -		edge := shape.Edge(e) -		inside = inside != crosser.EdgeOrVertexCrossing(edge.V0, edge.V1) -	} - -	return inside -} - -// Shape Interface - -// NumEdges returns the number of edges in this shape. -func (p *Polygon) NumEdges() int { -	return p.numEdges -} - -// Edge returns endpoints for the given edge index. -func (p *Polygon) Edge(e int) Edge { -	var i int - -	if len(p.cumulativeEdges) > 0 { -		for i = range p.cumulativeEdges { -			if i+1 >= len(p.cumulativeEdges) || e < p.cumulativeEdges[i+1] { -				e -= p.cumulativeEdges[i] -				break -			} -		} -	} else { -		// When the number of loops is small, use linear search. Most often -		// there is exactly one loop and the code below executes zero times. -		for i = 0; e >= len(p.Loop(i).vertices); i++ { -			e -= len(p.Loop(i).vertices) -		} -	} - -	return Edge{p.Loop(i).OrientedVertex(e), p.Loop(i).OrientedVertex(e + 1)} -} - -// ReferencePoint returns the reference point for this polygon. -func (p *Polygon) ReferencePoint() ReferencePoint { -	containsOrigin := false -	for _, l := range p.loops { -		containsOrigin = containsOrigin != l.ContainsOrigin() -	} -	return OriginReferencePoint(containsOrigin) -} - -// NumChains reports the number of contiguous edge chains in the Polygon. -func (p *Polygon) NumChains() int { -	return p.NumLoops() -} - -// Chain returns the i-th edge Chain (loop) in the Shape. -func (p *Polygon) Chain(chainID int) Chain { -	if p.cumulativeEdges != nil { -		return Chain{p.cumulativeEdges[chainID], len(p.Loop(chainID).vertices)} -	} -	e := 0 -	for j := 0; j < chainID; j++ { -		e += len(p.Loop(j).vertices) -	} - -	// Polygon represents a full loop as a loop with one vertex, while -	// Shape represents a full loop as a chain with no vertices. -	if numVertices := p.Loop(chainID).NumVertices(); numVertices != 1 { -		return Chain{e, numVertices} -	} -	return Chain{e, 0} -} - -// ChainEdge returns the j-th edge of the i-th edge Chain (loop). -func (p *Polygon) ChainEdge(i, j int) Edge { -	return Edge{p.Loop(i).OrientedVertex(j), p.Loop(i).OrientedVertex(j + 1)} -} - -// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge -// of the i-th edge Chain. -func (p *Polygon) ChainPosition(edgeID int) ChainPosition { -	var i int - -	if len(p.cumulativeEdges) > 0 { -		for i = range p.cumulativeEdges { -			if i+1 >= len(p.cumulativeEdges) || edgeID < p.cumulativeEdges[i+1] { -				edgeID -= p.cumulativeEdges[i] -				break -			} -		} -	} else { -		// When the number of loops is small, use linear search. Most often -		// there is exactly one loop and the code below executes zero times. -		for i = 0; edgeID >= len(p.Loop(i).vertices); i++ { -			edgeID -= len(p.Loop(i).vertices) -		} -	} -	// TODO(roberts): unify this and Edge since they are mostly identical. -	return ChainPosition{i, edgeID} -} - -// Dimension returns the dimension of the geometry represented by this Polygon. -func (p *Polygon) Dimension() int { return 2 } - -func (p *Polygon) typeTag() typeTag { return typeTagPolygon } - -func (p *Polygon) privateInterface() {} - -// Contains reports whether this polygon contains the other polygon. -// Specifically, it reports whether all the points in the other polygon -// are also in this polygon. -func (p *Polygon) Contains(o *Polygon) bool { -	// If both polygons have one loop, use the more efficient Loop method. -	// Note that Loop's Contains does its own bounding rectangle check. -	if len(p.loops) == 1 && len(o.loops) == 1 { -		return p.loops[0].Contains(o.loops[0]) -	} - -	// Otherwise if neither polygon has holes, we can still use the more -	// efficient Loop's Contains method (rather than compareBoundary), -	// but it's worthwhile to do our own bounds check first. -	if !p.subregionBound.Contains(o.bound) { -		// Even though Bound(A) does not contain Bound(B), it is still possible -		// that A contains B. This can only happen when union of the two bounds -		// spans all longitudes. For example, suppose that B consists of two -		// shells with a longitude gap between them, while A consists of one shell -		// that surrounds both shells of B but goes the other way around the -		// sphere (so that it does not intersect the longitude gap). -		if !p.bound.Lng.Union(o.bound.Lng).IsFull() { -			return false -		} -	} - -	if !p.hasHoles && !o.hasHoles { -		for _, l := range o.loops { -			if !p.anyLoopContains(l) { -				return false -			} -		} -		return true -	} - -	// Polygon A contains B iff B does not intersect the complement of A. From -	// the intersection algorithm below, this means that the complement of A -	// must exclude the entire boundary of B, and B must exclude all shell -	// boundaries of the complement of A. (It can be shown that B must then -	// exclude the entire boundary of the complement of A.) The first call -	// below returns false if the boundaries cross, therefore the second call -	// does not need to check for any crossing edges (which makes it cheaper). -	return p.containsBoundary(o) && o.excludesNonCrossingComplementShells(p) -} - -// Intersects reports whether this polygon intersects the other polygon, i.e. -// if there is a point that is contained by both polygons. -func (p *Polygon) Intersects(o *Polygon) bool { -	// If both polygons have one loop, use the more efficient Loop method. -	// Note that Loop Intersects does its own bounding rectangle check. -	if len(p.loops) == 1 && len(o.loops) == 1 { -		return p.loops[0].Intersects(o.loops[0]) -	} - -	// Otherwise if neither polygon has holes, we can still use the more -	// efficient Loop.Intersects method. The polygons intersect if and -	// only if some pair of loop regions intersect. -	if !p.bound.Intersects(o.bound) { -		return false -	} - -	if !p.hasHoles && !o.hasHoles { -		for _, l := range o.loops { -			if p.anyLoopIntersects(l) { -				return true -			} -		} -		return false -	} - -	// Polygon A is disjoint from B if A excludes the entire boundary of B and B -	// excludes all shell boundaries of A. (It can be shown that B must then -	// exclude the entire boundary of A.) The first call below returns false if -	// the boundaries cross, therefore the second call does not need to check -	// for crossing edges. -	return !p.excludesBoundary(o) || !o.excludesNonCrossingShells(p) -} - -// compareBoundary returns +1 if this polygon contains the boundary of B, -1 if A -// excludes the boundary of B, and 0 if the boundaries of A and B cross. -func (p *Polygon) compareBoundary(o *Loop) int { -	result := -1 -	for i := 0; i < len(p.loops) && result != 0; i++ { -		// If B crosses any loop of A, the result is 0. Otherwise the result -		// changes sign each time B is contained by a loop of A. -		result *= -p.loops[i].compareBoundary(o) -	} -	return result -} - -// containsBoundary reports whether this polygon contains the entire boundary of B. -func (p *Polygon) containsBoundary(o *Polygon) bool { -	for _, l := range o.loops { -		if p.compareBoundary(l) <= 0 { -			return false -		} -	} -	return true -} - -// excludesBoundary reports whether this polygon excludes the entire boundary of B. -func (p *Polygon) excludesBoundary(o *Polygon) bool { -	for _, l := range o.loops { -		if p.compareBoundary(l) >= 0 { -			return false -		} -	} -	return true -} - -// containsNonCrossingBoundary reports whether polygon A contains the boundary of -// loop B. Shared edges are handled according to the rule described in loops -// containsNonCrossingBoundary. -func (p *Polygon) containsNonCrossingBoundary(o *Loop, reverse bool) bool { -	var inside bool -	for _, l := range p.loops { -		x := l.containsNonCrossingBoundary(o, reverse) -		inside = (inside != x) -	} -	return inside -} - -// excludesNonCrossingShells reports wheterh given two polygons A and B such that the -// boundary of A does not cross any loop of B, if A excludes all shell boundaries of B. -func (p *Polygon) excludesNonCrossingShells(o *Polygon) bool { -	for _, l := range o.loops { -		if l.IsHole() { -			continue -		} -		if p.containsNonCrossingBoundary(l, false) { -			return false -		} -	} -	return true -} - -// excludesNonCrossingComplementShells reports whether given two polygons A and B -// such that the boundary of A does not cross any loop of B, if A excludes all -// shell boundaries of the complement of B. -func (p *Polygon) excludesNonCrossingComplementShells(o *Polygon) bool { -	// Special case to handle the complement of the empty or full polygons. -	if o.IsEmpty() { -		return !p.IsFull() -	} -	if o.IsFull() { -		return true -	} - -	// Otherwise the complement of B may be obtained by inverting loop(0) and -	// then swapping the shell/hole status of all other loops. This implies -	// that the shells of the complement consist of loop 0 plus all the holes of -	// the original polygon. -	for j, l := range o.loops { -		if j > 0 && !l.IsHole() { -			continue -		} - -		// The interior of the complement is to the right of loop 0, and to the -		// left of the loops that were originally holes. -		if p.containsNonCrossingBoundary(l, j == 0) { -			return false -		} -	} -	return true -} - -// anyLoopContains reports whether any loop in this polygon contains the given loop. -func (p *Polygon) anyLoopContains(o *Loop) bool { -	for _, l := range p.loops { -		if l.Contains(o) { -			return true -		} -	} -	return false -} - -// anyLoopIntersects reports whether any loop in this polygon intersects the given loop. -func (p *Polygon) anyLoopIntersects(o *Loop) bool { -	for _, l := range p.loops { -		if l.Intersects(o) { -			return true -		} -	} -	return false -} - -// Area returns the area of the polygon interior, i.e. the region on the left side -// of an odd number of loops. The return value is between 0 and 4*Pi. -func (p *Polygon) Area() float64 { -	var area float64 -	for _, loop := range p.loops { -		area += float64(loop.Sign()) * loop.Area() -	} -	return area -} - -// Encode encodes the Polygon -func (p *Polygon) Encode(w io.Writer) error { -	e := &encoder{w: w} -	p.encode(e) -	return e.err -} - -// encode only supports lossless encoding and not compressed format. -func (p *Polygon) encode(e *encoder) { -	if p.numVertices == 0 { -		p.encodeCompressed(e, maxLevel, nil) -		return -	} - -	// Convert all the polygon vertices to XYZFaceSiTi format. -	vs := make([]xyzFaceSiTi, 0, p.numVertices) -	for _, l := range p.loops { -		vs = append(vs, l.xyzFaceSiTiVertices()...) -	} - -	// Computes a histogram of the cell levels at which the vertices are snapped. -	// (histogram[0] is the number of unsnapped vertices, histogram[i] the number -	// of vertices snapped at level i-1). -	histogram := make([]int, maxLevel+2) -	for _, v := range vs { -		histogram[v.level+1]++ -	} - -	// Compute the level at which most of the vertices are snapped. -	// If multiple levels have the same maximum number of vertices -	// snapped to it, the first one (lowest level number / largest -	// area / smallest encoding length) will be chosen, so this -	// is desired. -	var snapLevel, numSnapped int -	for level, h := range histogram[1:] { -		if h > numSnapped { -			snapLevel, numSnapped = level, h -		} -	} - -	// Choose an encoding format based on the number of unsnapped vertices and a -	// rough estimate of the encoded sizes. -	numUnsnapped := p.numVertices - numSnapped // Number of vertices that won't be snapped at snapLevel. -	const pointSize = 3 * 8                    // s2.Point is an r3.Vector, which is 3 float64s. That's 3*8 = 24 bytes. -	compressedSize := 4*p.numVertices + (pointSize+2)*numUnsnapped -	losslessSize := pointSize * p.numVertices -	if compressedSize < losslessSize { -		p.encodeCompressed(e, snapLevel, vs) -	} else { -		p.encodeLossless(e) -	} -} - -// encodeLossless encodes the polygon's Points as float64s. -func (p *Polygon) encodeLossless(e *encoder) { -	e.writeInt8(encodingVersion) -	e.writeBool(true) // a legacy c++ value. must be true. -	e.writeBool(p.hasHoles) -	e.writeUint32(uint32(len(p.loops))) - -	if e.err != nil { -		return -	} -	if len(p.loops) > maxEncodedLoops { -		e.err = fmt.Errorf("too many loops (%d; max is %d)", len(p.loops), maxEncodedLoops) -		return -	} -	for _, l := range p.loops { -		l.encode(e) -	} - -	// Encode the bound. -	p.bound.encode(e) -} - -func (p *Polygon) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) { -	e.writeUint8(uint8(encodingCompressedVersion)) -	e.writeUint8(uint8(snapLevel)) -	e.writeUvarint(uint64(len(p.loops))) - -	if e.err != nil { -		return -	} -	if l := len(p.loops); l > maxEncodedLoops { -		e.err = fmt.Errorf("too many loops to encode: %d; max is %d", l, maxEncodedLoops) -		return -	} - -	for _, l := range p.loops { -		l.encodeCompressed(e, snapLevel, vertices[:len(l.vertices)]) -		vertices = vertices[len(l.vertices):] -	} -	// Do not write the bound, num_vertices, or has_holes_ as they can be -	// cheaply recomputed by decodeCompressed.  Microbenchmarks show the -	// speed difference is inconsequential. -} - -// Decode decodes the Polygon. -func (p *Polygon) Decode(r io.Reader) error { -	d := &decoder{r: asByteReader(r)} -	version := int8(d.readUint8()) -	var dec func(*decoder) -	switch version { -	case encodingVersion: -		dec = p.decode -	case encodingCompressedVersion: -		dec = p.decodeCompressed -	default: -		return fmt.Errorf("unsupported version %d", version) -	} -	dec(d) -	return d.err -} - -// maxEncodedLoops is the biggest supported number of loops in a polygon during encoding. -// Setting a maximum guards an allocation: it prevents an attacker from easily pushing us OOM. -const maxEncodedLoops = 10000000 - -func (p *Polygon) decode(d *decoder) { -	*p = Polygon{} -	d.readUint8() // Ignore irrelevant serialized owns_loops_ value. - -	p.hasHoles = d.readBool() - -	// Polygons with no loops are explicitly allowed here: a newly created -	// polygon has zero loops and such polygons encode and decode properly. -	nloops := d.readUint32() -	if d.err != nil { -		return -	} -	if nloops > maxEncodedLoops { -		d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops) -		return -	} -	p.loops = make([]*Loop, nloops) -	for i := range p.loops { -		p.loops[i] = new(Loop) -		p.loops[i].decode(d) -		p.numVertices += len(p.loops[i].vertices) -	} - -	p.bound.decode(d) -	if d.err != nil { -		return -	} -	p.subregionBound = ExpandForSubregions(p.bound) -	p.initEdgesAndIndex() -} - -func (p *Polygon) decodeCompressed(d *decoder) { -	snapLevel := int(d.readUint8()) - -	if snapLevel > maxLevel { -		d.err = fmt.Errorf("snaplevel too big: %d", snapLevel) -		return -	} -	// Polygons with no loops are explicitly allowed here: a newly created -	// polygon has zero loops and such polygons encode and decode properly. -	nloops := int(d.readUvarint()) -	if nloops > maxEncodedLoops { -		d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops) -	} -	p.loops = make([]*Loop, nloops) -	for i := range p.loops { -		p.loops[i] = new(Loop) -		p.loops[i].decodeCompressed(d, snapLevel) -	} -	p.initLoopProperties() -} - -// TODO(roberts): Differences from C++ -// Centroid -// SnapLevel -// DistanceToPoint -// DistanceToBoundary -// Project -// ProjectToBoundary -// ApproxContains/ApproxDisjoint for Polygons -// InitTo{Intersection/ApproxIntersection/Union/ApproxUnion/Diff/ApproxDiff} -// InitToSimplified -// InitToSnapped -// IntersectWithPolyline -// ApproxIntersectWithPolyline -// SubtractFromPolyline -// ApproxSubtractFromPolyline -// DestructiveUnion -// DestructiveApproxUnion -// InitToCellUnionBorder -// IsNormalized -// Equal/BoundaryEqual/BoundaryApproxEqual/BoundaryNear Polygons -// BreakEdgesAndAddToBuilder -// -// clearLoops -// findLoopNestingError -// initToSimplifiedInternal -// internalClipPolyline -// clipBoundary diff --git a/vendor/github.com/golang/geo/s2/polyline.go b/vendor/github.com/golang/geo/s2/polyline.go deleted file mode 100644 index 517968342..000000000 --- a/vendor/github.com/golang/geo/s2/polyline.go +++ /dev/null @@ -1,589 +0,0 @@ -// Copyright 2016 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" -	"io" -	"math" - -	"github.com/golang/geo/s1" -) - -// Polyline represents a sequence of zero or more vertices connected by -// straight edges (geodesics). Edges of length 0 and 180 degrees are not -// allowed, i.e. adjacent vertices should not be identical or antipodal. -type Polyline []Point - -// PolylineFromLatLngs creates a new Polyline from the given LatLngs. -func PolylineFromLatLngs(points []LatLng) *Polyline { -	p := make(Polyline, len(points)) -	for k, v := range points { -		p[k] = PointFromLatLng(v) -	} -	return &p -} - -// Reverse reverses the order of the Polyline vertices. -func (p *Polyline) Reverse() { -	for i := 0; i < len(*p)/2; i++ { -		(*p)[i], (*p)[len(*p)-i-1] = (*p)[len(*p)-i-1], (*p)[i] -	} -} - -// Length returns the length of this Polyline. -func (p *Polyline) Length() s1.Angle { -	var length s1.Angle - -	for i := 1; i < len(*p); i++ { -		length += (*p)[i-1].Distance((*p)[i]) -	} -	return length -} - -// Centroid returns the true centroid of the polyline multiplied by the length of the -// polyline. The result is not unit length, so you may wish to normalize it. -// -// Scaling by the Polyline length makes it easy to compute the centroid -// of several Polylines (by simply adding up their centroids). -func (p *Polyline) Centroid() Point { -	var centroid Point -	for i := 1; i < len(*p); i++ { -		// The centroid (multiplied by length) is a vector toward the midpoint -		// of the edge, whose length is twice the sin of half the angle between -		// the two vertices. Defining theta to be this angle, we have: -		vSum := (*p)[i-1].Add((*p)[i].Vector)  // Length == 2*cos(theta) -		vDiff := (*p)[i-1].Sub((*p)[i].Vector) // Length == 2*sin(theta) - -		// Length == 2*sin(theta) -		centroid = Point{centroid.Add(vSum.Mul(math.Sqrt(vDiff.Norm2() / vSum.Norm2())))} -	} -	return centroid -} - -// Equal reports whether the given Polyline is exactly the same as this one. -func (p *Polyline) Equal(b *Polyline) bool { -	if len(*p) != len(*b) { -		return false -	} -	for i, v := range *p { -		if v != (*b)[i] { -			return false -		} -	} - -	return true -} - -// ApproxEqual reports whether two polylines have the same number of vertices, -// and corresponding vertex pairs are separated by no more the standard margin. -func (p *Polyline) ApproxEqual(o *Polyline) bool { -	return p.approxEqual(o, s1.Angle(epsilon)) -} - -// approxEqual reports whether two polylines are equal within the given margin. -func (p *Polyline) approxEqual(o *Polyline, maxError s1.Angle) bool { -	if len(*p) != len(*o) { -		return false -	} -	for offset, val := range *p { -		if !val.approxEqual((*o)[offset], maxError) { -			return false -		} -	} -	return true -} - -// CapBound returns the bounding Cap for this Polyline. -func (p *Polyline) CapBound() Cap { -	return p.RectBound().CapBound() -} - -// RectBound returns the bounding Rect for this Polyline. -func (p *Polyline) RectBound() Rect { -	rb := NewRectBounder() -	for _, v := range *p { -		rb.AddPoint(v) -	} -	return rb.RectBound() -} - -// ContainsCell reports whether this Polyline contains the given Cell. Always returns false -// because "containment" is not numerically well-defined except at the Polyline vertices. -func (p *Polyline) ContainsCell(cell Cell) bool { -	return false -} - -// IntersectsCell reports whether this Polyline intersects the given Cell. -func (p *Polyline) IntersectsCell(cell Cell) bool { -	if len(*p) == 0 { -		return false -	} - -	// We only need to check whether the cell contains vertex 0 for correctness, -	// but these tests are cheap compared to edge crossings so we might as well -	// check all the vertices. -	for _, v := range *p { -		if cell.ContainsPoint(v) { -			return true -		} -	} - -	cellVertices := []Point{ -		cell.Vertex(0), -		cell.Vertex(1), -		cell.Vertex(2), -		cell.Vertex(3), -	} - -	for j := 0; j < 4; j++ { -		crosser := NewChainEdgeCrosser(cellVertices[j], cellVertices[(j+1)&3], (*p)[0]) -		for i := 1; i < len(*p); i++ { -			if crosser.ChainCrossingSign((*p)[i]) != DoNotCross { -				// There is a proper crossing, or two vertices were the same. -				return true -			} -		} -	} -	return false -} - -// ContainsPoint returns false since Polylines are not closed. -func (p *Polyline) ContainsPoint(point Point) bool { -	return false -} - -// CellUnionBound computes a covering of the Polyline. -func (p *Polyline) CellUnionBound() []CellID { -	return p.CapBound().CellUnionBound() -} - -// NumEdges returns the number of edges in this shape. -func (p *Polyline) NumEdges() int { -	if len(*p) == 0 { -		return 0 -	} -	return len(*p) - 1 -} - -// Edge returns endpoints for the given edge index. -func (p *Polyline) Edge(i int) Edge { -	return Edge{(*p)[i], (*p)[i+1]} -} - -// ReferencePoint returns the default reference point with negative containment because Polylines are not closed. -func (p *Polyline) ReferencePoint() ReferencePoint { -	return OriginReferencePoint(false) -} - -// NumChains reports the number of contiguous edge chains in this Polyline. -func (p *Polyline) NumChains() int { -	return minInt(1, p.NumEdges()) -} - -// Chain returns the i-th edge Chain in the Shape. -func (p *Polyline) Chain(chainID int) Chain { -	return Chain{0, p.NumEdges()} -} - -// ChainEdge returns the j-th edge of the i-th edge Chain. -func (p *Polyline) ChainEdge(chainID, offset int) Edge { -	return Edge{(*p)[offset], (*p)[offset+1]} -} - -// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge -func (p *Polyline) ChainPosition(edgeID int) ChainPosition { -	return ChainPosition{0, edgeID} -} - -// Dimension returns the dimension of the geometry represented by this Polyline. -func (p *Polyline) Dimension() int { return 1 } - -// IsEmpty reports whether this shape contains no points. -func (p *Polyline) IsEmpty() bool { return defaultShapeIsEmpty(p) } - -// IsFull reports whether this shape contains all points on the sphere. -func (p *Polyline) IsFull() bool { return defaultShapeIsFull(p) } - -func (p *Polyline) typeTag() typeTag { return typeTagPolyline } - -func (p *Polyline) privateInterface() {} - -// findEndVertex reports the maximal end index such that the line segment between -// the start index and this one such that the line segment between these two -// vertices passes within the given tolerance of all interior vertices, in order. -func findEndVertex(p Polyline, tolerance s1.Angle, index int) int { -	// The basic idea is to keep track of the "pie wedge" of angles -	// from the starting vertex such that a ray from the starting -	// vertex at that angle will pass through the discs of radius -	// tolerance centered around all vertices processed so far. -	// -	// First we define a coordinate frame for the tangent and normal -	// spaces at the starting vertex. Essentially this means picking -	// three orthonormal vectors X,Y,Z such that X and Y span the -	// tangent plane at the starting vertex, and Z is up. We use -	// the coordinate frame to define a mapping from 3D direction -	// vectors to a one-dimensional ray angle in the range (-π, -	// π]. The angle of a direction vector is computed by -	// transforming it into the X,Y,Z basis, and then calculating -	// atan2(y,x). This mapping allows us to represent a wedge of -	// angles as a 1D interval. Since the interval wraps around, we -	// represent it as an Interval, i.e. an interval on the unit -	// circle. -	origin := p[index] -	frame := getFrame(origin) - -	// As we go along, we keep track of the current wedge of angles -	// and the distance to the last vertex (which must be -	// non-decreasing). -	currentWedge := s1.FullInterval() -	var lastDistance s1.Angle - -	for index++; index < len(p); index++ { -		candidate := p[index] -		distance := origin.Distance(candidate) - -		// We don't allow simplification to create edges longer than -		// 90 degrees, to avoid numeric instability as lengths -		// approach 180 degrees. We do need to allow for original -		// edges longer than 90 degrees, though. -		if distance > math.Pi/2 && lastDistance > 0 { -			break -		} - -		// Vertices must be in increasing order along the ray, except -		// for the initial disc around the origin. -		if distance < lastDistance && lastDistance > tolerance { -			break -		} - -		lastDistance = distance - -		// Points that are within the tolerance distance of the origin -		// do not constrain the ray direction, so we can ignore them. -		if distance <= tolerance { -			continue -		} - -		// If the current wedge of angles does not contain the angle -		// to this vertex, then stop right now. Note that the wedge -		// of possible ray angles is not necessarily empty yet, but we -		// can't continue unless we are willing to backtrack to the -		// last vertex that was contained within the wedge (since we -		// don't create new vertices). This would be more complicated -		// and also make the worst-case running time more than linear. -		direction := toFrame(frame, candidate) -		center := math.Atan2(direction.Y, direction.X) -		if !currentWedge.Contains(center) { -			break -		} - -		// To determine how this vertex constrains the possible ray -		// angles, consider the triangle ABC where A is the origin, B -		// is the candidate vertex, and C is one of the two tangent -		// points between A and the spherical cap of radius -		// tolerance centered at B. Then from the spherical law of -		// sines, sin(a)/sin(A) = sin(c)/sin(C), where a and c are -		// the lengths of the edges opposite A and C. In our case C -		// is a 90 degree angle, therefore A = asin(sin(a) / sin(c)). -		// Angle A is the half-angle of the allowable wedge. -		halfAngle := math.Asin(math.Sin(tolerance.Radians()) / math.Sin(distance.Radians())) -		target := s1.IntervalFromPointPair(center, center).Expanded(halfAngle) -		currentWedge = currentWedge.Intersection(target) -	} - -	// We break out of the loop when we reach a vertex index that -	// can't be included in the line segment, so back up by one -	// vertex. -	return index - 1 -} - -// SubsampleVertices returns a subsequence of vertex indices such that the -// polyline connecting these vertices is never further than the given tolerance from -// the original polyline. Provided the first and last vertices are distinct, -// they are always preserved; if they are not, the subsequence may contain -// only a single index. -// -// Some useful properties of the algorithm: -// -//  - It runs in linear time. -// -//  - The output always represents a valid polyline. In particular, adjacent -//    output vertices are never identical or antipodal. -// -//  - The method is not optimal, but it tends to produce 2-3% fewer -//    vertices than the Douglas-Peucker algorithm with the same tolerance. -// -//  - The output is parametrically equivalent to the original polyline to -//    within the given tolerance. For example, if a polyline backtracks on -//    itself and then proceeds onwards, the backtracking will be preserved -//    (to within the given tolerance). This is different than the -//    Douglas-Peucker algorithm which only guarantees geometric equivalence. -func (p *Polyline) SubsampleVertices(tolerance s1.Angle) []int { -	var result []int - -	if len(*p) < 1 { -		return result -	} - -	result = append(result, 0) -	clampedTolerance := s1.Angle(math.Max(tolerance.Radians(), 0)) - -	for index := 0; index+1 < len(*p); { -		nextIndex := findEndVertex(*p, clampedTolerance, index) -		// Don't create duplicate adjacent vertices. -		if (*p)[nextIndex] != (*p)[index] { -			result = append(result, nextIndex) -		} -		index = nextIndex -	} - -	return result -} - -// Encode encodes the Polyline. -func (p Polyline) Encode(w io.Writer) error { -	e := &encoder{w: w} -	p.encode(e) -	return e.err -} - -func (p Polyline) encode(e *encoder) { -	e.writeInt8(encodingVersion) -	e.writeUint32(uint32(len(p))) -	for _, v := range p { -		e.writeFloat64(v.X) -		e.writeFloat64(v.Y) -		e.writeFloat64(v.Z) -	} -} - -// Decode decodes the polyline. -func (p *Polyline) Decode(r io.Reader) error { -	d := decoder{r: asByteReader(r)} -	p.decode(d) -	return d.err -} - -func (p *Polyline) decode(d decoder) { -	version := d.readInt8() -	if d.err != nil { -		return -	} -	if int(version) != int(encodingVersion) { -		d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion) -		return -	} -	nvertices := d.readUint32() -	if d.err != nil { -		return -	} -	if nvertices > maxEncodedVertices { -		d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices) -		return -	} -	*p = make([]Point, nvertices) -	for i := range *p { -		(*p)[i].X = d.readFloat64() -		(*p)[i].Y = d.readFloat64() -		(*p)[i].Z = d.readFloat64() -	} -} - -// Project returns a point on the polyline that is closest to the given point, -// and the index of the next vertex after the projected point. The -// value of that index is always in the range [1, len(polyline)]. -// The polyline must not be empty. -func (p *Polyline) Project(point Point) (Point, int) { -	if len(*p) == 1 { -		// If there is only one vertex, it is always closest to any given point. -		return (*p)[0], 1 -	} - -	// Initial value larger than any possible distance on the unit sphere. -	minDist := 10 * s1.Radian -	minIndex := -1 - -	// Find the line segment in the polyline that is closest to the point given. -	for i := 1; i < len(*p); i++ { -		if dist := DistanceFromSegment(point, (*p)[i-1], (*p)[i]); dist < minDist { -			minDist = dist -			minIndex = i -		} -	} - -	// Compute the point on the segment found that is closest to the point given. -	closest := Project(point, (*p)[minIndex-1], (*p)[minIndex]) -	if closest == (*p)[minIndex] { -		minIndex++ -	} - -	return closest, minIndex -} - -// IsOnRight reports whether the point given is on the right hand side of the -// polyline, using a naive definition of "right-hand-sideness" where the point -// is on the RHS of the polyline iff the point is on the RHS of the line segment -// in the polyline which it is closest to. -// The polyline must have at least 2 vertices. -func (p *Polyline) IsOnRight(point Point) bool { -	// If the closest point C is an interior vertex of the polyline, let B and D -	// be the previous and next vertices. The given point P is on the right of -	// the polyline (locally) if B, P, D are ordered CCW around vertex C. -	closest, next := p.Project(point) -	if closest == (*p)[next-1] && next > 1 && next < len(*p) { -		if point == (*p)[next-1] { -			// Polyline vertices are not on the RHS. -			return false -		} -		return OrderedCCW((*p)[next-2], point, (*p)[next], (*p)[next-1]) -	} -	// Otherwise, the closest point C is incident to exactly one polyline edge. -	// We test the point P against that edge. -	if next == len(*p) { -		next-- -	} -	return Sign(point, (*p)[next], (*p)[next-1]) -} - -// Validate checks whether this is a valid polyline or not. -func (p *Polyline) Validate() error { -	// All vertices must be unit length. -	for i, pt := range *p { -		if !pt.IsUnit() { -			return fmt.Errorf("vertex %d is not unit length", i) -		} -	} - -	// Adjacent vertices must not be identical or antipodal. -	for i := 1; i < len(*p); i++ { -		prev, cur := (*p)[i-1], (*p)[i] -		if prev == cur { -			return fmt.Errorf("vertices %d and %d are identical", i-1, i) -		} -		if prev == (Point{cur.Mul(-1)}) { -			return fmt.Errorf("vertices %d and %d are antipodal", i-1, i) -		} -	} - -	return nil -} - -// Intersects reports whether this polyline intersects the given polyline. If -// the polylines share a vertex they are considered to be intersecting. When a -// polyline endpoint is the only intersection with the other polyline, the -// function may return true or false arbitrarily. -// -// The running time is quadratic in the number of vertices. -func (p *Polyline) Intersects(o *Polyline) bool { -	if len(*p) == 0 || len(*o) == 0 { -		return false -	} - -	if !p.RectBound().Intersects(o.RectBound()) { -		return false -	} - -	// TODO(roberts): Use ShapeIndex here. -	for i := 1; i < len(*p); i++ { -		crosser := NewChainEdgeCrosser((*p)[i-1], (*p)[i], (*o)[0]) -		for j := 1; j < len(*o); j++ { -			if crosser.ChainCrossingSign((*o)[j]) != DoNotCross { -				return true -			} -		} -	} -	return false -} - -// Interpolate returns the point whose distance from vertex 0 along the polyline is -// the given fraction of the polyline's total length, and the index of -// the next vertex after the interpolated point P. Fractions less than zero -// or greater than one are clamped. The return value is unit length. The cost of -// this function is currently linear in the number of vertices. -// -// This method allows the caller to easily construct a given suffix of the -// polyline by concatenating P with the polyline vertices starting at that next -// vertex. Note that P is guaranteed to be different than the point at the next -// vertex, so this will never result in a duplicate vertex. -// -// The polyline must not be empty. Note that if fraction >= 1.0, then the next -// vertex will be set to len(p) (indicating that no vertices from the polyline -// need to be appended). The value of the next vertex is always between 1 and -// len(p). -// -// This method can also be used to construct a prefix of the polyline, by -// taking the polyline vertices up to next vertex-1 and appending the -// returned point P if it is different from the last vertex (since in this -// case there is no guarantee of distinctness). -func (p *Polyline) Interpolate(fraction float64) (Point, int) { -	// We intentionally let the (fraction >= 1) case fall through, since -	// we need to handle it in the loop below in any case because of -	// possible roundoff errors. -	if fraction <= 0 { -		return (*p)[0], 1 -	} -	target := s1.Angle(fraction) * p.Length() - -	for i := 1; i < len(*p); i++ { -		length := (*p)[i-1].Distance((*p)[i]) -		if target < length { -			// This interpolates with respect to arc length rather than -			// straight-line distance, and produces a unit-length result. -			result := InterpolateAtDistance(target, (*p)[i-1], (*p)[i]) - -			// It is possible that (result == vertex(i)) due to rounding errors. -			if result == (*p)[i] { -				return result, i + 1 -			} -			return result, i -		} -		target -= length -	} - -	return (*p)[len(*p)-1], len(*p) -} - -// Uninterpolate is the inverse operation of Interpolate. Given a point on the -// polyline, it returns the ratio of the distance to the point from the -// beginning of the polyline over the length of the polyline. The return -// value is always betwen 0 and 1 inclusive. -// -// The polyline should not be empty.  If it has fewer than 2 vertices, the -// return value is zero. -func (p *Polyline) Uninterpolate(point Point, nextVertex int) float64 { -	if len(*p) < 2 { -		return 0 -	} - -	var sum s1.Angle -	for i := 1; i < nextVertex; i++ { -		sum += (*p)[i-1].Distance((*p)[i]) -	} -	lengthToPoint := sum + (*p)[nextVertex-1].Distance(point) -	for i := nextVertex; i < len(*p); i++ { -		sum += (*p)[i-1].Distance((*p)[i]) -	} -	// The ratio can be greater than 1.0 due to rounding errors or because the -	// point is not exactly on the polyline. -	return minFloat64(1.0, float64(lengthToPoint/sum)) -} - -// TODO(roberts): Differences from C++. -// NearlyCoversPolyline -// InitToSnapped -// InitToSimplified -// SnapLevel -// encode/decode compressed diff --git a/vendor/github.com/golang/geo/s2/polyline_measures.go b/vendor/github.com/golang/geo/s2/polyline_measures.go deleted file mode 100644 index 38ce991b5..000000000 --- a/vendor/github.com/golang/geo/s2/polyline_measures.go +++ /dev/null @@ -1,53 +0,0 @@ -// Copyright 2018 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// This file defines various measures for polylines on the sphere. These are -// low-level methods that work directly with arrays of Points. They are used to -// implement the methods in various other measures files. - -import ( -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -// polylineLength returns the length of the given Polyline. -// It returns 0 for polylines with fewer than two vertices. -func polylineLength(p []Point) s1.Angle { -	var length s1.Angle - -	for i := 1; i < len(p); i++ { -		length += p[i-1].Distance(p[i]) -	} -	return length -} - -// polylineCentroid returns the true centroid of the polyline multiplied by the -// length of the polyline. The result is not unit length, so you may wish to -// normalize it. -// -// Scaling by the Polyline length makes it easy to compute the centroid -// of several Polylines (by simply adding up their centroids). -// -// Note that for degenerate Polylines (e.g., AA) this returns Point(0, 0, 0). -// (This answer is correct; the result of this function is a line integral over -// the polyline, whose value is always zero if the polyline is degenerate.) -func polylineCentroid(p []Point) Point { -	var centroid r3.Vector -	for i := 1; i < len(p); i++ { -		centroid = centroid.Add(EdgeTrueCentroid(p[i-1], p[i]).Vector) -	} -	return Point{centroid} -} diff --git a/vendor/github.com/golang/geo/s2/predicates.go b/vendor/github.com/golang/geo/s2/predicates.go deleted file mode 100644 index 9fc5e1751..000000000 --- a/vendor/github.com/golang/geo/s2/predicates.go +++ /dev/null @@ -1,701 +0,0 @@ -// Copyright 2016 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// This file contains various predicates that are guaranteed to produce -// correct, consistent results. They are also relatively efficient. This is -// achieved by computing conservative error bounds and falling back to high -// precision or even exact arithmetic when the result is uncertain. Such -// predicates are useful in implementing robust algorithms. -// -// See also EdgeCrosser, which implements various exact -// edge-crossing predicates more efficiently than can be done here. - -import ( -	"math" -	"math/big" - -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -const ( -	// If any other machine architectures need to be suppported, these next three -	// values will need to be updated. - -	// epsilon is a small number that represents a reasonable level of noise between two -	// values that can be considered to be equal. -	epsilon = 1e-15 -	// dblEpsilon is a smaller number for values that require more precision. -	// This is the C++ DBL_EPSILON equivalent. -	dblEpsilon = 2.220446049250313e-16 -	// dblError is the C++ value for S2 rounding_epsilon(). -	dblError = 1.110223024625156e-16 - -	// maxDeterminantError is the maximum error in computing (AxB).C where all vectors -	// are unit length. Using standard inequalities, it can be shown that -	// -	//  fl(AxB) = AxB + D where |D| <= (|AxB| + (2/sqrt(3))*|A|*|B|) * e -	// -	// where "fl()" denotes a calculation done in floating-point arithmetic, -	// |x| denotes either absolute value or the L2-norm as appropriate, and -	// e is a reasonably small value near the noise level of floating point -	// number accuracy. Similarly, -	// -	//  fl(B.C) = B.C + d where |d| <= (|B.C| + 2*|B|*|C|) * e . -	// -	// Applying these bounds to the unit-length vectors A,B,C and neglecting -	// relative error (which does not affect the sign of the result), we get -	// -	//  fl((AxB).C) = (AxB).C + d where |d| <= (3 + 2/sqrt(3)) * e -	maxDeterminantError = 1.8274 * dblEpsilon - -	// detErrorMultiplier is the factor to scale the magnitudes by when checking -	// for the sign of set of points with certainty. Using a similar technique to -	// the one used for maxDeterminantError, the error is at most: -	// -	//   |d| <= (3 + 6/sqrt(3)) * |A-C| * |B-C| * e -	// -	// If the determinant magnitude is larger than this value then we know -	// its sign with certainty. -	detErrorMultiplier = 3.2321 * dblEpsilon -) - -// Direction is an indication of the ordering of a set of points. -type Direction int - -// These are the three options for the direction of a set of points. -const ( -	Clockwise        Direction = -1 -	Indeterminate    Direction = 0 -	CounterClockwise Direction = 1 -) - -// newBigFloat constructs a new big.Float with maximum precision. -func newBigFloat() *big.Float { return new(big.Float).SetPrec(big.MaxPrec) } - -// Sign returns true if the points A, B, C are strictly counterclockwise, -// and returns false if the points are clockwise or collinear (i.e. if they are all -// contained on some great circle). -// -// Due to numerical errors, situations may arise that are mathematically -// impossible, e.g. ABC may be considered strictly CCW while BCA is not. -// However, the implementation guarantees the following: -// -// If Sign(a,b,c), then !Sign(c,b,a) for all a,b,c. -func Sign(a, b, c Point) bool { -	// NOTE(dnadasi): In the C++ API the equivalent method here was known as "SimpleSign". - -	// We compute the signed volume of the parallelepiped ABC. The usual -	// formula for this is (A ⨯ B) · C, but we compute it here using (C ⨯ A) · B -	// in order to ensure that ABC and CBA are not both CCW. This follows -	// from the following identities (which are true numerically, not just -	// mathematically): -	// -	//     (1) x ⨯ y == -(y ⨯ x) -	//     (2) -x · y == -(x · y) -	return c.Cross(a.Vector).Dot(b.Vector) > 0 -} - -// RobustSign returns a Direction representing the ordering of the points. -// CounterClockwise is returned if the points are in counter-clockwise order, -// Clockwise for clockwise, and Indeterminate if any two points are the same (collinear), -// or the sign could not completely be determined. -// -// This function has additional logic to make sure that the above properties hold even -// when the three points are coplanar, and to deal with the limitations of -// floating-point arithmetic. -// -// RobustSign satisfies the following conditions: -// -//  (1) RobustSign(a,b,c) == Indeterminate if and only if a == b, b == c, or c == a -//  (2) RobustSign(b,c,a) == RobustSign(a,b,c) for all a,b,c -//  (3) RobustSign(c,b,a) == -RobustSign(a,b,c) for all a,b,c -// -// In other words: -// -//  (1) The result is Indeterminate if and only if two points are the same. -//  (2) Rotating the order of the arguments does not affect the result. -//  (3) Exchanging any two arguments inverts the result. -// -// On the other hand, note that it is not true in general that -// RobustSign(-a,b,c) == -RobustSign(a,b,c), or any similar identities -// involving antipodal points. -func RobustSign(a, b, c Point) Direction { -	sign := triageSign(a, b, c) -	if sign == Indeterminate { -		sign = expensiveSign(a, b, c) -	} -	return sign -} - -// stableSign reports the direction sign of the points in a numerically stable way. -// Unlike triageSign, this method can usually compute the correct determinant sign -// even when all three points are as collinear as possible. For example if three -// points are spaced 1km apart along a random line on the Earth's surface using -// the nearest representable points, there is only a 0.4% chance that this method -// will not be able to find the determinant sign. The probability of failure -// decreases as the points get closer together; if the collinear points are 1 meter -// apart, the failure rate drops to 0.0004%. -// -// This method could be extended to also handle nearly-antipodal points, but antipodal -// points are rare in practice so it seems better to simply fall back to -// exact arithmetic in that case. -func stableSign(a, b, c Point) Direction { -	ab := b.Sub(a.Vector) -	ab2 := ab.Norm2() -	bc := c.Sub(b.Vector) -	bc2 := bc.Norm2() -	ca := a.Sub(c.Vector) -	ca2 := ca.Norm2() - -	// Now compute the determinant ((A-C)x(B-C)).C, where the vertices have been -	// cyclically permuted if necessary so that AB is the longest edge. (This -	// minimizes the magnitude of cross product.)  At the same time we also -	// compute the maximum error in the determinant. - -	// The two shortest edges, pointing away from their common point. -	var e1, e2, op r3.Vector -	if ab2 >= bc2 && ab2 >= ca2 { -		// AB is the longest edge. -		e1, e2, op = ca, bc, c.Vector -	} else if bc2 >= ca2 { -		// BC is the longest edge. -		e1, e2, op = ab, ca, a.Vector -	} else { -		// CA is the longest edge. -		e1, e2, op = bc, ab, b.Vector -	} - -	det := -e1.Cross(e2).Dot(op) -	maxErr := detErrorMultiplier * math.Sqrt(e1.Norm2()*e2.Norm2()) - -	// If the determinant isn't zero, within maxErr, we know definitively the point ordering. -	if det > maxErr { -		return CounterClockwise -	} -	if det < -maxErr { -		return Clockwise -	} -	return Indeterminate -} - -// triageSign returns the direction sign of the points. It returns Indeterminate if two -// points are identical or the result is uncertain. Uncertain cases can be resolved, if -// desired, by calling expensiveSign. -// -// The purpose of this method is to allow additional cheap tests to be done without -// calling expensiveSign. -func triageSign(a, b, c Point) Direction { -	det := a.Cross(b.Vector).Dot(c.Vector) -	if det > maxDeterminantError { -		return CounterClockwise -	} -	if det < -maxDeterminantError { -		return Clockwise -	} -	return Indeterminate -} - -// expensiveSign reports the direction sign of the points. It returns Indeterminate -// if two of the input points are the same. It uses multiple-precision arithmetic -// to ensure that its results are always self-consistent. -func expensiveSign(a, b, c Point) Direction { -	// Return Indeterminate if and only if two points are the same. -	// This ensures RobustSign(a,b,c) == Indeterminate if and only if a == b, b == c, or c == a. -	// ie. Property 1 of RobustSign. -	if a == b || b == c || c == a { -		return Indeterminate -	} - -	// Next we try recomputing the determinant still using floating-point -	// arithmetic but in a more precise way. This is more expensive than the -	// simple calculation done by triageSign, but it is still *much* cheaper -	// than using arbitrary-precision arithmetic. This optimization is able to -	// compute the correct determinant sign in virtually all cases except when -	// the three points are truly collinear (e.g., three points on the equator). -	detSign := stableSign(a, b, c) -	if detSign != Indeterminate { -		return detSign -	} - -	// Otherwise fall back to exact arithmetic and symbolic permutations. -	return exactSign(a, b, c, true) -} - -// exactSign reports the direction sign of the points computed using high-precision -// arithmetic and/or symbolic perturbations. -func exactSign(a, b, c Point, perturb bool) Direction { -	// Sort the three points in lexicographic order, keeping track of the sign -	// of the permutation. (Each exchange inverts the sign of the determinant.) -	permSign := CounterClockwise -	pa := &a -	pb := &b -	pc := &c -	if pa.Cmp(pb.Vector) > 0 { -		pa, pb = pb, pa -		permSign = -permSign -	} -	if pb.Cmp(pc.Vector) > 0 { -		pb, pc = pc, pb -		permSign = -permSign -	} -	if pa.Cmp(pb.Vector) > 0 { -		pa, pb = pb, pa -		permSign = -permSign -	} - -	// Construct multiple-precision versions of the sorted points and compute -	// their precise 3x3 determinant. -	xa := r3.PreciseVectorFromVector(pa.Vector) -	xb := r3.PreciseVectorFromVector(pb.Vector) -	xc := r3.PreciseVectorFromVector(pc.Vector) -	xbCrossXc := xb.Cross(xc) -	det := xa.Dot(xbCrossXc) - -	// The precision of big.Float is high enough that the result should always -	// be exact enough (no rounding was performed). - -	// If the exact determinant is non-zero, we're done. -	detSign := Direction(det.Sign()) -	if detSign == Indeterminate && perturb { -		// Otherwise, we need to resort to symbolic perturbations to resolve the -		// sign of the determinant. -		detSign = symbolicallyPerturbedSign(xa, xb, xc, xbCrossXc) -	} -	return permSign * detSign -} - -// symbolicallyPerturbedSign reports the sign of the determinant of three points -// A, B, C under a model where every possible Point is slightly perturbed by -// a unique infinitesmal amount such that no three perturbed points are -// collinear and no four points are coplanar. The perturbations are so small -// that they do not change the sign of any determinant that was non-zero -// before the perturbations, and therefore can be safely ignored unless the -// determinant of three points is exactly zero (using multiple-precision -// arithmetic). This returns CounterClockwise or Clockwise according to the -// sign of the determinant after the symbolic perturbations are taken into account. -// -// Since the symbolic perturbation of a given point is fixed (i.e., the -// perturbation is the same for all calls to this method and does not depend -// on the other two arguments), the results of this method are always -// self-consistent. It will never return results that would correspond to an -// impossible configuration of non-degenerate points. -// -// This requires that the 3x3 determinant of A, B, C must be exactly zero. -// And the points must be distinct, with A < B < C in lexicographic order. -// -// Reference: -//   "Simulation of Simplicity" (Edelsbrunner and Muecke, ACM Transactions on -//   Graphics, 1990). -// -func symbolicallyPerturbedSign(a, b, c, bCrossC r3.PreciseVector) Direction { -	// This method requires that the points are sorted in lexicographically -	// increasing order. This is because every possible Point has its own -	// symbolic perturbation such that if A < B then the symbolic perturbation -	// for A is much larger than the perturbation for B. -	// -	// Alternatively, we could sort the points in this method and keep track of -	// the sign of the permutation, but it is more efficient to do this before -	// converting the inputs to the multi-precision representation, and this -	// also lets us re-use the result of the cross product B x C. -	// -	// Every input coordinate x[i] is assigned a symbolic perturbation dx[i]. -	// We then compute the sign of the determinant of the perturbed points, -	// i.e. -	//               | a.X+da.X  a.Y+da.Y  a.Z+da.Z | -	//               | b.X+db.X  b.Y+db.Y  b.Z+db.Z | -	//               | c.X+dc.X  c.Y+dc.Y  c.Z+dc.Z | -	// -	// The perturbations are chosen such that -	// -	//   da.Z > da.Y > da.X > db.Z > db.Y > db.X > dc.Z > dc.Y > dc.X -	// -	// where each perturbation is so much smaller than the previous one that we -	// don't even need to consider it unless the coefficients of all previous -	// perturbations are zero. In fact, it is so small that we don't need to -	// consider it unless the coefficient of all products of the previous -	// perturbations are zero. For example, we don't need to consider the -	// coefficient of db.Y unless the coefficient of db.Z *da.X is zero. -	// -	// The follow code simply enumerates the coefficients of the perturbations -	// (and products of perturbations) that appear in the determinant above, in -	// order of decreasing perturbation magnitude. The first non-zero -	// coefficient determines the sign of the result. The easiest way to -	// enumerate the coefficients in the correct order is to pretend that each -	// perturbation is some tiny value "eps" raised to a power of two: -	// -	// eps**     1      2      4      8     16     32     64    128    256 -	//        da.Z   da.Y   da.X   db.Z   db.Y   db.X   dc.Z   dc.Y   dc.X -	// -	// Essentially we can then just count in binary and test the corresponding -	// subset of perturbations at each step. So for example, we must test the -	// coefficient of db.Z*da.X before db.Y because eps**12 > eps**16. -	// -	// Of course, not all products of these perturbations appear in the -	// determinant above, since the determinant only contains the products of -	// elements in distinct rows and columns. Thus we don't need to consider -	// da.Z*da.Y, db.Y *da.Y, etc. Furthermore, sometimes different pairs of -	// perturbations have the same coefficient in the determinant; for example, -	// da.Y*db.X and db.Y*da.X have the same coefficient (c.Z). Therefore -	// we only need to test this coefficient the first time we encounter it in -	// the binary order above (which will be db.Y*da.X). -	// -	// The sequence of tests below also appears in Table 4-ii of the paper -	// referenced above, if you just want to look it up, with the following -	// translations: [a,b,c] -> [i,j,k] and [0,1,2] -> [1,2,3]. Also note that -	// some of the signs are different because the opposite cross product is -	// used (e.g., B x C rather than C x B). - -	detSign := bCrossC.Z.Sign() // da.Z -	if detSign != 0 { -		return Direction(detSign) -	} -	detSign = bCrossC.Y.Sign() // da.Y -	if detSign != 0 { -		return Direction(detSign) -	} -	detSign = bCrossC.X.Sign() // da.X -	if detSign != 0 { -		return Direction(detSign) -	} - -	detSign = newBigFloat().Sub(newBigFloat().Mul(c.X, a.Y), newBigFloat().Mul(c.Y, a.X)).Sign() // db.Z -	if detSign != 0 { -		return Direction(detSign) -	} -	detSign = c.X.Sign() // db.Z * da.Y -	if detSign != 0 { -		return Direction(detSign) -	} -	detSign = -(c.Y.Sign()) // db.Z * da.X -	if detSign != 0 { -		return Direction(detSign) -	} - -	detSign = newBigFloat().Sub(newBigFloat().Mul(c.Z, a.X), newBigFloat().Mul(c.X, a.Z)).Sign() // db.Y -	if detSign != 0 { -		return Direction(detSign) -	} -	detSign = c.Z.Sign() // db.Y * da.X -	if detSign != 0 { -		return Direction(detSign) -	} - -	// The following test is listed in the paper, but it is redundant because -	// the previous tests guarantee that C == (0, 0, 0). -	// (c.Y*a.Z - c.Z*a.Y).Sign() // db.X - -	detSign = newBigFloat().Sub(newBigFloat().Mul(a.X, b.Y), newBigFloat().Mul(a.Y, b.X)).Sign() // dc.Z -	if detSign != 0 { -		return Direction(detSign) -	} -	detSign = -(b.X.Sign()) // dc.Z * da.Y -	if detSign != 0 { -		return Direction(detSign) -	} -	detSign = b.Y.Sign() // dc.Z * da.X -	if detSign != 0 { -		return Direction(detSign) -	} -	detSign = a.X.Sign() // dc.Z * db.Y -	if detSign != 0 { -		return Direction(detSign) -	} -	return CounterClockwise // dc.Z * db.Y * da.X -} - -// CompareDistances returns -1, 0, or +1 according to whether AX < BX, A == B, -// or AX > BX respectively. Distances are measured with respect to the positions -// of X, A, and B as though they were reprojected to lie exactly on the surface of -// the unit sphere. Furthermore, this method uses symbolic perturbations to -// ensure that the result is non-zero whenever A != B, even when AX == BX -// exactly, or even when A and B project to the same point on the sphere. -// Such results are guaranteed to be self-consistent, i.e. if AB < BC and -// BC < AC, then AB < AC. -func CompareDistances(x, a, b Point) int { -	// We start by comparing distances using dot products (i.e., cosine of the -	// angle), because (1) this is the cheapest technique, and (2) it is valid -	// over the entire range of possible angles. (We can only use the sin^2 -	// technique if both angles are less than 90 degrees or both angles are -	// greater than 90 degrees.) -	sign := triageCompareCosDistances(x, a, b) -	if sign != 0 { -		return sign -	} - -	// Optimization for (a == b) to avoid falling back to exact arithmetic. -	if a == b { -		return 0 -	} - -	// It is much better numerically to compare distances using cos(angle) if -	// the distances are near 90 degrees and sin^2(angle) if the distances are -	// near 0 or 180 degrees. We only need to check one of the two angles when -	// making this decision because the fact that the test above failed means -	// that angles "a" and "b" are very close together. -	cosAX := a.Dot(x.Vector) -	if cosAX > 1/math.Sqrt2 { -		// Angles < 45 degrees. -		sign = triageCompareSin2Distances(x, a, b) -	} else if cosAX < -1/math.Sqrt2 { -		// Angles > 135 degrees. sin^2(angle) is decreasing in this range. -		sign = -triageCompareSin2Distances(x, a, b) -	} -	// C++ adds an additional check here using 80-bit floats. -	// This is skipped in Go because we only have 32 and 64 bit floats. - -	if sign != 0 { -		return sign -	} - -	sign = exactCompareDistances(r3.PreciseVectorFromVector(x.Vector), r3.PreciseVectorFromVector(a.Vector), r3.PreciseVectorFromVector(b.Vector)) -	if sign != 0 { -		return sign -	} -	return symbolicCompareDistances(x, a, b) -} - -// cosDistance returns cos(XY) where XY is the angle between X and Y, and the -// maximum error amount in the result. This requires X and Y be normalized. -func cosDistance(x, y Point) (cos, err float64) { -	cos = x.Dot(y.Vector) -	return cos, 9.5*dblError*math.Abs(cos) + 1.5*dblError -} - -// sin2Distance returns sin**2(XY), where XY is the angle between X and Y, -// and the maximum error amount in the result. This requires X and Y be normalized. -func sin2Distance(x, y Point) (sin2, err float64) { -	// The (x-y).Cross(x+y) trick eliminates almost all of error due to x -	// and y being not quite unit length. This method is extremely accurate -	// for small distances; the *relative* error in the result is O(dblError) for -	// distances as small as dblError. -	n := x.Sub(y.Vector).Cross(x.Add(y.Vector)) -	sin2 = 0.25 * n.Norm2() -	err = ((21+4*math.Sqrt(3))*dblError*sin2 + -		32*math.Sqrt(3)*dblError*dblError*math.Sqrt(sin2) + -		768*dblError*dblError*dblError*dblError) -	return sin2, err -} - -// triageCompareCosDistances returns -1, 0, or +1 according to whether AX < BX, -// A == B, or AX > BX by comparing the distances between them using cosDistance. -func triageCompareCosDistances(x, a, b Point) int { -	cosAX, cosAXerror := cosDistance(a, x) -	cosBX, cosBXerror := cosDistance(b, x) -	diff := cosAX - cosBX -	err := cosAXerror + cosBXerror -	if diff > err { -		return -1 -	} -	if diff < -err { -		return 1 -	} -	return 0 -} - -// triageCompareSin2Distances returns -1, 0, or +1 according to whether AX < BX, -// A == B, or AX > BX by comparing the distances between them using sin2Distance. -func triageCompareSin2Distances(x, a, b Point) int { -	sin2AX, sin2AXerror := sin2Distance(a, x) -	sin2BX, sin2BXerror := sin2Distance(b, x) -	diff := sin2AX - sin2BX -	err := sin2AXerror + sin2BXerror -	if diff > err { -		return 1 -	} -	if diff < -err { -		return -1 -	} -	return 0 -} - -// exactCompareDistances returns -1, 0, or 1 after comparing using the values as -// PreciseVectors. -func exactCompareDistances(x, a, b r3.PreciseVector) int { -	// This code produces the same result as though all points were reprojected -	// to lie exactly on the surface of the unit sphere. It is based on testing -	// whether x.Dot(a.Normalize()) < x.Dot(b.Normalize()), reformulated -	// so that it can be evaluated using exact arithmetic. -	cosAX := x.Dot(a) -	cosBX := x.Dot(b) - -	// If the two values have different signs, we need to handle that case now -	// before squaring them below. -	aSign := cosAX.Sign() -	bSign := cosBX.Sign() -	if aSign != bSign { -		// If cos(AX) > cos(BX), then AX < BX. -		if aSign > bSign { -			return -1 -		} -		return 1 -	} -	cosAX2 := newBigFloat().Mul(cosAX, cosAX) -	cosBX2 := newBigFloat().Mul(cosBX, cosBX) -	cmp := newBigFloat().Sub(cosBX2.Mul(cosBX2, a.Norm2()), cosAX2.Mul(cosAX2, b.Norm2())) -	return aSign * cmp.Sign() -} - -// symbolicCompareDistances returns -1, 0, or +1 given three points such that AX == BX -// (exactly) according to whether AX < BX, AX == BX, or AX > BX after symbolic -// perturbations are taken into account. -func symbolicCompareDistances(x, a, b Point) int { -	// Our symbolic perturbation strategy is based on the following model. -	// Similar to "simulation of simplicity", we assign a perturbation to every -	// point such that if A < B, then the symbolic perturbation for A is much, -	// much larger than the symbolic perturbation for B. We imagine that -	// rather than projecting every point to lie exactly on the unit sphere, -	// instead each point is positioned on its own tiny pedestal that raises it -	// just off the surface of the unit sphere. This means that the distance AX -	// is actually the true distance AX plus the (symbolic) heights of the -	// pedestals for A and X. The pedestals are infinitesmally thin, so they do -	// not affect distance measurements except at the two endpoints. If several -	// points project to exactly the same point on the unit sphere, we imagine -	// that they are placed on separate pedestals placed close together, where -	// the distance between pedestals is much, much less than the height of any -	// pedestal. (There are a finite number of Points, and therefore a finite -	// number of pedestals, so this is possible.) -	// -	// If A < B, then A is on a higher pedestal than B, and therefore AX > BX. -	switch a.Cmp(b.Vector) { -	case -1: -		return 1 -	case 1: -		return -1 -	default: -		return 0 -	} -} - -var ( -	// ca45Degrees is a predefined ChordAngle representing (approximately) 45 degrees. -	ca45Degrees = s1.ChordAngleFromSquaredLength(2 - math.Sqrt2) -) - -// CompareDistance returns -1, 0, or +1 according to whether the distance XY is -// respectively less than, equal to, or greater than the provided chord angle. Distances are measured -// with respect to the positions of all points as though they are projected to lie -// exactly on the surface of the unit sphere. -func CompareDistance(x, y Point, r s1.ChordAngle) int { -	// As with CompareDistances, we start by comparing dot products because -	// the sin^2 method is only valid when the distance XY and the limit "r" are -	// both less than 90 degrees. -	sign := triageCompareCosDistance(x, y, float64(r)) -	if sign != 0 { -		return sign -	} - -	// Unlike with CompareDistances, it's not worth using the sin^2 method -	// when the distance limit is near 180 degrees because the ChordAngle -	// representation itself has has a rounding error of up to 2e-8 radians for -	// distances near 180 degrees. -	if r < ca45Degrees { -		sign = triageCompareSin2Distance(x, y, float64(r)) -		if sign != 0 { -			return sign -		} -	} -	return exactCompareDistance(r3.PreciseVectorFromVector(x.Vector), r3.PreciseVectorFromVector(y.Vector), big.NewFloat(float64(r)).SetPrec(big.MaxPrec)) -} - -// triageCompareCosDistance returns -1, 0, or +1 according to whether the distance XY is -// less than, equal to, or greater than r2 respectively using cos distance. -func triageCompareCosDistance(x, y Point, r2 float64) int { -	cosXY, cosXYError := cosDistance(x, y) -	cosR := 1.0 - 0.5*r2 -	cosRError := 2.0 * dblError * cosR -	diff := cosXY - cosR -	err := cosXYError + cosRError -	if diff > err { -		return -1 -	} -	if diff < -err { -		return 1 -	} -	return 0 -} - -// triageCompareSin2Distance returns -1, 0, or +1 according to whether the distance XY is -// less than, equal to, or greater than r2 respectively using sin^2 distance. -func triageCompareSin2Distance(x, y Point, r2 float64) int { -	// Only valid for distance limits < 90 degrees. -	sin2XY, sin2XYError := sin2Distance(x, y) -	sin2R := r2 * (1.0 - 0.25*r2) -	sin2RError := 3.0 * dblError * sin2R -	diff := sin2XY - sin2R -	err := sin2XYError + sin2RError -	if diff > err { -		return 1 -	} -	if diff < -err { -		return -1 -	} -	return 0 -} - -var ( -	bigOne  = big.NewFloat(1.0).SetPrec(big.MaxPrec) -	bigHalf = big.NewFloat(0.5).SetPrec(big.MaxPrec) -) - -// exactCompareDistance returns -1, 0, or +1 after comparing using PreciseVectors. -func exactCompareDistance(x, y r3.PreciseVector, r2 *big.Float) int { -	// This code produces the same result as though all points were reprojected -	// to lie exactly on the surface of the unit sphere.  It is based on -	// comparing the cosine of the angle XY (when both points are projected to -	// lie exactly on the sphere) to the given threshold. -	cosXY := x.Dot(y) -	cosR := newBigFloat().Sub(bigOne, newBigFloat().Mul(bigHalf, r2)) - -	// If the two values have different signs, we need to handle that case now -	// before squaring them below. -	xySign := cosXY.Sign() -	rSign := cosR.Sign() -	if xySign != rSign { -		if xySign > rSign { -			return -1 -		} -		return 1 // If cos(XY) > cos(r), then XY < r. -	} -	cmp := newBigFloat().Sub( -		newBigFloat().Mul( -			newBigFloat().Mul(cosR, cosR), newBigFloat().Mul(x.Norm2(), y.Norm2())), -		newBigFloat().Mul(cosXY, cosXY)) -	return xySign * cmp.Sign() -} - -// TODO(roberts): Differences from C++ -// CompareEdgeDistance -// CompareEdgeDirections -// EdgeCircumcenterSign -// GetVoronoiSiteExclusion -// GetClosestVertex -// TriageCompareLineSin2Distance -// TriageCompareLineCos2Distance -// TriageCompareLineDistance -// TriageCompareEdgeDistance -// ExactCompareLineDistance -// ExactCompareEdgeDistance -// TriageCompareEdgeDirections -// ExactCompareEdgeDirections -// ArePointsAntipodal -// ArePointsLinearlyDependent -// GetCircumcenter -// TriageEdgeCircumcenterSign -// ExactEdgeCircumcenterSign -// UnperturbedSign -// SymbolicEdgeCircumcenterSign -// ExactVoronoiSiteExclusion diff --git a/vendor/github.com/golang/geo/s2/projections.go b/vendor/github.com/golang/geo/s2/projections.go deleted file mode 100644 index f7273609c..000000000 --- a/vendor/github.com/golang/geo/s2/projections.go +++ /dev/null @@ -1,241 +0,0 @@ -// Copyright 2018 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" - -	"github.com/golang/geo/r2" -	"github.com/golang/geo/s1" -) - -// Projection defines an interface for different ways of mapping between s2 and r2 Points. -// It can also define the coordinate wrapping behavior along each axis. -type Projection interface { -	// Project converts a point on the sphere to a projected 2D point. -	Project(p Point) r2.Point - -	// Unproject converts a projected 2D point to a point on the sphere. -	// -	// If wrapping is defined for a given axis (see below), then this method -	// should accept any real number for the corresponding coordinate. -	Unproject(p r2.Point) Point - -	// FromLatLng is a convenience function equivalent to Project(LatLngToPoint(ll)), -	// but the implementation is more efficient. -	FromLatLng(ll LatLng) r2.Point - -	// ToLatLng is a convenience function equivalent to LatLngFromPoint(Unproject(p)), -	// but the implementation is more efficient. -	ToLatLng(p r2.Point) LatLng - -	// Interpolate returns the point obtained by interpolating the given -	// fraction of the distance along the line from A to B. -	// Fractions < 0 or > 1 result in extrapolation instead. -	Interpolate(f float64, a, b r2.Point) r2.Point - -	// WrapDistance reports the coordinate wrapping distance along each axis. -	// If this value is non-zero for a given axis, the coordinates are assumed -	// to "wrap" with the given period. For example, if WrapDistance.Y == 360 -	// then (x, y) and (x, y + 360) should map to the same Point. -	// -	// This information is used to ensure that edges takes the shortest path -	// between two given points. For example, if coordinates represent -	// (latitude, longitude) pairs in degrees and WrapDistance().Y == 360, -	// then the edge (5:179, 5:-179) would be interpreted as spanning 2 degrees -	// of longitude rather than 358 degrees. -	// -	// If a given axis does not wrap, its WrapDistance should be set to zero. -	WrapDistance() r2.Point - -	// WrapDestination that wraps the coordinates of B if necessary in order to -	// obtain the shortest edge AB. For example, suppose that A = [170, 20], -	// B = [-170, 20], and the projection wraps so that [x, y] == [x + 360, y]. -	// Then this function would return [190, 20] for point B (reducing the edge -	// length in the "x" direction from 340 to 20). -	WrapDestination(a, b r2.Point) r2.Point - -	// We do not support implementations of this interface outside this package. -	privateInterface() -} - -// PlateCarreeProjection defines the "plate carree" (square plate) projection, -// which converts points on the sphere to (longitude, latitude) pairs. -// Coordinates can be scaled so that they represent radians, degrees, etc, but -// the projection is always centered around (latitude=0, longitude=0). -// -// Note that (x, y) coordinates are backwards compared to the usual (latitude, -// longitude) ordering, in order to match the usual convention for graphs in -// which "x" is horizontal and "y" is vertical. -type PlateCarreeProjection struct { -	xWrap       float64 -	toRadians   float64 // Multiplier to convert coordinates to radians. -	fromRadians float64 // Multiplier to convert coordinates from radians. -} - -// NewPlateCarreeProjection constructs a plate carree projection where the -// x-coordinates (lng) span [-xScale, xScale] and the y coordinates (lat) -// span [-xScale/2, xScale/2]. For example if xScale==180 then the x -// range is [-180, 180] and the y range is [-90, 90]. -// -// By default coordinates are expressed in radians, i.e. the x range is -// [-Pi, Pi] and the y range is [-Pi/2, Pi/2]. -func NewPlateCarreeProjection(xScale float64) Projection { -	return &PlateCarreeProjection{ -		xWrap:       2 * xScale, -		toRadians:   math.Pi / xScale, -		fromRadians: xScale / math.Pi, -	} -} - -// Project converts a point on the sphere to a projected 2D point. -func (p *PlateCarreeProjection) Project(pt Point) r2.Point { -	return p.FromLatLng(LatLngFromPoint(pt)) -} - -// Unproject converts a projected 2D point to a point on the sphere. -func (p *PlateCarreeProjection) Unproject(pt r2.Point) Point { -	return PointFromLatLng(p.ToLatLng(pt)) -} - -// FromLatLng returns the LatLng projected into an R2 Point. -func (p *PlateCarreeProjection) FromLatLng(ll LatLng) r2.Point { -	return r2.Point{ -		X: p.fromRadians * ll.Lng.Radians(), -		Y: p.fromRadians * ll.Lat.Radians(), -	} -} - -// ToLatLng returns the LatLng projected from the given R2 Point. -func (p *PlateCarreeProjection) ToLatLng(pt r2.Point) LatLng { -	return LatLng{ -		Lat: s1.Angle(p.toRadians * pt.Y), -		Lng: s1.Angle(p.toRadians * math.Remainder(pt.X, p.xWrap)), -	} -} - -// Interpolate returns the point obtained by interpolating the given -// fraction of the distance along the line from A to B. -func (p *PlateCarreeProjection) Interpolate(f float64, a, b r2.Point) r2.Point { -	return a.Mul(1 - f).Add(b.Mul(f)) -} - -// WrapDistance reports the coordinate wrapping distance along each axis. -func (p *PlateCarreeProjection) WrapDistance() r2.Point { -	return r2.Point{p.xWrap, 0} -} - -// WrapDestination wraps the points if needed to get the shortest edge. -func (p *PlateCarreeProjection) WrapDestination(a, b r2.Point) r2.Point { -	return wrapDestination(a, b, p.WrapDistance) -} - -func (p *PlateCarreeProjection) privateInterface() {} - -// MercatorProjection defines the spherical Mercator projection. Google Maps -// uses this projection together with WGS84 coordinates, in which case it is -// known as the "Web Mercator" projection (see Wikipedia). This class makes -// no assumptions regarding the coordinate system of its input points, but -// simply applies the spherical Mercator projection to them. -// -// The Mercator projection is finite in width (x) but infinite in height (y). -// "x" corresponds to longitude, and spans a finite range such as [-180, 180] -// (with coordinate wrapping), while "y" is a function of latitude and spans -// an infinite range. (As "y" coordinates get larger, points get closer to -// the north pole but never quite reach it.) The north and south poles have -// infinite "y" values. (Note that this will cause problems if you tessellate -// a Mercator edge where one endpoint is a pole. If you need to do this, clip -// the edge first so that the "y" coordinate is no more than about 5 * maxX.) -type MercatorProjection struct { -	xWrap       float64 -	toRadians   float64 // Multiplier to convert coordinates to radians. -	fromRadians float64 // Multiplier to convert coordinates from radians. -} - -// NewMercatorProjection constructs a Mercator projection with the given maximum -// longitude axis value corresponding to a range of [-maxLng, maxLng]. -// The horizontal and vertical axes are scaled equally. -func NewMercatorProjection(maxLng float64) Projection { -	return &MercatorProjection{ -		xWrap:       2 * maxLng, -		toRadians:   math.Pi / maxLng, -		fromRadians: maxLng / math.Pi, -	} -} - -// Project converts a point on the sphere to a projected 2D point. -func (p *MercatorProjection) Project(pt Point) r2.Point { -	return p.FromLatLng(LatLngFromPoint(pt)) -} - -// Unproject converts a projected 2D point to a point on the sphere. -func (p *MercatorProjection) Unproject(pt r2.Point) Point { -	return PointFromLatLng(p.ToLatLng(pt)) -} - -// FromLatLng returns the LatLng projected into an R2 Point. -func (p *MercatorProjection) FromLatLng(ll LatLng) r2.Point { -	// This formula is more accurate near zero than the log(tan()) version. -	// Note that latitudes of +/- 90 degrees yield "y" values of +/- infinity. -	sinPhi := math.Sin(float64(ll.Lat)) -	y := 0.5 * math.Log((1+sinPhi)/(1-sinPhi)) -	return r2.Point{p.fromRadians * float64(ll.Lng), p.fromRadians * y} -} - -// ToLatLng returns the LatLng projected from the given R2 Point. -func (p *MercatorProjection) ToLatLng(pt r2.Point) LatLng { -	// This formula is more accurate near zero than the atan(exp()) version. -	x := p.toRadians * math.Remainder(pt.X, p.xWrap) -	k := math.Exp(2 * p.toRadians * pt.Y) -	var y float64 -	if math.IsInf(k, 0) { -		y = math.Pi / 2 -	} else { -		y = math.Asin((k - 1) / (k + 1)) -	} -	return LatLng{s1.Angle(y), s1.Angle(x)} -} - -// Interpolate returns the point obtained by interpolating the given -// fraction of the distance along the line from A to B. -func (p *MercatorProjection) Interpolate(f float64, a, b r2.Point) r2.Point { -	return a.Mul(1 - f).Add(b.Mul(f)) -} - -// WrapDistance reports the coordinate wrapping distance along each axis. -func (p *MercatorProjection) WrapDistance() r2.Point { -	return r2.Point{p.xWrap, 0} -} - -// WrapDestination wraps the points if needed to get the shortest edge. -func (p *MercatorProjection) WrapDestination(a, b r2.Point) r2.Point { -	return wrapDestination(a, b, p.WrapDistance) -} - -func (p *MercatorProjection) privateInterface() {} - -func wrapDestination(a, b r2.Point, wrapDistance func() r2.Point) r2.Point { -	wrap := wrapDistance() -	x := b.X -	y := b.Y -	// The code below ensures that "b" is unmodified unless wrapping is required. -	if wrap.X > 0 && math.Abs(x-a.X) > 0.5*wrap.X { -		x = a.X + math.Remainder(x-a.X, wrap.X) -	} -	if wrap.Y > 0 && math.Abs(y-a.Y) > 0.5*wrap.Y { -		y = a.Y + math.Remainder(y-a.Y, wrap.Y) -	} -	return r2.Point{x, y} -} diff --git a/vendor/github.com/golang/geo/s2/query_entry.go b/vendor/github.com/golang/geo/s2/query_entry.go deleted file mode 100644 index 65e819e3a..000000000 --- a/vendor/github.com/golang/geo/s2/query_entry.go +++ /dev/null @@ -1,93 +0,0 @@ -// Copyright 2020 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import "container/heap" - -// A queryQueueEntry stores CellIDs and distance from a target. It is used by the -// different S2 Query types to efficiently build their internal priority queue -// in the optimized algorithm implementations. -type queryQueueEntry struct { -	// A lower bound on the distance from the target to ID. This is the key -	// of the priority queue. -	distance distance - -	// The cell being queued. -	id CellID - -	// If the CellID belongs to a ShapeIndex, this field stores the -	// corresponding ShapeIndexCell. Otherwise ID is a proper ancestor of -	// one or more ShapeIndexCells and this field stores is nil. -	indexCell *ShapeIndexCell -} - -// queryQueue is used by the optimized algorithm to maintain a priority queue of -// unprocessed CellIDs, sorted in increasing order of distance from the target. -type queryQueue struct { -	queue queryPQ -} - -// newQueryQueue returns a new initialized queryQueue. -func newQueryQueue() *queryQueue { -	q := &queryQueue{ -		queue: make(queryPQ, 0), -	} -	heap.Init(&q.queue) -	return q -} - -// push adds the given entry to the top of this queue. -func (q *queryQueue) push(e *queryQueueEntry) { -	heap.Push(&q.queue, e) -} - -// pop returns the top element of this queue. -func (q *queryQueue) pop() *queryQueueEntry { -	return heap.Pop(&q.queue).(*queryQueueEntry) -} - -func (q *queryQueue) size() int { -	return q.queue.Len() -} - -func (q *queryQueue) reset() { -	q.queue = q.queue[:0] -} - -// queryPQ is a priority queue that implements the heap interface. -type queryPQ []*queryQueueEntry - -func (q queryPQ) Len() int { return len(q) } -func (q queryPQ) Less(i, j int) bool { -	return q[i].distance.less(q[j].distance) -} - -// Swap swaps the two entries. -func (q queryPQ) Swap(i, j int) { -	q[i], q[j] = q[j], q[i] -} - -// Push adds the given entry to the queue. -func (q *queryPQ) Push(x interface{}) { -	item := x.(*queryQueueEntry) -	*q = append(*q, item) -} - -// Pop returns the top element of the queue. -func (q *queryPQ) Pop() interface{} { -	item := (*q)[len(*q)-1] -	*q = (*q)[:len(*q)-1] -	return item -} diff --git a/vendor/github.com/golang/geo/s2/query_options.go b/vendor/github.com/golang/geo/s2/query_options.go deleted file mode 100644 index 9b7e38d62..000000000 --- a/vendor/github.com/golang/geo/s2/query_options.go +++ /dev/null @@ -1,196 +0,0 @@ -// Copyright 2019 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" - -	"github.com/golang/geo/s1" -) - -const maxQueryResults = math.MaxInt32 - -// queryOptions represents the set of all configurable parameters used by all of -// the Query types. Most of these fields have non-zero defaults, so initialization -// is handled within each Query type. All of the exported methods accept user -// supplied sets of options to set or adjust as necessary. -// -// Several of the defaults depend on the distance interface type being used -// (e.g. minDistance, maxDistance, etc.) -// -// If a user sets an option value that a given query type doesn't use, it is ignored. -type queryOptions struct { -	// maxResults specifies that at most MaxResults edges should be returned. -	// This must be at least 1. -	// -	// The default value is to return all results. -	maxResults int - -	// distanceLimit specifies that only edges whose distance to the target is -	// within this distance should be returned. -	// -	// Note that edges whose distance is exactly equal to this are -	// not returned. In most cases this doesn't matter (since distances are -	// not computed exactly in the first place), but if such edges are needed -	// then you can retrieve them by specifying the distance as the next -	// largest representable distance. i.e. distanceLimit.Successor(). -	// -	// The default value is the infinity value, such that all results will be -	// returned. -	distanceLimit s1.ChordAngle - -	// maxError specifies that edges up to MaxError further away than the true -	// closest edges may be substituted in the result set, as long as such -	// edges satisfy all the remaining search criteria (such as DistanceLimit). -	// This option only has an effect if MaxResults is also specified; -	// otherwise all edges closer than MaxDistance will always be returned. -	// -	// Note that this does not affect how the distance between edges is -	// computed; it simply gives the algorithm permission to stop the search -	// early as soon as the best possible improvement drops below MaxError. -	// -	// This can be used to implement distance predicates efficiently. For -	// example, to determine whether the minimum distance is less than D, set -	// MaxResults == 1 and MaxDistance == MaxError == D. This causes -	// the algorithm to terminate as soon as it finds any edge whose distance -	// is less than D, rather than continuing to search for an edge that is -	// even closer. -	// -	// The default value is zero. -	maxError s1.ChordAngle - -	// includeInteriors specifies that polygon interiors should be included -	// when measuring distances. In other words, polygons that contain the target -	// should have a distance of zero. (For targets consisting of multiple connected -	// components, the distance is zero if any component is contained.) This -	// is indicated in the results by returning a (ShapeID, EdgeID) pair -	// with EdgeID == -1, i.e. this value denotes the polygons's interior. -	// -	// Note that for efficiency, any polygon that intersects the target may or -	// may not have an EdgeID == -1 result. Such results are optional -	// because in that case the distance to the polygon is already zero. -	// -	// The default value is true. -	includeInteriors bool - -	// specifies that distances should be computed by examining every edge -	// rather than using the ShapeIndex. -	// -	// TODO(roberts): When optimized is implemented, update the default to false. -	// The default value is true. -	useBruteForce bool - -	// region specifies that results must intersect the given Region. -	// -	// Note that if you want to set the region to a disc around a target -	// point, it is faster to use a PointTarget with distanceLimit set -	// instead. You can also set a distance limit and also require that results -	// lie within a given rectangle. -	// -	// The default is nil (no region limits). -	region Region -} - -// UseBruteForce sets or disables the use of brute force in a query. -func (q *queryOptions) UseBruteForce(x bool) *queryOptions { -	q.useBruteForce = x -	return q -} - -// IncludeInteriors specifies whether polygon interiors should be -// included when measuring distances. -func (q *queryOptions) IncludeInteriors(x bool) *queryOptions { -	q.includeInteriors = x -	return q -} - -// MaxError specifies that edges up to dist away than the true -// matching edges may be substituted in the result set, as long as such -// edges satisfy all the remaining search criteria (such as DistanceLimit). -// This option only has an effect if MaxResults is also specified; -// otherwise all edges closer than MaxDistance will always be returned. -func (q *queryOptions) MaxError(x s1.ChordAngle) *queryOptions { -	q.maxError = x -	return q -} - -// MaxResults specifies that at most MaxResults edges should be returned. -// This must be at least 1. -func (q *queryOptions) MaxResults(x int) *queryOptions { -	// TODO(roberts): What should be done if the value is <= 0? -	q.maxResults = int(x) -	return q -} - -// DistanceLimit specifies that only edges whose distance to the target is -// within, this distance should be returned. Edges whose distance is equal -// are not returned. -// -// To include values that are equal, specify the limit with the next largest -// representable distance such as limit.Successor(), or set the option with -// Furthest/ClosestInclusiveDistanceLimit. -func (q *queryOptions) DistanceLimit(x s1.ChordAngle) *queryOptions { -	q.distanceLimit = x -	return q -} - -// ClosestInclusiveDistanceLimit sets the distance limit such that results whose -// distance is exactly equal to the limit are also returned. -func (q *queryOptions) ClosestInclusiveDistanceLimit(limit s1.ChordAngle) *queryOptions { -	q.distanceLimit = limit.Successor() -	return q -} - -// FurthestInclusiveDistanceLimit sets the distance limit such that results whose -// distance is exactly equal to the limit are also returned. -func (q *queryOptions) FurthestInclusiveDistanceLimit(limit s1.ChordAngle) *queryOptions { -	q.distanceLimit = limit.Predecessor() -	return q -} - -// ClosestConservativeDistanceLimit sets the distance limit such that results -// also incorporates the error in distance calculations. This ensures that all -// edges whose true distance is less than or equal to limit will be returned -// (along with some edges whose true distance is slightly greater). -// -// Algorithms that need to do exact distance comparisons can use this -// option to find a set of candidate edges that can then be filtered -// further (e.g., using CompareDistance). -func (q *queryOptions) ClosestConservativeDistanceLimit(limit s1.ChordAngle) *queryOptions { -	q.distanceLimit = limit.Expanded(minUpdateDistanceMaxError(limit)) -	return q -} - -// FurthestConservativeDistanceLimit sets the distance limit such that results -// also incorporates the error in distance calculations. This ensures that all -// edges whose true distance is greater than or equal to limit will be returned -// (along with some edges whose true distance is slightly less). -func (q *queryOptions) FurthestConservativeDistanceLimit(limit s1.ChordAngle) *queryOptions { -	q.distanceLimit = limit.Expanded(-minUpdateDistanceMaxError(limit)) -	return q -} - -// newQueryOptions returns a set of options using the given distance type -// with the proper default values. -func newQueryOptions(d distance) *queryOptions { -	return &queryOptions{ -		maxResults:       maxQueryResults, -		distanceLimit:    d.infinity().chordAngle(), -		maxError:         0, -		includeInteriors: true, -		useBruteForce:    false, -		region:           nil, -	} -} diff --git a/vendor/github.com/golang/geo/s2/rect.go b/vendor/github.com/golang/geo/s2/rect.go deleted file mode 100644 index f6b52a59e..000000000 --- a/vendor/github.com/golang/geo/s2/rect.go +++ /dev/null @@ -1,710 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"fmt" -	"io" -	"math" - -	"github.com/golang/geo/r1" -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -// Rect represents a closed latitude-longitude rectangle. -type Rect struct { -	Lat r1.Interval -	Lng s1.Interval -} - -var ( -	validRectLatRange = r1.Interval{-math.Pi / 2, math.Pi / 2} -	validRectLngRange = s1.FullInterval() -) - -// EmptyRect returns the empty rectangle. -func EmptyRect() Rect { return Rect{r1.EmptyInterval(), s1.EmptyInterval()} } - -// FullRect returns the full rectangle. -func FullRect() Rect { return Rect{validRectLatRange, validRectLngRange} } - -// RectFromLatLng constructs a rectangle containing a single point p. -func RectFromLatLng(p LatLng) Rect { -	return Rect{ -		Lat: r1.Interval{p.Lat.Radians(), p.Lat.Radians()}, -		Lng: s1.Interval{p.Lng.Radians(), p.Lng.Radians()}, -	} -} - -// RectFromCenterSize constructs a rectangle with the given size and center. -// center needs to be normalized, but size does not. The latitude -// interval of the result is clamped to [-90,90] degrees, and the longitude -// interval of the result is FullRect() if and only if the longitude size is -// 360 degrees or more. -// -// Examples of clamping (in degrees): -//   center=(80,170),  size=(40,60)   -> lat=[60,90],   lng=[140,-160] -//   center=(10,40),   size=(210,400) -> lat=[-90,90],  lng=[-180,180] -//   center=(-90,180), size=(20,50)   -> lat=[-90,-80], lng=[155,-155] -func RectFromCenterSize(center, size LatLng) Rect { -	half := LatLng{size.Lat / 2, size.Lng / 2} -	return RectFromLatLng(center).expanded(half) -} - -// IsValid returns true iff the rectangle is valid. -// This requires Lat ⊆ [-π/2,π/2] and Lng ⊆ [-π,π], and Lat = ∅ iff Lng = ∅ -func (r Rect) IsValid() bool { -	return math.Abs(r.Lat.Lo) <= math.Pi/2 && -		math.Abs(r.Lat.Hi) <= math.Pi/2 && -		r.Lng.IsValid() && -		r.Lat.IsEmpty() == r.Lng.IsEmpty() -} - -// IsEmpty reports whether the rectangle is empty. -func (r Rect) IsEmpty() bool { return r.Lat.IsEmpty() } - -// IsFull reports whether the rectangle is full. -func (r Rect) IsFull() bool { return r.Lat.Equal(validRectLatRange) && r.Lng.IsFull() } - -// IsPoint reports whether the rectangle is a single point. -func (r Rect) IsPoint() bool { return r.Lat.Lo == r.Lat.Hi && r.Lng.Lo == r.Lng.Hi } - -// Vertex returns the i-th vertex of the rectangle (i = 0,1,2,3) in CCW order -// (lower left, lower right, upper right, upper left). -func (r Rect) Vertex(i int) LatLng { -	var lat, lng float64 - -	switch i { -	case 0: -		lat = r.Lat.Lo -		lng = r.Lng.Lo -	case 1: -		lat = r.Lat.Lo -		lng = r.Lng.Hi -	case 2: -		lat = r.Lat.Hi -		lng = r.Lng.Hi -	case 3: -		lat = r.Lat.Hi -		lng = r.Lng.Lo -	} -	return LatLng{s1.Angle(lat) * s1.Radian, s1.Angle(lng) * s1.Radian} -} - -// Lo returns one corner of the rectangle. -func (r Rect) Lo() LatLng { -	return LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(r.Lng.Lo) * s1.Radian} -} - -// Hi returns the other corner of the rectangle. -func (r Rect) Hi() LatLng { -	return LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(r.Lng.Hi) * s1.Radian} -} - -// Center returns the center of the rectangle. -func (r Rect) Center() LatLng { -	return LatLng{s1.Angle(r.Lat.Center()) * s1.Radian, s1.Angle(r.Lng.Center()) * s1.Radian} -} - -// Size returns the size of the Rect. -func (r Rect) Size() LatLng { -	return LatLng{s1.Angle(r.Lat.Length()) * s1.Radian, s1.Angle(r.Lng.Length()) * s1.Radian} -} - -// Area returns the surface area of the Rect. -func (r Rect) Area() float64 { -	if r.IsEmpty() { -		return 0 -	} -	capDiff := math.Abs(math.Sin(r.Lat.Hi) - math.Sin(r.Lat.Lo)) -	return r.Lng.Length() * capDiff -} - -// AddPoint increases the size of the rectangle to include the given point. -func (r Rect) AddPoint(ll LatLng) Rect { -	if !ll.IsValid() { -		return r -	} -	return Rect{ -		Lat: r.Lat.AddPoint(ll.Lat.Radians()), -		Lng: r.Lng.AddPoint(ll.Lng.Radians()), -	} -} - -// expanded returns a rectangle that has been expanded by margin.Lat on each side -// in the latitude direction, and by margin.Lng on each side in the longitude -// direction. If either margin is negative, then it shrinks the rectangle on -// the corresponding sides instead. The resulting rectangle may be empty. -// -// The latitude-longitude space has the topology of a cylinder. Longitudes -// "wrap around" at +/-180 degrees, while latitudes are clamped to range [-90, 90]. -// This means that any expansion (positive or negative) of the full longitude range -// remains full (since the "rectangle" is actually a continuous band around the -// cylinder), while expansion of the full latitude range remains full only if the -// margin is positive. -// -// If either the latitude or longitude interval becomes empty after -// expansion by a negative margin, the result is empty. -// -// Note that if an expanded rectangle contains a pole, it may not contain -// all possible lat/lng representations of that pole, e.g., both points [π/2,0] -// and [π/2,1] represent the same pole, but they might not be contained by the -// same Rect. -// -// If you are trying to grow a rectangle by a certain distance on the -// sphere (e.g. 5km), refer to the ExpandedByDistance() C++ method implementation -// instead. -func (r Rect) expanded(margin LatLng) Rect { -	lat := r.Lat.Expanded(margin.Lat.Radians()) -	lng := r.Lng.Expanded(margin.Lng.Radians()) - -	if lat.IsEmpty() || lng.IsEmpty() { -		return EmptyRect() -	} - -	return Rect{ -		Lat: lat.Intersection(validRectLatRange), -		Lng: lng, -	} -} - -func (r Rect) String() string { return fmt.Sprintf("[Lo%v, Hi%v]", r.Lo(), r.Hi()) } - -// PolarClosure returns the rectangle unmodified if it does not include either pole. -// If it includes either pole, PolarClosure returns an expansion of the rectangle along -// the longitudinal range to include all possible representations of the contained poles. -func (r Rect) PolarClosure() Rect { -	if r.Lat.Lo == -math.Pi/2 || r.Lat.Hi == math.Pi/2 { -		return Rect{r.Lat, s1.FullInterval()} -	} -	return r -} - -// Union returns the smallest Rect containing the union of this rectangle and the given rectangle. -func (r Rect) Union(other Rect) Rect { -	return Rect{ -		Lat: r.Lat.Union(other.Lat), -		Lng: r.Lng.Union(other.Lng), -	} -} - -// Intersection returns the smallest rectangle containing the intersection of -// this rectangle and the given rectangle. Note that the region of intersection -// may consist of two disjoint rectangles, in which case a single rectangle -// spanning both of them is returned. -func (r Rect) Intersection(other Rect) Rect { -	lat := r.Lat.Intersection(other.Lat) -	lng := r.Lng.Intersection(other.Lng) - -	if lat.IsEmpty() || lng.IsEmpty() { -		return EmptyRect() -	} -	return Rect{lat, lng} -} - -// Intersects reports whether this rectangle and the other have any points in common. -func (r Rect) Intersects(other Rect) bool { -	return r.Lat.Intersects(other.Lat) && r.Lng.Intersects(other.Lng) -} - -// CapBound returns a cap that contains Rect. -func (r Rect) CapBound() Cap { -	// We consider two possible bounding caps, one whose axis passes -	// through the center of the lat-long rectangle and one whose axis -	// is the north or south pole.  We return the smaller of the two caps. - -	if r.IsEmpty() { -		return EmptyCap() -	} - -	var poleZ, poleAngle float64 -	if r.Lat.Hi+r.Lat.Lo < 0 { -		// South pole axis yields smaller cap. -		poleZ = -1 -		poleAngle = math.Pi/2 + r.Lat.Hi -	} else { -		poleZ = 1 -		poleAngle = math.Pi/2 - r.Lat.Lo -	} -	poleCap := CapFromCenterAngle(Point{r3.Vector{0, 0, poleZ}}, s1.Angle(poleAngle)*s1.Radian) - -	// For bounding rectangles that span 180 degrees or less in longitude, the -	// maximum cap size is achieved at one of the rectangle vertices.  For -	// rectangles that are larger than 180 degrees, we punt and always return a -	// bounding cap centered at one of the two poles. -	if math.Remainder(r.Lng.Hi-r.Lng.Lo, 2*math.Pi) >= 0 && r.Lng.Hi-r.Lng.Lo < 2*math.Pi { -		midCap := CapFromPoint(PointFromLatLng(r.Center())).AddPoint(PointFromLatLng(r.Lo())).AddPoint(PointFromLatLng(r.Hi())) -		if midCap.Height() < poleCap.Height() { -			return midCap -		} -	} -	return poleCap -} - -// RectBound returns itself. -func (r Rect) RectBound() Rect { -	return r -} - -// Contains reports whether this Rect contains the other Rect. -func (r Rect) Contains(other Rect) bool { -	return r.Lat.ContainsInterval(other.Lat) && r.Lng.ContainsInterval(other.Lng) -} - -// ContainsCell reports whether the given Cell is contained by this Rect. -func (r Rect) ContainsCell(c Cell) bool { -	// A latitude-longitude rectangle contains a cell if and only if it contains -	// the cell's bounding rectangle. This test is exact from a mathematical -	// point of view, assuming that the bounds returned by Cell.RectBound() -	// are tight. However, note that there can be a loss of precision when -	// converting between representations -- for example, if an s2.Cell is -	// converted to a polygon, the polygon's bounding rectangle may not contain -	// the cell's bounding rectangle. This has some slightly unexpected side -	// effects; for instance, if one creates an s2.Polygon from an s2.Cell, the -	// polygon will contain the cell, but the polygon's bounding box will not. -	return r.Contains(c.RectBound()) -} - -// ContainsLatLng reports whether the given LatLng is within the Rect. -func (r Rect) ContainsLatLng(ll LatLng) bool { -	if !ll.IsValid() { -		return false -	} -	return r.Lat.Contains(ll.Lat.Radians()) && r.Lng.Contains(ll.Lng.Radians()) -} - -// ContainsPoint reports whether the given Point is within the Rect. -func (r Rect) ContainsPoint(p Point) bool { -	return r.ContainsLatLng(LatLngFromPoint(p)) -} - -// CellUnionBound computes a covering of the Rect. -func (r Rect) CellUnionBound() []CellID { -	return r.CapBound().CellUnionBound() -} - -// intersectsLatEdge reports whether the edge AB intersects the given edge of constant -// latitude. Requires the points to have unit length. -func intersectsLatEdge(a, b Point, lat s1.Angle, lng s1.Interval) bool { -	// Unfortunately, lines of constant latitude are curves on -	// the sphere. They can intersect a straight edge in 0, 1, or 2 points. - -	// First, compute the normal to the plane AB that points vaguely north. -	z := Point{a.PointCross(b).Normalize()} -	if z.Z < 0 { -		z = Point{z.Mul(-1)} -	} - -	// Extend this to an orthonormal frame (x,y,z) where x is the direction -	// where the great circle through AB achieves its maximium latitude. -	y := Point{z.PointCross(PointFromCoords(0, 0, 1)).Normalize()} -	x := y.Cross(z.Vector) - -	// Compute the angle "theta" from the x-axis (in the x-y plane defined -	// above) where the great circle intersects the given line of latitude. -	sinLat := math.Sin(float64(lat)) -	if math.Abs(sinLat) >= x.Z { -		// The great circle does not reach the given latitude. -		return false -	} - -	cosTheta := sinLat / x.Z -	sinTheta := math.Sqrt(1 - cosTheta*cosTheta) -	theta := math.Atan2(sinTheta, cosTheta) - -	// The candidate intersection points are located +/- theta in the x-y -	// plane. For an intersection to be valid, we need to check that the -	// intersection point is contained in the interior of the edge AB and -	// also that it is contained within the given longitude interval "lng". - -	// Compute the range of theta values spanned by the edge AB. -	abTheta := s1.IntervalFromPointPair( -		math.Atan2(a.Dot(y.Vector), a.Dot(x)), -		math.Atan2(b.Dot(y.Vector), b.Dot(x))) - -	if abTheta.Contains(theta) { -		// Check if the intersection point is also in the given lng interval. -		isect := x.Mul(cosTheta).Add(y.Mul(sinTheta)) -		if lng.Contains(math.Atan2(isect.Y, isect.X)) { -			return true -		} -	} - -	if abTheta.Contains(-theta) { -		// Check if the other intersection point is also in the given lng interval. -		isect := x.Mul(cosTheta).Sub(y.Mul(sinTheta)) -		if lng.Contains(math.Atan2(isect.Y, isect.X)) { -			return true -		} -	} -	return false -} - -// intersectsLngEdge reports whether the edge AB intersects the given edge of constant -// longitude. Requires the points to have unit length. -func intersectsLngEdge(a, b Point, lat r1.Interval, lng s1.Angle) bool { -	// The nice thing about edges of constant longitude is that -	// they are straight lines on the sphere (geodesics). -	return CrossingSign(a, b, PointFromLatLng(LatLng{s1.Angle(lat.Lo), lng}), -		PointFromLatLng(LatLng{s1.Angle(lat.Hi), lng})) == Cross -} - -// IntersectsCell reports whether this rectangle intersects the given cell. This is an -// exact test and may be fairly expensive. -func (r Rect) IntersectsCell(c Cell) bool { -	// First we eliminate the cases where one region completely contains the -	// other. Once these are disposed of, then the regions will intersect -	// if and only if their boundaries intersect. -	if r.IsEmpty() { -		return false -	} -	if r.ContainsPoint(Point{c.id.rawPoint()}) { -		return true -	} -	if c.ContainsPoint(PointFromLatLng(r.Center())) { -		return true -	} - -	// Quick rejection test (not required for correctness). -	if !r.Intersects(c.RectBound()) { -		return false -	} - -	// Precompute the cell vertices as points and latitude-longitudes. We also -	// check whether the Cell contains any corner of the rectangle, or -	// vice-versa, since the edge-crossing tests only check the edge interiors. -	vertices := [4]Point{} -	latlngs := [4]LatLng{} - -	for i := range vertices { -		vertices[i] = c.Vertex(i) -		latlngs[i] = LatLngFromPoint(vertices[i]) -		if r.ContainsLatLng(latlngs[i]) { -			return true -		} -		if c.ContainsPoint(PointFromLatLng(r.Vertex(i))) { -			return true -		} -	} - -	// Now check whether the boundaries intersect. Unfortunately, a -	// latitude-longitude rectangle does not have straight edges: two edges -	// are curved, and at least one of them is concave. -	for i := range vertices { -		edgeLng := s1.IntervalFromEndpoints(latlngs[i].Lng.Radians(), latlngs[(i+1)&3].Lng.Radians()) -		if !r.Lng.Intersects(edgeLng) { -			continue -		} - -		a := vertices[i] -		b := vertices[(i+1)&3] -		if edgeLng.Contains(r.Lng.Lo) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Lo)) { -			return true -		} -		if edgeLng.Contains(r.Lng.Hi) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Hi)) { -			return true -		} -		if intersectsLatEdge(a, b, s1.Angle(r.Lat.Lo), r.Lng) { -			return true -		} -		if intersectsLatEdge(a, b, s1.Angle(r.Lat.Hi), r.Lng) { -			return true -		} -	} -	return false -} - -// Encode encodes the Rect. -func (r Rect) Encode(w io.Writer) error { -	e := &encoder{w: w} -	r.encode(e) -	return e.err -} - -func (r Rect) encode(e *encoder) { -	e.writeInt8(encodingVersion) -	e.writeFloat64(r.Lat.Lo) -	e.writeFloat64(r.Lat.Hi) -	e.writeFloat64(r.Lng.Lo) -	e.writeFloat64(r.Lng.Hi) -} - -// Decode decodes a rectangle. -func (r *Rect) Decode(rd io.Reader) error { -	d := &decoder{r: asByteReader(rd)} -	r.decode(d) -	return d.err -} - -func (r *Rect) decode(d *decoder) { -	if version := d.readUint8(); int8(version) != encodingVersion && d.err == nil { -		d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion) -		return -	} -	r.Lat.Lo = d.readFloat64() -	r.Lat.Hi = d.readFloat64() -	r.Lng.Lo = d.readFloat64() -	r.Lng.Hi = d.readFloat64() -	return -} - -// DistanceToLatLng returns the minimum distance (measured along the surface of the sphere) -// from a given point to the rectangle (both its boundary and its interior). -// If r is empty, the result is meaningless. -// The latlng must be valid. -func (r Rect) DistanceToLatLng(ll LatLng) s1.Angle { -	if r.Lng.Contains(float64(ll.Lng)) { -		return maxAngle(0, ll.Lat-s1.Angle(r.Lat.Hi), s1.Angle(r.Lat.Lo)-ll.Lat) -	} - -	i := s1.IntervalFromEndpoints(r.Lng.Hi, r.Lng.ComplementCenter()) -	rectLng := r.Lng.Lo -	if i.Contains(float64(ll.Lng)) { -		rectLng = r.Lng.Hi -	} - -	lo := LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(rectLng) * s1.Radian} -	hi := LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(rectLng) * s1.Radian} -	return DistanceFromSegment(PointFromLatLng(ll), PointFromLatLng(lo), PointFromLatLng(hi)) -} - -// DirectedHausdorffDistance returns the directed Hausdorff distance (measured along the -// surface of the sphere) to the given Rect. The directed Hausdorff -// distance from rectangle A to rectangle B is given by -//     h(A, B) = max_{p in A} min_{q in B} d(p, q). -func (r Rect) DirectedHausdorffDistance(other Rect) s1.Angle { -	if r.IsEmpty() { -		return 0 * s1.Radian -	} -	if other.IsEmpty() { -		return math.Pi * s1.Radian -	} - -	lng := r.Lng.DirectedHausdorffDistance(other.Lng) -	return directedHausdorffDistance(lng, r.Lat, other.Lat) -} - -// HausdorffDistance returns the undirected Hausdorff distance (measured along the -// surface of the sphere) to the given Rect. -// The Hausdorff distance between rectangle A and rectangle B is given by -//     H(A, B) = max{h(A, B), h(B, A)}. -func (r Rect) HausdorffDistance(other Rect) s1.Angle { -	return maxAngle(r.DirectedHausdorffDistance(other), -		other.DirectedHausdorffDistance(r)) -} - -// ApproxEqual reports whether the latitude and longitude intervals of the two rectangles -// are the same up to a small tolerance. -func (r Rect) ApproxEqual(other Rect) bool { -	return r.Lat.ApproxEqual(other.Lat) && r.Lng.ApproxEqual(other.Lng) -} - -// directedHausdorffDistance returns the directed Hausdorff distance -// from one longitudinal edge spanning latitude range 'a' to the other -// longitudinal edge spanning latitude range 'b', with their longitudinal -// difference given by 'lngDiff'. -func directedHausdorffDistance(lngDiff s1.Angle, a, b r1.Interval) s1.Angle { -	// By symmetry, we can assume a's longitude is 0 and b's longitude is -	// lngDiff. Call b's two endpoints bLo and bHi. Let H be the hemisphere -	// containing a and delimited by the longitude line of b. The Voronoi diagram -	// of b on H has three edges (portions of great circles) all orthogonal to b -	// and meeting at bLo cross bHi. -	// E1: (bLo, bLo cross bHi) -	// E2: (bHi, bLo cross bHi) -	// E3: (-bMid, bLo cross bHi), where bMid is the midpoint of b -	// -	// They subdivide H into three Voronoi regions. Depending on how longitude 0 -	// (which contains edge a) intersects these regions, we distinguish two cases: -	// Case 1: it intersects three regions. This occurs when lngDiff <= π/2. -	// Case 2: it intersects only two regions. This occurs when lngDiff > π/2. -	// -	// In the first case, the directed Hausdorff distance to edge b can only be -	// realized by the following points on a: -	// A1: two endpoints of a. -	// A2: intersection of a with the equator, if b also intersects the equator. -	// -	// In the second case, the directed Hausdorff distance to edge b can only be -	// realized by the following points on a: -	// B1: two endpoints of a. -	// B2: intersection of a with E3 -	// B3: farthest point from bLo to the interior of D, and farthest point from -	//     bHi to the interior of U, if any, where D (resp. U) is the portion -	//     of edge a below (resp. above) the intersection point from B2. - -	if lngDiff < 0 { -		panic("impossible: negative lngDiff") -	} -	if lngDiff > math.Pi { -		panic("impossible: lngDiff > Pi") -	} - -	if lngDiff == 0 { -		return s1.Angle(a.DirectedHausdorffDistance(b)) -	} - -	// Assumed longitude of b. -	bLng := lngDiff -	// Two endpoints of b. -	bLo := PointFromLatLng(LatLng{s1.Angle(b.Lo), bLng}) -	bHi := PointFromLatLng(LatLng{s1.Angle(b.Hi), bLng}) - -	// Cases A1 and B1. -	aLo := PointFromLatLng(LatLng{s1.Angle(a.Lo), 0}) -	aHi := PointFromLatLng(LatLng{s1.Angle(a.Hi), 0}) -	maxDistance := maxAngle( -		DistanceFromSegment(aLo, bLo, bHi), -		DistanceFromSegment(aHi, bLo, bHi)) - -	if lngDiff <= math.Pi/2 { -		// Case A2. -		if a.Contains(0) && b.Contains(0) { -			maxDistance = maxAngle(maxDistance, lngDiff) -		} -		return maxDistance -	} - -	// Case B2. -	p := bisectorIntersection(b, bLng) -	pLat := LatLngFromPoint(p).Lat -	if a.Contains(float64(pLat)) { -		maxDistance = maxAngle(maxDistance, p.Angle(bLo.Vector)) -	} - -	// Case B3. -	if pLat > s1.Angle(a.Lo) { -		intDist, ok := interiorMaxDistance(r1.Interval{a.Lo, math.Min(float64(pLat), a.Hi)}, bLo) -		if ok { -			maxDistance = maxAngle(maxDistance, intDist) -		} -	} -	if pLat < s1.Angle(a.Hi) { -		intDist, ok := interiorMaxDistance(r1.Interval{math.Max(float64(pLat), a.Lo), a.Hi}, bHi) -		if ok { -			maxDistance = maxAngle(maxDistance, intDist) -		} -	} - -	return maxDistance -} - -// interiorMaxDistance returns the max distance from a point b to the segment spanning latitude range -// aLat on longitude 0 if the max occurs in the interior of aLat. Otherwise, returns (0, false). -func interiorMaxDistance(aLat r1.Interval, b Point) (a s1.Angle, ok bool) { -	// Longitude 0 is in the y=0 plane. b.X >= 0 implies that the maximum -	// does not occur in the interior of aLat. -	if aLat.IsEmpty() || b.X >= 0 { -		return 0, false -	} - -	// Project b to the y=0 plane. The antipodal of the normalized projection is -	// the point at which the maxium distance from b occurs, if it is contained -	// in aLat. -	intersectionPoint := PointFromCoords(-b.X, 0, -b.Z) -	if !aLat.InteriorContains(float64(LatLngFromPoint(intersectionPoint).Lat)) { -		return 0, false -	} -	return b.Angle(intersectionPoint.Vector), true -} - -// bisectorIntersection return the intersection of longitude 0 with the bisector of an edge -// on longitude 'lng' and spanning latitude range 'lat'. -func bisectorIntersection(lat r1.Interval, lng s1.Angle) Point { -	lng = s1.Angle(math.Abs(float64(lng))) -	latCenter := s1.Angle(lat.Center()) - -	// A vector orthogonal to the bisector of the given longitudinal edge. -	orthoBisector := LatLng{latCenter - math.Pi/2, lng} -	if latCenter < 0 { -		orthoBisector = LatLng{-latCenter - math.Pi/2, lng - math.Pi} -	} - -	// A vector orthogonal to longitude 0. -	orthoLng := Point{r3.Vector{0, -1, 0}} - -	return orthoLng.PointCross(PointFromLatLng(orthoBisector)) -} - -// Centroid returns the true centroid of the given Rect multiplied by its -// surface area. The result is not unit length, so you may want to normalize it. -// Note that in general the centroid is *not* at the center of the rectangle, and -// in fact it may not even be contained by the rectangle. (It is the "center of -// mass" of the rectangle viewed as subset of the unit sphere, i.e. it is the -// point in space about which this curved shape would rotate.) -// -// The reason for multiplying the result by the rectangle area is to make it -// easier to compute the centroid of more complicated shapes. The centroid -// of a union of disjoint regions can be computed simply by adding their -// Centroid results. -func (r Rect) Centroid() Point { -	// When a sphere is divided into slices of constant thickness by a set -	// of parallel planes, all slices have the same surface area. This -	// implies that the z-component of the centroid is simply the midpoint -	// of the z-interval spanned by the Rect. -	// -	// Similarly, it is easy to see that the (x,y) of the centroid lies in -	// the plane through the midpoint of the rectangle's longitude interval. -	// We only need to determine the distance "d" of this point from the -	// z-axis. -	// -	// Let's restrict our attention to a particular z-value. In this -	// z-plane, the Rect is a circular arc. The centroid of this arc -	// lies on a radial line through the midpoint of the arc, and at a -	// distance from the z-axis of -	// -	//     r * (sin(alpha) / alpha) -	// -	// where r = sqrt(1-z^2) is the radius of the arc, and "alpha" is half -	// of the arc length (i.e., the arc covers longitudes [-alpha, alpha]). -	// -	// To find the centroid distance from the z-axis for the entire -	// rectangle, we just need to integrate over the z-interval. This gives -	// -	//    d = Integrate[sqrt(1-z^2)*sin(alpha)/alpha, z1..z2] / (z2 - z1) -	// -	// where [z1, z2] is the range of z-values covered by the rectangle. -	// This simplifies to -	// -	//    d = sin(alpha)/(2*alpha*(z2-z1))*(z2*r2 - z1*r1 + theta2 - theta1) -	// -	// where [theta1, theta2] is the latitude interval, z1=sin(theta1), -	// z2=sin(theta2), r1=cos(theta1), and r2=cos(theta2). -	// -	// Finally, we want to return not the centroid itself, but the centroid -	// scaled by the area of the rectangle. The area of the rectangle is -	// -	//    A = 2 * alpha * (z2 - z1) -	// -	// which fortunately appears in the denominator of "d". - -	if r.IsEmpty() { -		return Point{} -	} - -	z1 := math.Sin(r.Lat.Lo) -	z2 := math.Sin(r.Lat.Hi) -	r1 := math.Cos(r.Lat.Lo) -	r2 := math.Cos(r.Lat.Hi) - -	alpha := 0.5 * r.Lng.Length() -	r0 := math.Sin(alpha) * (r2*z2 - r1*z1 + r.Lat.Length()) -	lng := r.Lng.Center() -	z := alpha * (z2 + z1) * (z2 - z1) // scaled by the area - -	return Point{r3.Vector{r0 * math.Cos(lng), r0 * math.Sin(lng), z}} -} - -// BUG: The major differences from the C++ version are: -//  - Get*Distance, Vertex, InteriorContains(LatLng|Rect|Point) diff --git a/vendor/github.com/golang/geo/s2/rect_bounder.go b/vendor/github.com/golang/geo/s2/rect_bounder.go deleted file mode 100644 index 419dea0c1..000000000 --- a/vendor/github.com/golang/geo/s2/rect_bounder.go +++ /dev/null @@ -1,352 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" - -	"github.com/golang/geo/r1" -	"github.com/golang/geo/r3" -	"github.com/golang/geo/s1" -) - -// RectBounder is used to compute a bounding rectangle that contains all edges -// defined by a vertex chain (v0, v1, v2, ...). All vertices must be unit length. -// Note that the bounding rectangle of an edge can be larger than the bounding -// rectangle of its endpoints, e.g. consider an edge that passes through the North Pole. -// -// The bounds are calculated conservatively to account for numerical errors -// when points are converted to LatLngs. More precisely, this function -// guarantees the following: -// Let L be a closed edge chain (Loop) such that the interior of the loop does -// not contain either pole. Now if P is any point such that L.ContainsPoint(P), -// then RectBound(L).ContainsPoint(LatLngFromPoint(P)). -type RectBounder struct { -	// The previous vertex in the chain. -	a Point -	// The previous vertex latitude longitude. -	aLL   LatLng -	bound Rect -} - -// NewRectBounder returns a new instance of a RectBounder. -func NewRectBounder() *RectBounder { -	return &RectBounder{ -		bound: EmptyRect(), -	} -} - -// maxErrorForTests returns the maximum error in RectBound provided that the -// result does not include either pole. It is only used for testing purposes -func (r *RectBounder) maxErrorForTests() LatLng { -	// The maximum error in the latitude calculation is -	//    3.84 * dblEpsilon   for the PointCross calculation -	//    0.96 * dblEpsilon   for the Latitude calculation -	//    5    * dblEpsilon   added by AddPoint/RectBound to compensate for error -	//    ----------------- -	//    9.80 * dblEpsilon   maximum error in result -	// -	// The maximum error in the longitude calculation is dblEpsilon. RectBound -	// does not do any expansion because this isn't necessary in order to -	// bound the *rounded* longitudes of contained points. -	return LatLng{10 * dblEpsilon * s1.Radian, 1 * dblEpsilon * s1.Radian} -} - -// AddPoint adds the given point to the chain. The Point must be unit length. -func (r *RectBounder) AddPoint(b Point) { -	bLL := LatLngFromPoint(b) - -	if r.bound.IsEmpty() { -		r.a = b -		r.aLL = bLL -		r.bound = r.bound.AddPoint(bLL) -		return -	} - -	// First compute the cross product N = A x B robustly. This is the normal -	// to the great circle through A and B. We don't use RobustSign -	// since that method returns an arbitrary vector orthogonal to A if the two -	// vectors are proportional, and we want the zero vector in that case. -	n := r.a.Sub(b.Vector).Cross(r.a.Add(b.Vector)) // N = 2 * (A x B) - -	// The relative error in N gets large as its norm gets very small (i.e., -	// when the two points are nearly identical or antipodal). We handle this -	// by choosing a maximum allowable error, and if the error is greater than -	// this we fall back to a different technique. Since it turns out that -	// the other sources of error in converting the normal to a maximum -	// latitude add up to at most 1.16 * dblEpsilon, and it is desirable to -	// have the total error be a multiple of dblEpsilon, we have chosen to -	// limit the maximum error in the normal to be 3.84 * dblEpsilon. -	// It is possible to show that the error is less than this when -	// -	// n.Norm() >= 8 * sqrt(3) / (3.84 - 0.5 - sqrt(3)) * dblEpsilon -	//          = 1.91346e-15 (about 8.618 * dblEpsilon) -	nNorm := n.Norm() -	if nNorm < 1.91346e-15 { -		// A and B are either nearly identical or nearly antipodal (to within -		// 4.309 * dblEpsilon, or about 6 nanometers on the earth's surface). -		if r.a.Dot(b.Vector) < 0 { -			// The two points are nearly antipodal. The easiest solution is to -			// assume that the edge between A and B could go in any direction -			// around the sphere. -			r.bound = FullRect() -		} else { -			// The two points are nearly identical (to within 4.309 * dblEpsilon). -			// In this case we can just use the bounding rectangle of the points, -			// since after the expansion done by GetBound this Rect is -			// guaranteed to include the (lat,lng) values of all points along AB. -			r.bound = r.bound.Union(RectFromLatLng(r.aLL).AddPoint(bLL)) -		} -		r.a = b -		r.aLL = bLL -		return -	} - -	// Compute the longitude range spanned by AB. -	lngAB := s1.EmptyInterval().AddPoint(r.aLL.Lng.Radians()).AddPoint(bLL.Lng.Radians()) -	if lngAB.Length() >= math.Pi-2*dblEpsilon { -		// The points lie on nearly opposite lines of longitude to within the -		// maximum error of the calculation. The easiest solution is to assume -		// that AB could go on either side of the pole. -		lngAB = s1.FullInterval() -	} - -	// Next we compute the latitude range spanned by the edge AB. We start -	// with the range spanning the two endpoints of the edge: -	latAB := r1.IntervalFromPoint(r.aLL.Lat.Radians()).AddPoint(bLL.Lat.Radians()) - -	// This is the desired range unless the edge AB crosses the plane -	// through N and the Z-axis (which is where the great circle through A -	// and B attains its minimum and maximum latitudes). To test whether AB -	// crosses this plane, we compute a vector M perpendicular to this -	// plane and then project A and B onto it. -	m := n.Cross(r3.Vector{0, 0, 1}) -	mA := m.Dot(r.a.Vector) -	mB := m.Dot(b.Vector) - -	// We want to test the signs of "mA" and "mB", so we need to bound -	// the error in these calculations. It is possible to show that the -	// total error is bounded by -	// -	// (1 + sqrt(3)) * dblEpsilon * nNorm + 8 * sqrt(3) * (dblEpsilon**2) -	//   = 6.06638e-16 * nNorm + 6.83174e-31 - -	mError := 6.06638e-16*nNorm + 6.83174e-31 -	if mA*mB < 0 || math.Abs(mA) <= mError || math.Abs(mB) <= mError { -		// Minimum/maximum latitude *may* occur in the edge interior. -		// -		// The maximum latitude is 90 degrees minus the latitude of N. We -		// compute this directly using atan2 in order to get maximum accuracy -		// near the poles. -		// -		// Our goal is compute a bound that contains the computed latitudes of -		// all S2Points P that pass the point-in-polygon containment test. -		// There are three sources of error we need to consider: -		// - the directional error in N (at most 3.84 * dblEpsilon) -		// - converting N to a maximum latitude -		// - computing the latitude of the test point P -		// The latter two sources of error are at most 0.955 * dblEpsilon -		// individually, but it is possible to show by a more complex analysis -		// that together they can add up to at most 1.16 * dblEpsilon, for a -		// total error of 5 * dblEpsilon. -		// -		// We add 3 * dblEpsilon to the bound here, and GetBound() will pad -		// the bound by another 2 * dblEpsilon. -		maxLat := math.Min( -			math.Atan2(math.Sqrt(n.X*n.X+n.Y*n.Y), math.Abs(n.Z))+3*dblEpsilon, -			math.Pi/2) - -		// In order to get tight bounds when the two points are close together, -		// we also bound the min/max latitude relative to the latitudes of the -		// endpoints A and B. First we compute the distance between A and B, -		// and then we compute the maximum change in latitude between any two -		// points along the great circle that are separated by this distance. -		// This gives us a latitude change "budget". Some of this budget must -		// be spent getting from A to B; the remainder bounds the round-trip -		// distance (in latitude) from A or B to the min or max latitude -		// attained along the edge AB. -		latBudget := 2 * math.Asin(0.5*(r.a.Sub(b.Vector)).Norm()*math.Sin(maxLat)) -		maxDelta := 0.5*(latBudget-latAB.Length()) + dblEpsilon - -		// Test whether AB passes through the point of maximum latitude or -		// minimum latitude. If the dot product(s) are small enough then the -		// result may be ambiguous. -		if mA <= mError && mB >= -mError { -			latAB.Hi = math.Min(maxLat, latAB.Hi+maxDelta) -		} -		if mB <= mError && mA >= -mError { -			latAB.Lo = math.Max(-maxLat, latAB.Lo-maxDelta) -		} -	} -	r.a = b -	r.aLL = bLL -	r.bound = r.bound.Union(Rect{latAB, lngAB}) -} - -// RectBound returns the bounding rectangle of the edge chain that connects the -// vertices defined so far. This bound satisfies the guarantee made -// above, i.e. if the edge chain defines a Loop, then the bound contains -// the LatLng coordinates of all Points contained by the loop. -func (r *RectBounder) RectBound() Rect { -	return r.bound.expanded(LatLng{s1.Angle(2 * dblEpsilon), 0}).PolarClosure() -} - -// ExpandForSubregions expands a bounding Rect so that it is guaranteed to -// contain the bounds of any subregion whose bounds are computed using -// ComputeRectBound. For example, consider a loop L that defines a square. -// GetBound ensures that if a point P is contained by this square, then -// LatLngFromPoint(P) is contained by the bound. But now consider a diamond -// shaped loop S contained by L. It is possible that GetBound returns a -// *larger* bound for S than it does for L, due to rounding errors. This -// method expands the bound for L so that it is guaranteed to contain the -// bounds of any subregion S. -// -// More precisely, if L is a loop that does not contain either pole, and S -// is a loop such that L.Contains(S), then -// -//   ExpandForSubregions(L.RectBound).Contains(S.RectBound). -// -func ExpandForSubregions(bound Rect) Rect { -	// Empty bounds don't need expansion. -	if bound.IsEmpty() { -		return bound -	} - -	// First we need to check whether the bound B contains any nearly-antipodal -	// points (to within 4.309 * dblEpsilon). If so then we need to return -	// FullRect, since the subregion might have an edge between two -	// such points, and AddPoint returns Full for such edges. Note that -	// this can happen even if B is not Full for example, consider a loop -	// that defines a 10km strip straddling the equator extending from -	// longitudes -100 to +100 degrees. -	// -	// It is easy to check whether B contains any antipodal points, but checking -	// for nearly-antipodal points is trickier. Essentially we consider the -	// original bound B and its reflection through the origin B', and then test -	// whether the minimum distance between B and B' is less than 4.309 * dblEpsilon. - -	// lngGap is a lower bound on the longitudinal distance between B and its -	// reflection B'. (2.5 * dblEpsilon is the maximum combined error of the -	// endpoint longitude calculations and the Length call.) -	lngGap := math.Max(0, math.Pi-bound.Lng.Length()-2.5*dblEpsilon) - -	// minAbsLat is the minimum distance from B to the equator (if zero or -	// negative, then B straddles the equator). -	minAbsLat := math.Max(bound.Lat.Lo, -bound.Lat.Hi) - -	// latGapSouth and latGapNorth measure the minimum distance from B to the -	// south and north poles respectively. -	latGapSouth := math.Pi/2 + bound.Lat.Lo -	latGapNorth := math.Pi/2 - bound.Lat.Hi - -	if minAbsLat >= 0 { -		// The bound B does not straddle the equator. In this case the minimum -		// distance is between one endpoint of the latitude edge in B closest to -		// the equator and the other endpoint of that edge in B'. The latitude -		// distance between these two points is 2*minAbsLat, and the longitude -		// distance is lngGap. We could compute the distance exactly using the -		// Haversine formula, but then we would need to bound the errors in that -		// calculation. Since we only need accuracy when the distance is very -		// small (close to 4.309 * dblEpsilon), we substitute the Euclidean -		// distance instead. This gives us a right triangle XYZ with two edges of -		// length x = 2*minAbsLat and y ~= lngGap. The desired distance is the -		// length of the third edge z, and we have -		// -		//         z  ~=  sqrt(x^2 + y^2)  >=  (x + y) / sqrt(2) -		// -		// Therefore the region may contain nearly antipodal points only if -		// -		//  2*minAbsLat + lngGap  <  sqrt(2) * 4.309 * dblEpsilon -		//                        ~= 1.354e-15 -		// -		// Note that because the given bound B is conservative, minAbsLat and -		// lngGap are both lower bounds on their true values so we do not need -		// to make any adjustments for their errors. -		if 2*minAbsLat+lngGap < 1.354e-15 { -			return FullRect() -		} -	} else if lngGap >= math.Pi/2 { -		// B spans at most Pi/2 in longitude. The minimum distance is always -		// between one corner of B and the diagonally opposite corner of B'. We -		// use the same distance approximation that we used above; in this case -		// we have an obtuse triangle XYZ with two edges of length x = latGapSouth -		// and y = latGapNorth, and angle Z >= Pi/2 between them. We then have -		// -		//         z  >=  sqrt(x^2 + y^2)  >=  (x + y) / sqrt(2) -		// -		// Unlike the case above, latGapSouth and latGapNorth are not lower bounds -		// (because of the extra addition operation, and because math.Pi/2 is not -		// exactly equal to Pi/2); they can exceed their true values by up to -		// 0.75 * dblEpsilon. Putting this all together, the region may contain -		// nearly antipodal points only if -		// -		//   latGapSouth + latGapNorth  <  (sqrt(2) * 4.309 + 1.5) * dblEpsilon -		//                              ~= 1.687e-15 -		if latGapSouth+latGapNorth < 1.687e-15 { -			return FullRect() -		} -	} else { -		// Otherwise we know that (1) the bound straddles the equator and (2) its -		// width in longitude is at least Pi/2. In this case the minimum -		// distance can occur either between a corner of B and the diagonally -		// opposite corner of B' (as in the case above), or between a corner of B -		// and the opposite longitudinal edge reflected in B'. It is sufficient -		// to only consider the corner-edge case, since this distance is also a -		// lower bound on the corner-corner distance when that case applies. - -		// Consider the spherical triangle XYZ where X is a corner of B with -		// minimum absolute latitude, Y is the closest pole to X, and Z is the -		// point closest to X on the opposite longitudinal edge of B'. This is a -		// right triangle (Z = Pi/2), and from the spherical law of sines we have -		// -		//     sin(z) / sin(Z)  =  sin(y) / sin(Y) -		//     sin(maxLatGap) / 1  =  sin(dMin) / sin(lngGap) -		//     sin(dMin)  =  sin(maxLatGap) * sin(lngGap) -		// -		// where "maxLatGap" = max(latGapSouth, latGapNorth) and "dMin" is the -		// desired minimum distance. Now using the facts that sin(t) >= (2/Pi)*t -		// for 0 <= t <= Pi/2, that we only need an accurate approximation when -		// at least one of "maxLatGap" or lngGap is extremely small (in which -		// case sin(t) ~= t), and recalling that "maxLatGap" has an error of up -		// to 0.75 * dblEpsilon, we want to test whether -		// -		//   maxLatGap * lngGap  <  (4.309 + 0.75) * (Pi/2) * dblEpsilon -		//                       ~= 1.765e-15 -		if math.Max(latGapSouth, latGapNorth)*lngGap < 1.765e-15 { -			return FullRect() -		} -	} -	// Next we need to check whether the subregion might contain any edges that -	// span (math.Pi - 2 * dblEpsilon) radians or more in longitude, since AddPoint -	// sets the longitude bound to Full in that case. This corresponds to -	// testing whether (lngGap <= 0) in lngExpansion below. - -	// Otherwise, the maximum latitude error in AddPoint is 4.8 * dblEpsilon. -	// In the worst case, the errors when computing the latitude bound for a -	// subregion could go in the opposite direction as the errors when computing -	// the bound for the original region, so we need to double this value. -	// (More analysis shows that it's okay to round down to a multiple of -	// dblEpsilon.) -	// -	// For longitude, we rely on the fact that atan2 is correctly rounded and -	// therefore no additional bounds expansion is necessary. - -	latExpansion := 9 * dblEpsilon -	lngExpansion := 0.0 -	if lngGap <= 0 { -		lngExpansion = math.Pi -	} -	return bound.expanded(LatLng{s1.Angle(latExpansion), s1.Angle(lngExpansion)}).PolarClosure() -} diff --git a/vendor/github.com/golang/geo/s2/region.go b/vendor/github.com/golang/geo/s2/region.go deleted file mode 100644 index 9ea3de1ca..000000000 --- a/vendor/github.com/golang/geo/s2/region.go +++ /dev/null @@ -1,71 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// A Region represents a two-dimensional region on the unit sphere. -// -// The purpose of this interface is to allow complex regions to be -// approximated as simpler regions. The interface is restricted to methods -// that are useful for computing approximations. -type Region interface { -	// CapBound returns a bounding spherical cap. This is not guaranteed to be exact. -	CapBound() Cap - -	// RectBound returns a bounding latitude-longitude rectangle that contains -	// the region. The bounds are not guaranteed to be tight. -	RectBound() Rect - -	// ContainsCell reports whether the region completely contains the given region. -	// It returns false if containment could not be determined. -	ContainsCell(c Cell) bool - -	// IntersectsCell reports whether the region intersects the given cell or -	// if intersection could not be determined. It returns false if the region -	// does not intersect. -	IntersectsCell(c Cell) bool - -	// ContainsPoint reports whether the region contains the given point or not. -	// The point should be unit length, although some implementations may relax -	// this restriction. -	ContainsPoint(p Point) bool - -	// CellUnionBound returns a small collection of CellIDs whose union covers -	// the region. The cells are not sorted, may have redundancies (such as cells -	// that contain other cells), and may cover much more area than necessary. -	// -	// This method is not intended for direct use by client code. Clients -	// should typically use Covering, which has options to control the size and -	// accuracy of the covering. Alternatively, if you want a fast covering and -	// don't care about accuracy, consider calling FastCovering (which returns a -	// cleaned-up version of the covering computed by this method). -	// -	// CellUnionBound implementations should attempt to return a small -	// covering (ideally 4 cells or fewer) that covers the region and can be -	// computed quickly. The result is used by RegionCoverer as a starting -	// point for further refinement. -	CellUnionBound() []CellID -} - -// Enforce Region interface satisfaction. -var ( -	_ Region = Cap{} -	_ Region = Cell{} -	_ Region = (*CellUnion)(nil) -	_ Region = (*Loop)(nil) -	_ Region = Point{} -	_ Region = (*Polygon)(nil) -	_ Region = (*Polyline)(nil) -	_ Region = Rect{} -) diff --git a/vendor/github.com/golang/geo/s2/regioncoverer.go b/vendor/github.com/golang/geo/s2/regioncoverer.go deleted file mode 100644 index de5b0c20d..000000000 --- a/vendor/github.com/golang/geo/s2/regioncoverer.go +++ /dev/null @@ -1,615 +0,0 @@ -// Copyright 2015 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"container/heap" -	"sort" -) - -// RegionCoverer allows arbitrary regions to be approximated as unions of cells (CellUnion). -// This is useful for implementing various sorts of search and precomputation operations. -// -// Typical usage: -// -//	rc := &s2.RegionCoverer{MaxLevel: 30, MaxCells: 5} -//	r := s2.Region(CapFromCenterArea(center, area)) -//	covering := rc.Covering(r) -// -// This yields a CellUnion of at most 5 cells that is guaranteed to cover the -// given region (a disc-shaped region on the sphere). -// -// For covering, only cells where (level - MinLevel) is a multiple of LevelMod will be used. -// This effectively allows the branching factor of the S2 CellID hierarchy to be increased. -// Currently the only parameter values allowed are 1, 2, or 3, corresponding to -// branching factors of 4, 16, and 64 respectively. -// -// Note the following: -// -//  - MinLevel takes priority over MaxCells, i.e. cells below the given level will -//    never be used even if this causes a large number of cells to be returned. -// -//  - For any setting of MaxCells, up to 6 cells may be returned if that -//    is the minimum number of cells required (e.g. if the region intersects -//    all six face cells).  Up to 3 cells may be returned even for very tiny -//    convex regions if they happen to be located at the intersection of -//    three cube faces. -// -//  - For any setting of MaxCells, an arbitrary number of cells may be -//    returned if MinLevel is too high for the region being approximated. -// -//  - If MaxCells is less than 4, the area of the covering may be -//    arbitrarily large compared to the area of the original region even if -//    the region is convex (e.g. a Cap or Rect). -// -// The approximation algorithm is not optimal but does a pretty good job in -// practice. The output does not always use the maximum number of cells -// allowed, both because this would not always yield a better approximation, -// and because MaxCells is a limit on how much work is done exploring the -// possible covering as well as a limit on the final output size. -// -// Because it is an approximation algorithm, one should not rely on the -// stability of the output. In particular, the output of the covering algorithm -// may change across different versions of the library. -// -// One can also generate interior coverings, which are sets of cells which -// are entirely contained within a region. Interior coverings can be -// empty, even for non-empty regions, if there are no cells that satisfy -// the provided constraints and are contained by the region. Note that for -// performance reasons, it is wise to specify a MaxLevel when computing -// interior coverings - otherwise for regions with small or zero area, the -// algorithm may spend a lot of time subdividing cells all the way to leaf -// level to try to find contained cells. -type RegionCoverer struct { -	MinLevel int // the minimum cell level to be used. -	MaxLevel int // the maximum cell level to be used. -	LevelMod int // the LevelMod to be used. -	MaxCells int // the maximum desired number of cells in the approximation. -} - -// NewRegionCoverer returns a region coverer with the appropriate defaults. -func NewRegionCoverer() *RegionCoverer { -	return &RegionCoverer{ -		MinLevel: 0, -		MaxLevel: maxLevel, -		LevelMod: 1, -		MaxCells: 8, -	} -} - -type coverer struct { -	minLevel         int // the minimum cell level to be used. -	maxLevel         int // the maximum cell level to be used. -	levelMod         int // the LevelMod to be used. -	maxCells         int // the maximum desired number of cells in the approximation. -	region           Region -	result           CellUnion -	pq               priorityQueue -	interiorCovering bool -} - -type candidate struct { -	cell        Cell -	terminal    bool         // Cell should not be expanded further. -	numChildren int          // Number of children that intersect the region. -	children    []*candidate // Actual size may be 0, 4, 16, or 64 elements. -	priority    int          // Priority of the candidate. -} - -type priorityQueue []*candidate - -func (pq priorityQueue) Len() int { -	return len(pq) -} - -func (pq priorityQueue) Less(i, j int) bool { -	// We want Pop to give us the highest, not lowest, priority so we use greater than here. -	return pq[i].priority > pq[j].priority -} - -func (pq priorityQueue) Swap(i, j int) { -	pq[i], pq[j] = pq[j], pq[i] -} - -func (pq *priorityQueue) Push(x interface{}) { -	item := x.(*candidate) -	*pq = append(*pq, item) -} - -func (pq *priorityQueue) Pop() interface{} { -	item := (*pq)[len(*pq)-1] -	*pq = (*pq)[:len(*pq)-1] -	return item -} - -func (pq *priorityQueue) Reset() { -	*pq = (*pq)[:0] -} - -// newCandidate returns a new candidate with no children if the cell intersects the given region. -// The candidate is marked as terminal if it should not be expanded further. -func (c *coverer) newCandidate(cell Cell) *candidate { -	if !c.region.IntersectsCell(cell) { -		return nil -	} -	cand := &candidate{cell: cell} -	level := int(cell.level) -	if level >= c.minLevel { -		if c.interiorCovering { -			if c.region.ContainsCell(cell) { -				cand.terminal = true -			} else if level+c.levelMod > c.maxLevel { -				return nil -			} -		} else if level+c.levelMod > c.maxLevel || c.region.ContainsCell(cell) { -			cand.terminal = true -		} -	} -	return cand -} - -// expandChildren populates the children of the candidate by expanding the given number of -// levels from the given cell.  Returns the number of children that were marked "terminal". -func (c *coverer) expandChildren(cand *candidate, cell Cell, numLevels int) int { -	numLevels-- -	var numTerminals int -	last := cell.id.ChildEnd() -	for ci := cell.id.ChildBegin(); ci != last; ci = ci.Next() { -		childCell := CellFromCellID(ci) -		if numLevels > 0 { -			if c.region.IntersectsCell(childCell) { -				numTerminals += c.expandChildren(cand, childCell, numLevels) -			} -			continue -		} -		if child := c.newCandidate(childCell); child != nil { -			cand.children = append(cand.children, child) -			cand.numChildren++ -			if child.terminal { -				numTerminals++ -			} -		} -	} -	return numTerminals -} - -// addCandidate adds the given candidate to the result if it is marked as "terminal", -// otherwise expands its children and inserts it into the priority queue. -// Passing an argument of nil does nothing. -func (c *coverer) addCandidate(cand *candidate) { -	if cand == nil { -		return -	} - -	if cand.terminal { -		c.result = append(c.result, cand.cell.id) -		return -	} - -	// Expand one level at a time until we hit minLevel to ensure that we don't skip over it. -	numLevels := c.levelMod -	level := int(cand.cell.level) -	if level < c.minLevel { -		numLevels = 1 -	} - -	numTerminals := c.expandChildren(cand, cand.cell, numLevels) -	maxChildrenShift := uint(2 * c.levelMod) -	if cand.numChildren == 0 { -		return -	} else if !c.interiorCovering && numTerminals == 1<<maxChildrenShift && level >= c.minLevel { -		// Optimization: add the parent cell rather than all of its children. -		// We can't do this for interior coverings, since the children just -		// intersect the region, but may not be contained by it - we need to -		// subdivide them further. -		cand.terminal = true -		c.addCandidate(cand) -	} else { -		// We negate the priority so that smaller absolute priorities are returned -		// first. The heuristic is designed to refine the largest cells first, -		// since those are where we have the largest potential gain. Among cells -		// of the same size, we prefer the cells with the fewest children. -		// Finally, among cells with equal numbers of children we prefer those -		// with the smallest number of children that cannot be refined further. -		cand.priority = -(((level<<maxChildrenShift)+cand.numChildren)<<maxChildrenShift + numTerminals) -		heap.Push(&c.pq, cand) -	} -} - -// adjustLevel returns the reduced "level" so that it satisfies levelMod. Levels smaller than minLevel -// are not affected (since cells at these levels are eventually expanded). -func (c *coverer) adjustLevel(level int) int { -	if c.levelMod > 1 && level > c.minLevel { -		level -= (level - c.minLevel) % c.levelMod -	} -	return level -} - -// adjustCellLevels ensures that all cells with level > minLevel also satisfy levelMod, -// by replacing them with an ancestor if necessary. Cell levels smaller -// than minLevel are not modified (see AdjustLevel). The output is -// then normalized to ensure that no redundant cells are present. -func (c *coverer) adjustCellLevels(cells *CellUnion) { -	if c.levelMod == 1 { -		return -	} - -	var out int -	for _, ci := range *cells { -		level := ci.Level() -		newLevel := c.adjustLevel(level) -		if newLevel != level { -			ci = ci.Parent(newLevel) -		} -		if out > 0 && (*cells)[out-1].Contains(ci) { -			continue -		} -		for out > 0 && ci.Contains((*cells)[out-1]) { -			out-- -		} -		(*cells)[out] = ci -		out++ -	} -	*cells = (*cells)[:out] -} - -// initialCandidates computes a set of initial candidates that cover the given region. -func (c *coverer) initialCandidates() { -	// Optimization: start with a small (usually 4 cell) covering of the region's bounding cap. -	temp := &RegionCoverer{MaxLevel: c.maxLevel, LevelMod: 1, MaxCells: minInt(4, c.maxCells)} - -	cells := temp.FastCovering(c.region) -	c.adjustCellLevels(&cells) -	for _, ci := range cells { -		c.addCandidate(c.newCandidate(CellFromCellID(ci))) -	} -} - -// coveringInternal generates a covering and stores it in result. -// Strategy: Start with the 6 faces of the cube.  Discard any -// that do not intersect the shape.  Then repeatedly choose the -// largest cell that intersects the shape and subdivide it. -// -// result contains the cells that will be part of the output, while pq -// contains cells that we may still subdivide further. Cells that are -// entirely contained within the region are immediately added to the output, -// while cells that do not intersect the region are immediately discarded. -// Therefore pq only contains cells that partially intersect the region. -// Candidates are prioritized first according to cell size (larger cells -// first), then by the number of intersecting children they have (fewest -// children first), and then by the number of fully contained children -// (fewest children first). -func (c *coverer) coveringInternal(region Region) { -	c.region = region - -	c.initialCandidates() -	for c.pq.Len() > 0 && (!c.interiorCovering || len(c.result) < c.maxCells) { -		cand := heap.Pop(&c.pq).(*candidate) - -		// For interior covering we keep subdividing no matter how many children -		// candidate has. If we reach MaxCells before expanding all children, -		// we will just use some of them. -		// For exterior covering we cannot do this, because result has to cover the -		// whole region, so all children have to be used. -		// candidate.numChildren == 1 case takes care of the situation when we -		// already have more than MaxCells in result (minLevel is too high). -		// Subdividing of the candidate with one child does no harm in this case. -		if c.interiorCovering || int(cand.cell.level) < c.minLevel || cand.numChildren == 1 || len(c.result)+c.pq.Len()+cand.numChildren <= c.maxCells { -			for _, child := range cand.children { -				if !c.interiorCovering || len(c.result) < c.maxCells { -					c.addCandidate(child) -				} -			} -		} else { -			cand.terminal = true -			c.addCandidate(cand) -		} -	} - -	c.pq.Reset() -	c.region = nil - -	// Rather than just returning the raw list of cell ids, we construct a cell -	// union and then denormalize it. This has the effect of replacing four -	// child cells with their parent whenever this does not violate the covering -	// parameters specified (min_level, level_mod, etc). This significantly -	// reduces the number of cells returned in many cases, and it is cheap -	// compared to computing the covering in the first place. -	c.result.Normalize() -	if c.minLevel > 0 || c.levelMod > 1 { -		c.result.Denormalize(c.minLevel, c.levelMod) -	} -} - -// newCoverer returns an instance of coverer. -func (rc *RegionCoverer) newCoverer() *coverer { -	return &coverer{ -		minLevel: maxInt(0, minInt(maxLevel, rc.MinLevel)), -		maxLevel: maxInt(0, minInt(maxLevel, rc.MaxLevel)), -		levelMod: maxInt(1, minInt(3, rc.LevelMod)), -		maxCells: rc.MaxCells, -	} -} - -// Covering returns a CellUnion that covers the given region and satisfies the various restrictions. -func (rc *RegionCoverer) Covering(region Region) CellUnion { -	covering := rc.CellUnion(region) -	covering.Denormalize(maxInt(0, minInt(maxLevel, rc.MinLevel)), maxInt(1, minInt(3, rc.LevelMod))) -	return covering -} - -// InteriorCovering returns a CellUnion that is contained within the given region and satisfies the various restrictions. -func (rc *RegionCoverer) InteriorCovering(region Region) CellUnion { -	intCovering := rc.InteriorCellUnion(region) -	intCovering.Denormalize(maxInt(0, minInt(maxLevel, rc.MinLevel)), maxInt(1, minInt(3, rc.LevelMod))) -	return intCovering -} - -// CellUnion returns a normalized CellUnion that covers the given region and -// satisfies the restrictions except for minLevel and levelMod. These criteria -// cannot be satisfied using a cell union because cell unions are -// automatically normalized by replacing four child cells with their parent -// whenever possible. (Note that the list of cell ids passed to the CellUnion -// constructor does in fact satisfy all the given restrictions.) -func (rc *RegionCoverer) CellUnion(region Region) CellUnion { -	c := rc.newCoverer() -	c.coveringInternal(region) -	cu := c.result -	cu.Normalize() -	return cu -} - -// InteriorCellUnion returns a normalized CellUnion that is contained within the given region and -// satisfies the restrictions except for minLevel and levelMod. These criteria -// cannot be satisfied using a cell union because cell unions are -// automatically normalized by replacing four child cells with their parent -// whenever possible. (Note that the list of cell ids passed to the CellUnion -// constructor does in fact satisfy all the given restrictions.) -func (rc *RegionCoverer) InteriorCellUnion(region Region) CellUnion { -	c := rc.newCoverer() -	c.interiorCovering = true -	c.coveringInternal(region) -	cu := c.result -	cu.Normalize() -	return cu -} - -// FastCovering returns a CellUnion that covers the given region similar to Covering, -// except that this method is much faster and the coverings are not as tight. -// All of the usual parameters are respected (MaxCells, MinLevel, MaxLevel, and LevelMod), -// except that the implementation makes no attempt to take advantage of large values of -// MaxCells.  (A small number of cells will always be returned.) -// -// This function is useful as a starting point for algorithms that -// recursively subdivide cells. -func (rc *RegionCoverer) FastCovering(region Region) CellUnion { -	c := rc.newCoverer() -	cu := CellUnion(region.CellUnionBound()) -	c.normalizeCovering(&cu) -	return cu -} - -// IsCanonical reports whether the given CellUnion represents a valid covering -// that conforms to the current covering parameters.  In particular: -// -//  - All CellIDs must be valid. -// -//  - CellIDs must be sorted and non-overlapping. -// -//  - CellID levels must satisfy MinLevel, MaxLevel, and LevelMod. -// -//  - If the covering has more than MaxCells, there must be no two cells with -//    a common ancestor at MinLevel or higher. -// -//  - There must be no sequence of cells that could be replaced by an -//    ancestor (i.e. with LevelMod == 1, the 4 child cells of a parent). -func (rc *RegionCoverer) IsCanonical(covering CellUnion) bool { -	return rc.newCoverer().isCanonical(covering) -} - -// normalizeCovering normalizes the "covering" so that it conforms to the -// current covering parameters (maxCells, minLevel, maxLevel, and levelMod). -// This method makes no attempt to be optimal. In particular, if -// minLevel > 0 or levelMod > 1 then it may return more than the -// desired number of cells even when this isn't necessary. -// -// Note that when the covering parameters have their default values, almost -// all of the code in this function is skipped. -func (c *coverer) normalizeCovering(covering *CellUnion) { -	// If any cells are too small, or don't satisfy levelMod, then replace them with ancestors. -	if c.maxLevel < maxLevel || c.levelMod > 1 { -		for i, ci := range *covering { -			level := ci.Level() -			newLevel := c.adjustLevel(minInt(level, c.maxLevel)) -			if newLevel != level { -				(*covering)[i] = ci.Parent(newLevel) -			} -		} -	} -	// Sort the cells and simplify them. -	covering.Normalize() - -	// Make sure that the covering satisfies minLevel and levelMod, -	// possibly at the expense of satisfying MaxCells. -	if c.minLevel > 0 || c.levelMod > 1 { -		covering.Denormalize(c.minLevel, c.levelMod) -	} - -	// If there are too many cells and the covering is very large, use the -	// RegionCoverer to compute a new covering. (This avoids possible O(n^2) -	// behavior of the simpler algorithm below.) -	excess := len(*covering) - c.maxCells -	if excess <= 0 || c.isCanonical(*covering) { -		return -	} -	if excess*len(*covering) > 10000 { -		rc := NewRegionCoverer() -		(*covering) = rc.Covering(covering) -		return -	} - -	// If there are still too many cells, then repeatedly replace two adjacent -	// cells in CellID order by their lowest common ancestor. -	for len(*covering) > c.maxCells { -		bestIndex := -1 -		bestLevel := -1 -		for i := 0; i+1 < len(*covering); i++ { -			level, ok := (*covering)[i].CommonAncestorLevel((*covering)[i+1]) -			if !ok { -				continue -			} -			level = c.adjustLevel(level) -			if level > bestLevel { -				bestLevel = level -				bestIndex = i -			} -		} - -		if bestLevel < c.minLevel { -			break -		} - -		// Replace all cells contained by the new ancestor cell. -		id := (*covering)[bestIndex].Parent(bestLevel) -		(*covering) = c.replaceCellsWithAncestor(*covering, id) - -		// Now repeatedly check whether all children of the parent cell are -		// present, in which case we can replace those cells with their parent. -		for bestLevel > c.minLevel { -			bestLevel -= c.levelMod -			id = id.Parent(bestLevel) -			if !c.containsAllChildren(*covering, id) { -				break -			} -			(*covering) = c.replaceCellsWithAncestor(*covering, id) -		} -	} -} - -// isCanonical reports whether the covering is canonical. -func (c *coverer) isCanonical(covering CellUnion) bool { -	trueMax := c.maxLevel -	if c.levelMod != 1 { -		trueMax = c.maxLevel - (c.maxLevel-c.minLevel)%c.levelMod -	} -	tooManyCells := len(covering) > c.maxCells -	sameParentCount := 1 - -	prevID := CellID(0) -	for _, id := range covering { -		if !id.IsValid() { -			return false -		} - -		// Check that the CellID level is acceptable. -		level := id.Level() -		if level < c.minLevel || level > trueMax { -			return false -		} -		if c.levelMod > 1 && (level-c.minLevel)%c.levelMod != 0 { -			return false -		} - -		if prevID != 0 { -			// Check that cells are sorted and non-overlapping. -			if prevID.RangeMax() >= id.RangeMin() { -				return false -			} - -			lev, ok := id.CommonAncestorLevel(prevID) -			// If there are too many cells, check that no pair of adjacent cells -			// could be replaced by an ancestor. -			if tooManyCells && (ok && lev >= c.minLevel) { -				return false -			} - -			// Check that there are no sequences of (4 ** level_mod) cells that all -			// have the same parent (considering only multiples of "level_mod"). -			pLevel := level - c.levelMod -			if pLevel < c.minLevel || level != prevID.Level() || -				id.Parent(pLevel) != prevID.Parent(pLevel) { -				sameParentCount = 1 -			} else { -				sameParentCount++ -				if sameParentCount == 1<<uint(2*c.levelMod) { -					return false -				} -			} -		} -		prevID = id -	} - -	return true -} - -func (c *coverer) containsAllChildren(covering []CellID, id CellID) bool { -	pos := sort.Search(len(covering), func(i int) bool { return (covering)[i] >= id.RangeMin() }) -	level := id.Level() + c.levelMod -	for child := id.ChildBeginAtLevel(level); child != id.ChildEndAtLevel(level); child = child.Next() { -		if pos == len(covering) || covering[pos] != child { -			return false -		} -		pos++ -	} -	return true -} - -// replaceCellsWithAncestor replaces all descendants of the given id in covering -// with id. This requires the covering contains at least one descendant of id. -func (c *coverer) replaceCellsWithAncestor(covering []CellID, id CellID) []CellID { -	begin := sort.Search(len(covering), func(i int) bool { return covering[i] > id.RangeMin() }) -	end := sort.Search(len(covering), func(i int) bool { return covering[i] > id.RangeMax() }) - -	return append(append(covering[:begin], id), covering[end:]...) -} - -// SimpleRegionCovering returns a set of cells at the given level that cover -// the connected region and a starting point on the boundary or inside the -// region. The cells are returned in arbitrary order. -// -// Note that this method is not faster than the regular Covering -// method for most region types, such as Cap or Polygon, and in fact it -// can be much slower when the output consists of a large number of cells. -// Currently it can be faster at generating coverings of long narrow regions -// such as polylines, but this may change in the future. -func SimpleRegionCovering(region Region, start Point, level int) []CellID { -	return FloodFillRegionCovering(region, cellIDFromPoint(start).Parent(level)) -} - -// FloodFillRegionCovering returns all edge-connected cells at the same level as -// the given CellID that intersect the given region, in arbitrary order. -func FloodFillRegionCovering(region Region, start CellID) []CellID { -	var output []CellID -	all := map[CellID]bool{ -		start: true, -	} -	frontier := []CellID{start} -	for len(frontier) > 0 { -		id := frontier[len(frontier)-1] -		frontier = frontier[:len(frontier)-1] -		if !region.IntersectsCell(CellFromCellID(id)) { -			continue -		} -		output = append(output, id) -		for _, nbr := range id.EdgeNeighbors() { -			if !all[nbr] { -				all[nbr] = true -				frontier = append(frontier, nbr) -			} -		} -	} - -	return output -} diff --git a/vendor/github.com/golang/geo/s2/regionunion.go b/vendor/github.com/golang/geo/s2/regionunion.go deleted file mode 100644 index 915b7c330..000000000 --- a/vendor/github.com/golang/geo/s2/regionunion.go +++ /dev/null @@ -1,66 +0,0 @@ -// Copyright 2020 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// A RegionUnion represents a union of possibly overlapping regions. -// It is convenient for computing a covering of a set of regions. -type RegionUnion []Region - -// CapBound returns a bounding cap for this RegionUnion. -func (ru RegionUnion) CapBound() Cap { return ru.RectBound().CapBound() } - -// RectBound returns a bounding latitude-longitude rectangle for this RegionUnion. -func (ru RegionUnion) RectBound() Rect { -	ret := EmptyRect() -	for _, reg := range ru { -		ret = ret.Union(reg.RectBound()) -	} -	return ret -} - -// ContainsCell reports whether the given Cell is contained by this RegionUnion. -func (ru RegionUnion) ContainsCell(c Cell) bool { -	for _, reg := range ru { -		if reg.ContainsCell(c) { -			return true -		} -	} -	return false -} - -// IntersectsCell reports whether this RegionUnion intersects the given cell. -func (ru RegionUnion) IntersectsCell(c Cell) bool { -	for _, reg := range ru { -		if reg.IntersectsCell(c) { -			return true -		} -	} -	return false -} - -// ContainsPoint reports whether this RegionUnion contains the Point. -func (ru RegionUnion) ContainsPoint(p Point) bool { -	for _, reg := range ru { -		if reg.ContainsPoint(p) { -			return true -		} -	} -	return false -} - -// CellUnionBound computes a covering of the RegionUnion. -func (ru RegionUnion) CellUnionBound() []CellID { -	return ru.CapBound().CellUnionBound() -} diff --git a/vendor/github.com/golang/geo/s2/shape.go b/vendor/github.com/golang/geo/s2/shape.go deleted file mode 100644 index 2cbf170c3..000000000 --- a/vendor/github.com/golang/geo/s2/shape.go +++ /dev/null @@ -1,263 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"sort" -) - -// Edge represents a geodesic edge consisting of two vertices. Zero-length edges are -// allowed, and can be used to represent points. -type Edge struct { -	V0, V1 Point -} - -// Cmp compares the two edges using the underlying Points Cmp method and returns -// -//   -1 if e <  other -//    0 if e == other -//   +1 if e >  other -// -// The two edges are compared by first vertex, and then by the second vertex. -func (e Edge) Cmp(other Edge) int { -	if v0cmp := e.V0.Cmp(other.V0.Vector); v0cmp != 0 { -		return v0cmp -	} -	return e.V1.Cmp(other.V1.Vector) -} - -// sortEdges sorts the slice of Edges in place. -func sortEdges(e []Edge) { -	sort.Sort(edges(e)) -} - -// edges implements the Sort interface for slices of Edge. -type edges []Edge - -func (e edges) Len() int           { return len(e) } -func (e edges) Swap(i, j int)      { e[i], e[j] = e[j], e[i] } -func (e edges) Less(i, j int) bool { return e[i].Cmp(e[j]) == -1 } - -// ShapeEdgeID is a unique identifier for an Edge within an ShapeIndex, -// consisting of a (shapeID, edgeID) pair. -type ShapeEdgeID struct { -	ShapeID int32 -	EdgeID  int32 -} - -// Cmp compares the two ShapeEdgeIDs and returns -// -//   -1 if s <  other -//    0 if s == other -//   +1 if s >  other -// -// The two are compared first by shape id and then by edge id. -func (s ShapeEdgeID) Cmp(other ShapeEdgeID) int { -	switch { -	case s.ShapeID < other.ShapeID: -		return -1 -	case s.ShapeID > other.ShapeID: -		return 1 -	} -	switch { -	case s.EdgeID < other.EdgeID: -		return -1 -	case s.EdgeID > other.EdgeID: -		return 1 -	} -	return 0 -} - -// ShapeEdge represents a ShapeEdgeID with the two endpoints of that Edge. -type ShapeEdge struct { -	ID   ShapeEdgeID -	Edge Edge -} - -// Chain represents a range of edge IDs corresponding to a chain of connected -// edges, specified as a (start, length) pair. The chain is defined to consist of -// edge IDs {start, start + 1, ..., start + length - 1}. -type Chain struct { -	Start, Length int -} - -// ChainPosition represents the position of an edge within a given edge chain, -// specified as a (chainID, offset) pair. Chains are numbered sequentially -// starting from zero, and offsets are measured from the start of each chain. -type ChainPosition struct { -	ChainID, Offset int -} - -// A ReferencePoint consists of a point and a boolean indicating whether the point -// is contained by a particular shape. -type ReferencePoint struct { -	Point     Point -	Contained bool -} - -// OriginReferencePoint returns a ReferencePoint with the given value for -// contained and the origin point. It should be used when all points or no -// points are contained. -func OriginReferencePoint(contained bool) ReferencePoint { -	return ReferencePoint{Point: OriginPoint(), Contained: contained} -} - -// typeTag is a 32-bit tag that can be used to identify the type of an encoded -// Shape. All encodable types have a non-zero type tag. The tag associated with -type typeTag uint32 - -const ( -	// Indicates that a given Shape type cannot be encoded. -	typeTagNone        typeTag = 0 -	typeTagPolygon     typeTag = 1 -	typeTagPolyline    typeTag = 2 -	typeTagPointVector typeTag = 3 -	typeTagLaxPolyline typeTag = 4 -	typeTagLaxPolygon  typeTag = 5 - -	// The minimum allowable tag for future user-defined Shape types. -	typeTagMinUser typeTag = 8192 -) - -// Shape represents polygonal geometry in a flexible way. It is organized as a -// collection of edges that optionally defines an interior. All geometry -// represented by a given Shape must have the same dimension, which means that -// an Shape can represent either a set of points, a set of polylines, or a set -// of polygons. -// -// Shape is defined as an interface in order to give clients control over the -// underlying data representation. Sometimes an Shape does not have any data of -// its own, but instead wraps some other type. -// -// Shape operations are typically defined on a ShapeIndex rather than -// individual shapes. An ShapeIndex is simply a collection of Shapes, -// possibly of different dimensions (e.g. 10 points and 3 polygons), organized -// into a data structure for efficient edge access. -// -// The edges of a Shape are indexed by a contiguous range of edge IDs -// starting at 0. The edges are further subdivided into chains, where each -// chain consists of a sequence of edges connected end-to-end (a polyline). -// For example, a Shape representing two polylines AB and CDE would have -// three edges (AB, CD, DE) grouped into two chains: (AB) and (CD, DE). -// Similarly, an Shape representing 5 points would have 5 chains consisting -// of one edge each. -// -// Shape has methods that allow edges to be accessed either using the global -// numbering (edge ID) or within a particular chain. The global numbering is -// sufficient for most purposes, but the chain representation is useful for -// certain algorithms such as intersection (see BooleanOperation). -type Shape interface { -	// NumEdges returns the number of edges in this shape. -	NumEdges() int - -	// Edge returns the edge for the given edge index. -	Edge(i int) Edge - -	// ReferencePoint returns an arbitrary reference point for the shape. (The -	// containment boolean value must be false for shapes that do not have an interior.) -	// -	// This reference point may then be used to compute the containment of other -	// points by counting edge crossings. -	ReferencePoint() ReferencePoint - -	// NumChains reports the number of contiguous edge chains in the shape. -	// For example, a shape whose edges are [AB, BC, CD, AE, EF] would consist -	// of two chains (AB,BC,CD and AE,EF). Every chain is assigned a chain Id -	// numbered sequentially starting from zero. -	// -	// Note that it is always acceptable to implement this method by returning -	// NumEdges, i.e. every chain consists of a single edge, but this may -	// reduce the efficiency of some algorithms. -	NumChains() int - -	// Chain returns the range of edge IDs corresponding to the given edge chain. -	// Edge chains must form contiguous, non-overlapping ranges that cover -	// the entire range of edge IDs. This is spelled out more formally below: -	// -	//  0 <= i < NumChains() -	//  Chain(i).length > 0, for all i -	//  Chain(0).start == 0 -	//  Chain(i).start + Chain(i).length == Chain(i+1).start, for i < NumChains()-1 -	//  Chain(i).start + Chain(i).length == NumEdges(), for i == NumChains()-1 -	Chain(chainID int) Chain - -	// ChainEdgeReturns the edge at offset "offset" within edge chain "chainID". -	// Equivalent to "shape.Edge(shape.Chain(chainID).start + offset)" -	// but more efficient. -	ChainEdge(chainID, offset int) Edge - -	// ChainPosition finds the chain containing the given edge, and returns the -	// position of that edge as a ChainPosition(chainID, offset) pair. -	// -	//  shape.Chain(pos.chainID).start + pos.offset == edgeID -	//  shape.Chain(pos.chainID+1).start > edgeID -	// -	// where pos == shape.ChainPosition(edgeID). -	ChainPosition(edgeID int) ChainPosition - -	// Dimension returns the dimension of the geometry represented by this shape, -	// either 0, 1 or 2 for point, polyline and polygon geometry respectively. -	// -	//  0 - Point geometry. Each point is represented as a degenerate edge. -	// -	//  1 - Polyline geometry. Polyline edges may be degenerate. A shape may -	//      represent any number of polylines. Polylines edges may intersect. -	// -	//  2 - Polygon geometry. Edges should be oriented such that the polygon -	//      interior is always on the left. In theory the edges may be returned -	//      in any order, but typically the edges are organized as a collection -	//      of edge chains where each chain represents one polygon loop. -	//      Polygons may have degeneracies (e.g., degenerate edges or sibling -	//      pairs consisting of an edge and its corresponding reversed edge). -	//      A polygon loop may also be full (containing all points on the -	//      sphere); by convention this is represented as a chain with no edges. -	//      (See laxPolygon for details.) -	// -	// This method allows degenerate geometry of different dimensions -	// to be distinguished, e.g. it allows a point to be distinguished from a -	// polyline or polygon that has been simplified to a single point. -	Dimension() int - -	// IsEmpty reports whether the Shape contains no points. (Note that the full -	// polygon is represented as a chain with zero edges.) -	IsEmpty() bool - -	// IsFull reports whether the Shape contains all points on the sphere. -	IsFull() bool - -	// typeTag returns a value that can be used to identify the type of an -	// encoded Shape. -	typeTag() typeTag - -	// We do not support implementations of this interface outside this package. -	privateInterface() -} - -// defaultShapeIsEmpty reports whether this shape contains no points. -func defaultShapeIsEmpty(s Shape) bool { -	return s.NumEdges() == 0 && (s.Dimension() != 2 || s.NumChains() == 0) -} - -// defaultShapeIsFull reports whether this shape contains all points on the sphere. -func defaultShapeIsFull(s Shape) bool { -	return s.NumEdges() == 0 && s.Dimension() == 2 && s.NumChains() > 0 -} - -// A minimal check for types that should satisfy the Shape interface. -var ( -	_ Shape = &Loop{} -	_ Shape = &Polygon{} -	_ Shape = &Polyline{} -) diff --git a/vendor/github.com/golang/geo/s2/shapeindex.go b/vendor/github.com/golang/geo/s2/shapeindex.go deleted file mode 100644 index 6efa213ab..000000000 --- a/vendor/github.com/golang/geo/s2/shapeindex.go +++ /dev/null @@ -1,1526 +0,0 @@ -// Copyright 2016 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" -	"sort" -	"sync" -	"sync/atomic" - -	"github.com/golang/geo/r1" -	"github.com/golang/geo/r2" -) - -// CellRelation describes the possible relationships between a target cell -// and the cells of the ShapeIndex. If the target is an index cell or is -// contained by an index cell, it is Indexed. If the target is subdivided -// into one or more index cells, it is Subdivided. Otherwise it is Disjoint. -type CellRelation int - -// The possible CellRelations for a ShapeIndex. -const ( -	Indexed CellRelation = iota -	Subdivided -	Disjoint -) - -const ( -	// cellPadding defines the total error when clipping an edge which comes -	// from two sources: -	// (1) Clipping the original spherical edge to a cube face (the face edge). -	//     The maximum error in this step is faceClipErrorUVCoord. -	// (2) Clipping the face edge to the u- or v-coordinate of a cell boundary. -	//     The maximum error in this step is edgeClipErrorUVCoord. -	// Finally, since we encounter the same errors when clipping query edges, we -	// double the total error so that we only need to pad edges during indexing -	// and not at query time. -	cellPadding = 2.0 * (faceClipErrorUVCoord + edgeClipErrorUVCoord) - -	// cellSizeToLongEdgeRatio defines the cell size relative to the length of an -	// edge at which it is first considered to be long. Long edges do not -	// contribute toward the decision to subdivide a cell further. For example, -	// a value of 2.0 means that the cell must be at least twice the size of the -	// edge in order for that edge to be counted. There are two reasons for not -	// counting long edges: (1) such edges typically need to be propagated to -	// several children, which increases time and memory costs without much benefit, -	// and (2) in pathological cases, many long edges close together could force -	// subdivision to continue all the way to the leaf cell level. -	cellSizeToLongEdgeRatio = 1.0 -) - -// clippedShape represents the part of a shape that intersects a Cell. -// It consists of the set of edge IDs that intersect that cell and a boolean -// indicating whether the center of the cell is inside the shape (for shapes -// that have an interior). -// -// Note that the edges themselves are not clipped; we always use the original -// edges for intersection tests so that the results will be the same as the -// original shape. -type clippedShape struct { -	// shapeID is the index of the shape this clipped shape is a part of. -	shapeID int32 - -	// containsCenter indicates if the center of the CellID this shape has been -	// clipped to falls inside this shape. This is false for shapes that do not -	// have an interior. -	containsCenter bool - -	// edges is the ordered set of ShapeIndex original edge IDs. Edges -	// are stored in increasing order of edge ID. -	edges []int -} - -// newClippedShape returns a new clipped shape for the given shapeID and number of expected edges. -func newClippedShape(id int32, numEdges int) *clippedShape { -	return &clippedShape{ -		shapeID: id, -		edges:   make([]int, numEdges), -	} -} - -// numEdges returns the number of edges that intersect the CellID of the Cell this was clipped to. -func (c *clippedShape) numEdges() int { -	return len(c.edges) -} - -// containsEdge reports if this clipped shape contains the given edge ID. -func (c *clippedShape) containsEdge(id int) bool { -	// Linear search is fast because the number of edges per shape is typically -	// very small (less than 10). -	for _, e := range c.edges { -		if e == id { -			return true -		} -	} -	return false -} - -// ShapeIndexCell stores the index contents for a particular CellID. -type ShapeIndexCell struct { -	shapes []*clippedShape -} - -// NewShapeIndexCell creates a new cell that is sized to hold the given number of shapes. -func NewShapeIndexCell(numShapes int) *ShapeIndexCell { -	return &ShapeIndexCell{ -		shapes: make([]*clippedShape, numShapes), -	} -} - -// numEdges reports the total number of edges in all clipped shapes in this cell. -func (s *ShapeIndexCell) numEdges() int { -	var e int -	for _, cs := range s.shapes { -		e += cs.numEdges() -	} -	return e -} - -// add adds the given clipped shape to this index cell. -func (s *ShapeIndexCell) add(c *clippedShape) { -	// C++ uses a set, so it's ordered and unique. We don't currently catch -	// the case when a duplicate value is added. -	s.shapes = append(s.shapes, c) -} - -// findByShapeID returns the clipped shape that contains the given shapeID, -// or nil if none of the clipped shapes contain it. -func (s *ShapeIndexCell) findByShapeID(shapeID int32) *clippedShape { -	// Linear search is fine because the number of shapes per cell is typically -	// very small (most often 1), and is large only for pathological inputs -	// (e.g. very deeply nested loops). -	for _, clipped := range s.shapes { -		if clipped.shapeID == shapeID { -			return clipped -		} -	} -	return nil -} - -// faceEdge and clippedEdge store temporary edge data while the index is being -// updated. -// -// While it would be possible to combine all the edge information into one -// structure, there are two good reasons for separating it: -// -//  - Memory usage. Separating the two means that we only need to -//    store one copy of the per-face data no matter how many times an edge is -//    subdivided, and it also lets us delay computing bounding boxes until -//    they are needed for processing each face (when the dataset spans -//    multiple faces). -// -//  - Performance. UpdateEdges is significantly faster on large polygons when -//    the data is separated, because it often only needs to access the data in -//    clippedEdge and this data is cached more successfully. - -// faceEdge represents an edge that has been projected onto a given face, -type faceEdge struct { -	shapeID     int32    // The ID of shape that this edge belongs to -	edgeID      int      // Edge ID within that shape -	maxLevel    int      // Not desirable to subdivide this edge beyond this level -	hasInterior bool     // Belongs to a shape that has a dimension of 2 -	a, b        r2.Point // The edge endpoints, clipped to a given face -	edge        Edge     // The original edge. -} - -// clippedEdge represents the portion of that edge that has been clipped to a given Cell. -type clippedEdge struct { -	faceEdge *faceEdge // The original unclipped edge -	bound    r2.Rect   // Bounding box for the clipped portion -} - -// ShapeIndexIteratorPos defines the set of possible iterator starting positions. By -// default iterators are unpositioned, since this avoids an extra seek in this -// situation where one of the seek methods (such as Locate) is immediately called. -type ShapeIndexIteratorPos int - -const ( -	// IteratorBegin specifies the iterator should be positioned at the beginning of the index. -	IteratorBegin ShapeIndexIteratorPos = iota -	// IteratorEnd specifies the iterator should be positioned at the end of the index. -	IteratorEnd -) - -// ShapeIndexIterator is an iterator that provides low-level access to -// the cells of the index. Cells are returned in increasing order of CellID. -// -//   for it := index.Iterator(); !it.Done(); it.Next() { -//     fmt.Print(it.CellID()) -//   } -// -type ShapeIndexIterator struct { -	index    *ShapeIndex -	position int -	id       CellID -	cell     *ShapeIndexCell -} - -// NewShapeIndexIterator creates a new iterator for the given index. If a starting -// position is specified, the iterator is positioned at the given spot. -func NewShapeIndexIterator(index *ShapeIndex, pos ...ShapeIndexIteratorPos) *ShapeIndexIterator { -	s := &ShapeIndexIterator{ -		index: index, -	} - -	if len(pos) > 0 { -		if len(pos) > 1 { -			panic("too many ShapeIndexIteratorPos arguments") -		} -		switch pos[0] { -		case IteratorBegin: -			s.Begin() -		case IteratorEnd: -			s.End() -		default: -			panic("unknown ShapeIndexIteratorPos value") -		} -	} - -	return s -} - -func (s *ShapeIndexIterator) clone() *ShapeIndexIterator { -	return &ShapeIndexIterator{ -		index:    s.index, -		position: s.position, -		id:       s.id, -		cell:     s.cell, -	} -} - -// CellID returns the CellID of the current index cell. -// If s.Done() is true, a value larger than any valid CellID is returned. -func (s *ShapeIndexIterator) CellID() CellID { -	return s.id -} - -// IndexCell returns the current index cell. -func (s *ShapeIndexIterator) IndexCell() *ShapeIndexCell { -	// TODO(roberts): C++ has this call a virtual method to allow subclasses -	// of ShapeIndexIterator to do other work before returning the cell. Do -	// we need such a thing? -	return s.cell -} - -// Center returns the Point at the center of the current position of the iterator. -func (s *ShapeIndexIterator) Center() Point { -	return s.CellID().Point() -} - -// Begin positions the iterator at the beginning of the index. -func (s *ShapeIndexIterator) Begin() { -	if !s.index.IsFresh() { -		s.index.maybeApplyUpdates() -	} -	s.position = 0 -	s.refresh() -} - -// Next positions the iterator at the next index cell. -func (s *ShapeIndexIterator) Next() { -	s.position++ -	s.refresh() -} - -// Prev advances the iterator to the previous cell in the index and returns true to -// indicate it was not yet at the beginning of the index. If the iterator is at the -// first cell the call does nothing and returns false. -func (s *ShapeIndexIterator) Prev() bool { -	if s.position <= 0 { -		return false -	} - -	s.position-- -	s.refresh() -	return true -} - -// End positions the iterator at the end of the index. -func (s *ShapeIndexIterator) End() { -	s.position = len(s.index.cells) -	s.refresh() -} - -// Done reports if the iterator is positioned at or after the last index cell. -func (s *ShapeIndexIterator) Done() bool { -	return s.id == SentinelCellID -} - -// refresh updates the stored internal iterator values. -func (s *ShapeIndexIterator) refresh() { -	if s.position < len(s.index.cells) { -		s.id = s.index.cells[s.position] -		s.cell = s.index.cellMap[s.CellID()] -	} else { -		s.id = SentinelCellID -		s.cell = nil -	} -} - -// seek positions the iterator at the first cell whose ID >= target, or at the -// end of the index if no such cell exists. -func (s *ShapeIndexIterator) seek(target CellID) { -	s.position = sort.Search(len(s.index.cells), func(i int) bool { -		return s.index.cells[i] >= target -	}) -	s.refresh() -} - -// LocatePoint positions the iterator at the cell that contains the given Point. -// If no such cell exists, the iterator position is unspecified, and false is returned. -// The cell at the matched position is guaranteed to contain all edges that might -// intersect the line segment between target and the cell's center. -func (s *ShapeIndexIterator) LocatePoint(p Point) bool { -	// Let I = cellMap.LowerBound(T), where T is the leaf cell containing -	// point P. Then if T is contained by an index cell, then the -	// containing cell is either I or I'. We test for containment by comparing -	// the ranges of leaf cells spanned by T, I, and I'. -	target := cellIDFromPoint(p) -	s.seek(target) -	if !s.Done() && s.CellID().RangeMin() <= target { -		return true -	} - -	if s.Prev() && s.CellID().RangeMax() >= target { -		return true -	} -	return false -} - -// LocateCellID attempts to position the iterator at the first matching index cell -// in the index that has some relation to the given CellID. Let T be the target CellID. -// If T is contained by (or equal to) some index cell I, then the iterator is positioned -// at I and returns Indexed. Otherwise if T contains one or more (smaller) index cells, -// then the iterator is positioned at the first such cell I and return Subdivided. -// Otherwise Disjoint is returned and the iterator position is undefined. -func (s *ShapeIndexIterator) LocateCellID(target CellID) CellRelation { -	// Let T be the target, let I = cellMap.LowerBound(T.RangeMin()), and -	// let I' be the predecessor of I. If T contains any index cells, then T -	// contains I. Similarly, if T is contained by an index cell, then the -	// containing cell is either I or I'. We test for containment by comparing -	// the ranges of leaf cells spanned by T, I, and I'. -	s.seek(target.RangeMin()) -	if !s.Done() { -		if s.CellID() >= target && s.CellID().RangeMin() <= target { -			return Indexed -		} -		if s.CellID() <= target.RangeMax() { -			return Subdivided -		} -	} -	if s.Prev() && s.CellID().RangeMax() >= target { -		return Indexed -	} -	return Disjoint -} - -// tracker keeps track of which shapes in a given set contain a particular point -// (the focus). It provides an efficient way to move the focus from one point -// to another and incrementally update the set of shapes which contain it. We use -// this to compute which shapes contain the center of every CellID in the index, -// by advancing the focus from one cell center to the next. -// -// Initially the focus is at the start of the CellID space-filling curve. We then -// visit all the cells that are being added to the ShapeIndex in increasing order -// of CellID. For each cell, we draw two edges: one from the entry vertex to the -// center, and another from the center to the exit vertex (where entry and exit -// refer to the points where the space-filling curve enters and exits the cell). -// By counting edge crossings we can incrementally compute which shapes contain -// the cell center. Note that the same set of shapes will always contain the exit -// point of one cell and the entry point of the next cell in the index, because -// either (a) these two points are actually the same, or (b) the intervening -// cells in CellID order are all empty, and therefore there are no edge crossings -// if we follow this path from one cell to the other. -// -// In C++, this is S2ShapeIndex::InteriorTracker. -type tracker struct { -	isActive   bool -	a          Point -	b          Point -	nextCellID CellID -	crosser    *EdgeCrosser -	shapeIDs   []int32 - -	// Shape ids saved by saveAndClearStateBefore. The state is never saved -	// recursively so we don't need to worry about maintaining a stack. -	savedIDs []int32 -} - -// newTracker returns a new tracker with the appropriate defaults. -func newTracker() *tracker { -	// As shapes are added, we compute which ones contain the start of the -	// CellID space-filling curve by drawing an edge from OriginPoint to this -	// point and counting how many shape edges cross this edge. -	t := &tracker{ -		isActive:   false, -		b:          trackerOrigin(), -		nextCellID: CellIDFromFace(0).ChildBeginAtLevel(maxLevel), -	} -	t.drawTo(Point{faceUVToXYZ(0, -1, -1).Normalize()}) // CellID curve start - -	return t -} - -// trackerOrigin returns the initial focus point when the tracker is created -// (corresponding to the start of the CellID space-filling curve). -func trackerOrigin() Point { -	// The start of the S2CellId space-filling curve. -	return Point{faceUVToXYZ(0, -1, -1).Normalize()} -} - -// focus returns the current focus point of the tracker. -func (t *tracker) focus() Point { return t.b } - -// addShape adds a shape whose interior should be tracked. containsOrigin indicates -// whether the current focus point is inside the shape. Alternatively, if -// the focus point is in the process of being moved (via moveTo/drawTo), you -// can also specify containsOrigin at the old focus point and call testEdge -// for every edge of the shape that might cross the current drawTo line. -// This updates the state to correspond to the new focus point. -// -// This requires shape.HasInterior -func (t *tracker) addShape(shapeID int32, containsFocus bool) { -	t.isActive = true -	if containsFocus { -		t.toggleShape(shapeID) -	} -} - -// moveTo moves the focus of the tracker to the given point. This method should -// only be used when it is known that there are no edge crossings between the old -// and new focus locations; otherwise use drawTo. -func (t *tracker) moveTo(b Point) { t.b = b } - -// drawTo moves the focus of the tracker to the given point. After this method is -// called, testEdge should be called with all edges that may cross the line -// segment between the old and new focus locations. -func (t *tracker) drawTo(b Point) { -	t.a = t.b -	t.b = b -	// TODO: the edge crosser may need an in-place Init method if this gets expensive -	t.crosser = NewEdgeCrosser(t.a, t.b) -} - -// testEdge checks if the given edge crosses the current edge, and if so, then -// toggle the state of the given shapeID. -// This requires shape to have an interior. -func (t *tracker) testEdge(shapeID int32, edge Edge) { -	if t.crosser.EdgeOrVertexCrossing(edge.V0, edge.V1) { -		t.toggleShape(shapeID) -	} -} - -// setNextCellID is used to indicate that the last argument to moveTo or drawTo -// was the entry vertex of the given CellID, i.e. the tracker is positioned at the -// start of this cell. By using this method together with atCellID, the caller -// can avoid calling moveTo in cases where the exit vertex of the previous cell -// is the same as the entry vertex of the current cell. -func (t *tracker) setNextCellID(nextCellID CellID) { -	t.nextCellID = nextCellID.RangeMin() -} - -// atCellID reports if the focus is already at the entry vertex of the given -// CellID (provided that the caller calls setNextCellID as each cell is processed). -func (t *tracker) atCellID(cellid CellID) bool { -	return cellid.RangeMin() == t.nextCellID -} - -// toggleShape adds or removes the given shapeID from the set of IDs it is tracking. -func (t *tracker) toggleShape(shapeID int32) { -	// Most shapeIDs slices are small, so special case the common steps. - -	// If there is nothing here, add it. -	if len(t.shapeIDs) == 0 { -		t.shapeIDs = append(t.shapeIDs, shapeID) -		return -	} - -	// If it's the first element, drop it from the slice. -	if t.shapeIDs[0] == shapeID { -		t.shapeIDs = t.shapeIDs[1:] -		return -	} - -	for i, s := range t.shapeIDs { -		if s < shapeID { -			continue -		} - -		// If it's in the set, cut it out. -		if s == shapeID { -			copy(t.shapeIDs[i:], t.shapeIDs[i+1:]) // overwrite the ith element -			t.shapeIDs = t.shapeIDs[:len(t.shapeIDs)-1] -			return -		} - -		// We've got to a point in the slice where we should be inserted. -		// (the given shapeID is now less than the current positions id.) -		t.shapeIDs = append(t.shapeIDs[0:i], -			append([]int32{shapeID}, t.shapeIDs[i:len(t.shapeIDs)]...)...) -		return -	} - -	// We got to the end and didn't find it, so add it to the list. -	t.shapeIDs = append(t.shapeIDs, shapeID) -} - -// saveAndClearStateBefore makes an internal copy of the state for shape ids below -// the given limit, and then clear the state for those shapes. This is used during -// incremental updates to track the state of added and removed shapes separately. -func (t *tracker) saveAndClearStateBefore(limitShapeID int32) { -	limit := t.lowerBound(limitShapeID) -	t.savedIDs = append([]int32(nil), t.shapeIDs[:limit]...) -	t.shapeIDs = t.shapeIDs[limit:] -} - -// restoreStateBefore restores the state previously saved by saveAndClearStateBefore. -// This only affects the state for shapeIDs below "limitShapeID". -func (t *tracker) restoreStateBefore(limitShapeID int32) { -	limit := t.lowerBound(limitShapeID) -	t.shapeIDs = append(append([]int32(nil), t.savedIDs...), t.shapeIDs[limit:]...) -	t.savedIDs = nil -} - -// lowerBound returns the shapeID of the first entry x where x >= shapeID. -func (t *tracker) lowerBound(shapeID int32) int32 { -	panic("not implemented") -} - -// removedShape represents a set of edges from the given shape that is queued for removal. -type removedShape struct { -	shapeID               int32 -	hasInterior           bool -	containsTrackerOrigin bool -	edges                 []Edge -} - -// There are three basic states the index can be in. -const ( -	stale    int32 = iota // There are pending updates. -	updating              // Updates are currently being applied. -	fresh                 // There are no pending updates. -) - -// ShapeIndex indexes a set of Shapes, where a Shape is some collection of edges -// that optionally defines an interior. It can be used to represent a set of -// points, a set of polylines, or a set of polygons. For Shapes that have -// interiors, the index makes it very fast to determine which Shape(s) contain -// a given point or region. -// -// The index can be updated incrementally by adding or removing shapes. It is -// designed to handle up to hundreds of millions of edges. All data structures -// are designed to be small, so the index is compact; generally it is smaller -// than the underlying data being indexed. The index is also fast to construct. -// -// Polygon, Loop, and Polyline implement Shape which allows these objects to -// be indexed easily. You can find useful query methods in CrossingEdgeQuery -// and ClosestEdgeQuery (Not yet implemented in Go). -// -// Example showing how to build an index of Polylines: -// -//   index := NewShapeIndex() -//   for _, polyline := range polylines { -//       index.Add(polyline); -//   } -//   // Now you can use a CrossingEdgeQuery or ClosestEdgeQuery here. -// -type ShapeIndex struct { -	// shapes is a map of shape ID to shape. -	shapes map[int32]Shape - -	// The maximum number of edges per cell. -	// TODO(roberts): Update the comments when the usage of this is implemented. -	maxEdgesPerCell int - -	// nextID tracks the next ID to hand out. IDs are not reused when shapes -	// are removed from the index. -	nextID int32 - -	// cellMap is a map from CellID to the set of clipped shapes that intersect that -	// cell. The cell IDs cover a set of non-overlapping regions on the sphere. -	// In C++, this is a BTree, so the cells are ordered naturally by the data structure. -	cellMap map[CellID]*ShapeIndexCell -	// Track the ordered list of cell IDs. -	cells []CellID - -	// The current status of the index; accessed atomically. -	status int32 - -	// Additions and removals are queued and processed on the first subsequent -	// query. There are several reasons to do this: -	// -	//  - It is significantly more efficient to process updates in batches if -	//    the amount of entities added grows. -	//  - Often the index will never be queried, in which case we can save both -	//    the time and memory required to build it. Examples: -	//     + Loops that are created simply to pass to an Polygon. (We don't -	//       need the Loop index, because Polygon builds its own index.) -	//     + Applications that load a database of geometry and then query only -	//       a small fraction of it. -	// -	// The main drawback is that we need to go to some extra work to ensure that -	// some methods are still thread-safe. Note that the goal is *not* to -	// make this thread-safe in general, but simply to hide the fact that -	// we defer some of the indexing work until query time. -	// -	// This mutex protects all of following fields in the index. -	mu sync.RWMutex - -	// pendingAdditionsPos is the index of the first entry that has not been processed -	// via applyUpdatesInternal. -	pendingAdditionsPos int32 - -	// The set of shapes that have been queued for removal but not processed yet by -	// applyUpdatesInternal. -	pendingRemovals []*removedShape -} - -// NewShapeIndex creates a new ShapeIndex. -func NewShapeIndex() *ShapeIndex { -	return &ShapeIndex{ -		maxEdgesPerCell: 10, -		shapes:          make(map[int32]Shape), -		cellMap:         make(map[CellID]*ShapeIndexCell), -		cells:           nil, -		status:          fresh, -	} -} - -// Iterator returns an iterator for this index. -func (s *ShapeIndex) Iterator() *ShapeIndexIterator { -	s.maybeApplyUpdates() -	return NewShapeIndexIterator(s, IteratorBegin) -} - -// Begin positions the iterator at the first cell in the index. -func (s *ShapeIndex) Begin() *ShapeIndexIterator { -	s.maybeApplyUpdates() -	return NewShapeIndexIterator(s, IteratorBegin) -} - -// End positions the iterator at the last cell in the index. -func (s *ShapeIndex) End() *ShapeIndexIterator { -	// TODO(roberts): It's possible that updates could happen to the index between -	// the time this is called and the time the iterators position is used and this -	// will be invalid or not the end. For now, things will be undefined if this -	// happens. See about referencing the IsFresh to guard for this in the future. -	s.maybeApplyUpdates() -	return NewShapeIndexIterator(s, IteratorEnd) -} - -// Len reports the number of Shapes in this index. -func (s *ShapeIndex) Len() int { -	return len(s.shapes) -} - -// Reset resets the index to its original state. -func (s *ShapeIndex) Reset() { -	s.shapes = make(map[int32]Shape) -	s.nextID = 0 -	s.cellMap = make(map[CellID]*ShapeIndexCell) -	s.cells = nil -	atomic.StoreInt32(&s.status, fresh) -} - -// NumEdges returns the number of edges in this index. -func (s *ShapeIndex) NumEdges() int { -	numEdges := 0 -	for _, shape := range s.shapes { -		numEdges += shape.NumEdges() -	} -	return numEdges -} - -// NumEdgesUpTo returns the number of edges in the given index, up to the given -// limit. If the limit is encountered, the current running total is returned, -// which may be more than the limit. -func (s *ShapeIndex) NumEdgesUpTo(limit int) int { -	var numEdges int -	// We choose to iterate over the shapes in order to match the counting -	// up behavior in C++ and for test compatibility instead of using a -	// more idiomatic range over the shape map. -	for i := int32(0); i <= s.nextID; i++ { -		s := s.Shape(i) -		if s == nil { -			continue -		} -		numEdges += s.NumEdges() -		if numEdges >= limit { -			break -		} -	} - -	return numEdges -} - -// Shape returns the shape with the given ID, or nil if the shape has been removed from the index. -func (s *ShapeIndex) Shape(id int32) Shape { return s.shapes[id] } - -// idForShape returns the id of the given shape in this index, or -1 if it is -// not in the index. -// -// TODO(roberts): Need to figure out an appropriate way to expose this on a Shape. -// C++ allows a given S2 type (Loop, Polygon, etc) to be part of multiple indexes. -// By having each type extend S2Shape which has an id element, they all inherit their -// own id field rather than having to track it themselves. -func (s *ShapeIndex) idForShape(shape Shape) int32 { -	for k, v := range s.shapes { -		if v == shape { -			return k -		} -	} -	return -1 -} - -// Add adds the given shape to the index and returns the assigned ID.. -func (s *ShapeIndex) Add(shape Shape) int32 { -	s.shapes[s.nextID] = shape -	s.nextID++ -	atomic.StoreInt32(&s.status, stale) -	return s.nextID - 1 -} - -// Remove removes the given shape from the index. -func (s *ShapeIndex) Remove(shape Shape) { -	// The index updates itself lazily because it is much more efficient to -	// process additions and removals in batches. -	id := s.idForShape(shape) - -	// If the shape wasn't found, it's already been removed or was not in the index. -	if s.shapes[id] == nil { -		return -	} - -	// Remove the shape from the shapes map. -	delete(s.shapes, id) - -	// We are removing a shape that has not yet been added to the index, -	// so there is nothing else to do. -	if id >= s.pendingAdditionsPos { -		return -	} - -	numEdges := shape.NumEdges() -	removed := &removedShape{ -		shapeID:               id, -		hasInterior:           shape.Dimension() == 2, -		containsTrackerOrigin: shape.ReferencePoint().Contained, -		edges:                 make([]Edge, numEdges), -	} - -	for e := 0; e < numEdges; e++ { -		removed.edges[e] = shape.Edge(e) -	} - -	s.pendingRemovals = append(s.pendingRemovals, removed) -	atomic.StoreInt32(&s.status, stale) -} - -// Build triggers the update of the index. Calls to Add and Release are normally -// queued and processed on the first subsequent query. This has many advantages, -// the most important of which is that sometimes there *is* no subsequent -// query, which lets us avoid building the index completely. -// -// This method forces any pending updates to be applied immediately. -func (s *ShapeIndex) Build() { -	s.maybeApplyUpdates() -} - -// IsFresh reports if there are no pending updates that need to be applied. -// This can be useful to avoid building the index unnecessarily, or for -// choosing between two different algorithms depending on whether the index -// is available. -// -// The returned index status may be slightly out of date if the index was -// built in a different thread. This is fine for the intended use (as an -// efficiency hint), but it should not be used by internal methods. -func (s *ShapeIndex) IsFresh() bool { -	return atomic.LoadInt32(&s.status) == fresh -} - -// isFirstUpdate reports if this is the first update to the index. -func (s *ShapeIndex) isFirstUpdate() bool { -	// Note that it is not sufficient to check whether cellMap is empty, since -	// entries are added to it during the update process. -	return s.pendingAdditionsPos == 0 -} - -// isShapeBeingRemoved reports if the shape with the given ID is currently slated for removal. -func (s *ShapeIndex) isShapeBeingRemoved(shapeID int32) bool { -	// All shape ids being removed fall below the index position of shapes being added. -	return shapeID < s.pendingAdditionsPos -} - -// maybeApplyUpdates checks if the index pieces have changed, and if so, applies pending updates. -func (s *ShapeIndex) maybeApplyUpdates() { -	// TODO(roberts): To avoid acquiring and releasing the mutex on every -	// query, we should use atomic operations when testing whether the status -	// is fresh and when updating the status to be fresh. This guarantees -	// that any thread that sees a status of fresh will also see the -	// corresponding index updates. -	if atomic.LoadInt32(&s.status) != fresh { -		s.mu.Lock() -		s.applyUpdatesInternal() -		atomic.StoreInt32(&s.status, fresh) -		s.mu.Unlock() -	} -} - -// applyUpdatesInternal does the actual work of updating the index by applying all -// pending additions and removals. It does *not* update the indexes status. -func (s *ShapeIndex) applyUpdatesInternal() { -	// TODO(roberts): Building the index can use up to 20x as much memory per -	// edge as the final index memory size. If this causes issues, add in -	// batched updating to limit the amount of items per batch to a -	// configurable memory footprint overhead. -	t := newTracker() - -	// allEdges maps a Face to a collection of faceEdges. -	allEdges := make([][]faceEdge, 6) - -	for _, p := range s.pendingRemovals { -		s.removeShapeInternal(p, allEdges, t) -	} - -	for id := s.pendingAdditionsPos; id < int32(len(s.shapes)); id++ { -		s.addShapeInternal(id, allEdges, t) -	} - -	for face := 0; face < 6; face++ { -		s.updateFaceEdges(face, allEdges[face], t) -	} - -	s.pendingRemovals = s.pendingRemovals[:0] -	s.pendingAdditionsPos = int32(len(s.shapes)) -	// It is the caller's responsibility to update the index status. -} - -// addShapeInternal clips all edges of the given shape to the six cube faces, -// adds the clipped edges to the set of allEdges, and starts tracking its -// interior if necessary. -func (s *ShapeIndex) addShapeInternal(shapeID int32, allEdges [][]faceEdge, t *tracker) { -	shape, ok := s.shapes[shapeID] -	if !ok { -		// This shape has already been removed. -		return -	} - -	faceEdge := faceEdge{ -		shapeID:     shapeID, -		hasInterior: shape.Dimension() == 2, -	} - -	if faceEdge.hasInterior { -		t.addShape(shapeID, containsBruteForce(shape, t.focus())) -	} - -	numEdges := shape.NumEdges() -	for e := 0; e < numEdges; e++ { -		edge := shape.Edge(e) - -		faceEdge.edgeID = e -		faceEdge.edge = edge -		faceEdge.maxLevel = maxLevelForEdge(edge) -		s.addFaceEdge(faceEdge, allEdges) -	} -} - -// addFaceEdge adds the given faceEdge into the collection of all edges. -func (s *ShapeIndex) addFaceEdge(fe faceEdge, allEdges [][]faceEdge) { -	aFace := face(fe.edge.V0.Vector) -	// See if both endpoints are on the same face, and are far enough from -	// the edge of the face that they don't intersect any (padded) adjacent face. -	if aFace == face(fe.edge.V1.Vector) { -		x, y := validFaceXYZToUV(aFace, fe.edge.V0.Vector) -		fe.a = r2.Point{x, y} -		x, y = validFaceXYZToUV(aFace, fe.edge.V1.Vector) -		fe.b = r2.Point{x, y} - -		maxUV := 1 - cellPadding -		if math.Abs(fe.a.X) <= maxUV && math.Abs(fe.a.Y) <= maxUV && -			math.Abs(fe.b.X) <= maxUV && math.Abs(fe.b.Y) <= maxUV { -			allEdges[aFace] = append(allEdges[aFace], fe) -			return -		} -	} - -	// Otherwise, we simply clip the edge to all six faces. -	for face := 0; face < 6; face++ { -		if aClip, bClip, intersects := ClipToPaddedFace(fe.edge.V0, fe.edge.V1, face, cellPadding); intersects { -			fe.a = aClip -			fe.b = bClip -			allEdges[face] = append(allEdges[face], fe) -		} -	} -} - -// updateFaceEdges adds or removes the various edges from the index. -// An edge is added if shapes[id] is not nil, and removed otherwise. -func (s *ShapeIndex) updateFaceEdges(face int, faceEdges []faceEdge, t *tracker) { -	numEdges := len(faceEdges) -	if numEdges == 0 && len(t.shapeIDs) == 0 { -		return -	} - -	// Create the initial clippedEdge for each faceEdge. Additional clipped -	// edges are created when edges are split between child cells. We create -	// two arrays, one containing the edge data and another containing pointers -	// to those edges, so that during the recursion we only need to copy -	// pointers in order to propagate an edge to the correct child. -	clippedEdges := make([]*clippedEdge, numEdges) -	bound := r2.EmptyRect() -	for e := 0; e < numEdges; e++ { -		clipped := &clippedEdge{ -			faceEdge: &faceEdges[e], -		} -		clipped.bound = r2.RectFromPoints(faceEdges[e].a, faceEdges[e].b) -		clippedEdges[e] = clipped -		bound = bound.AddRect(clipped.bound) -	} - -	// Construct the initial face cell containing all the edges, and then update -	// all the edges in the index recursively. -	faceID := CellIDFromFace(face) -	pcell := PaddedCellFromCellID(faceID, cellPadding) - -	disjointFromIndex := s.isFirstUpdate() -	if numEdges > 0 { -		shrunkID := s.shrinkToFit(pcell, bound) -		if shrunkID != pcell.id { -			// All the edges are contained by some descendant of the face cell. We -			// can save a lot of work by starting directly with that cell, but if we -			// are in the interior of at least one shape then we need to create -			// index entries for the cells we are skipping over. -			s.skipCellRange(faceID.RangeMin(), shrunkID.RangeMin(), t, disjointFromIndex) -			pcell = PaddedCellFromCellID(shrunkID, cellPadding) -			s.updateEdges(pcell, clippedEdges, t, disjointFromIndex) -			s.skipCellRange(shrunkID.RangeMax().Next(), faceID.RangeMax().Next(), t, disjointFromIndex) -			return -		} -	} - -	// Otherwise (no edges, or no shrinking is possible), subdivide normally. -	s.updateEdges(pcell, clippedEdges, t, disjointFromIndex) -} - -// shrinkToFit shrinks the PaddedCell to fit within the given bounds. -func (s *ShapeIndex) shrinkToFit(pcell *PaddedCell, bound r2.Rect) CellID { -	shrunkID := pcell.ShrinkToFit(bound) - -	if !s.isFirstUpdate() && shrunkID != pcell.CellID() { -		// Don't shrink any smaller than the existing index cells, since we need -		// to combine the new edges with those cells. -		iter := s.Iterator() -		if iter.LocateCellID(shrunkID) == Indexed { -			shrunkID = iter.CellID() -		} -	} -	return shrunkID -} - -// skipCellRange skips over the cells in the given range, creating index cells if we are -// currently in the interior of at least one shape. -func (s *ShapeIndex) skipCellRange(begin, end CellID, t *tracker, disjointFromIndex bool) { -	// If we aren't in the interior of a shape, then skipping over cells is easy. -	if len(t.shapeIDs) == 0 { -		return -	} - -	// Otherwise generate the list of cell ids that we need to visit, and create -	// an index entry for each one. -	skipped := CellUnionFromRange(begin, end) -	for _, cell := range skipped { -		var clippedEdges []*clippedEdge -		s.updateEdges(PaddedCellFromCellID(cell, cellPadding), clippedEdges, t, disjointFromIndex) -	} -} - -// updateEdges adds or removes the given edges whose bounding boxes intersect a -// given cell. disjointFromIndex is an optimization hint indicating that cellMap -// does not contain any entries that overlap the given cell. -func (s *ShapeIndex) updateEdges(pcell *PaddedCell, edges []*clippedEdge, t *tracker, disjointFromIndex bool) { -	// This function is recursive with a maximum recursion depth of 30 (maxLevel). - -	// Incremental updates are handled as follows. All edges being added or -	// removed are combined together in edges, and all shapes with interiors -	// are tracked using tracker. We subdivide recursively as usual until we -	// encounter an existing index cell. At this point we absorb the index -	// cell as follows: -	// -	//   - Edges and shapes that are being removed are deleted from edges and -	//     tracker. -	//   - All remaining edges and shapes from the index cell are added to -	//     edges and tracker. -	//   - Continue subdividing recursively, creating new index cells as needed. -	//   - When the recursion gets back to the cell that was absorbed, we -	//     restore edges and tracker to their previous state. -	// -	// Note that the only reason that we include removed shapes in the recursive -	// subdivision process is so that we can find all of the index cells that -	// contain those shapes efficiently, without maintaining an explicit list of -	// index cells for each shape (which would be expensive in terms of memory). -	indexCellAbsorbed := false -	if !disjointFromIndex { -		// There may be existing index cells contained inside pcell. If we -		// encounter such a cell, we need to combine the edges being updated with -		// the existing cell contents by absorbing the cell. -		iter := s.Iterator() -		r := iter.LocateCellID(pcell.id) -		if r == Disjoint { -			disjointFromIndex = true -		} else if r == Indexed { -			// Absorb the index cell by transferring its contents to edges and -			// deleting it. We also start tracking the interior of any new shapes. -			s.absorbIndexCell(pcell, iter, edges, t) -			indexCellAbsorbed = true -			disjointFromIndex = true -		} else { -			// DCHECK_EQ(SUBDIVIDED, r) -		} -	} - -	// If there are existing index cells below us, then we need to keep -	// subdividing so that we can merge with those cells. Otherwise, -	// makeIndexCell checks if the number of edges is small enough, and creates -	// an index cell if possible (returning true when it does so). -	if !disjointFromIndex || !s.makeIndexCell(pcell, edges, t) { -		// TODO(roberts): If it turns out to have memory problems when there -		// are 10M+ edges in the index, look into pre-allocating space so we -		// are not always appending. -		childEdges := [2][2][]*clippedEdge{} // [i][j] - -		// Compute the middle of the padded cell, defined as the rectangle in -		// (u,v)-space that belongs to all four (padded) children. By comparing -		// against the four boundaries of middle we can determine which children -		// each edge needs to be propagated to. -		middle := pcell.Middle() - -		// Build up a vector edges to be passed to each child cell. The (i,j) -		// directions are left (i=0), right (i=1), lower (j=0), and upper (j=1). -		// Note that the vast majority of edges are propagated to a single child. -		for _, edge := range edges { -			if edge.bound.X.Hi <= middle.X.Lo { -				// Edge is entirely contained in the two left children. -				a, b := s.clipVAxis(edge, middle.Y) -				if a != nil { -					childEdges[0][0] = append(childEdges[0][0], a) -				} -				if b != nil { -					childEdges[0][1] = append(childEdges[0][1], b) -				} -			} else if edge.bound.X.Lo >= middle.X.Hi { -				// Edge is entirely contained in the two right children. -				a, b := s.clipVAxis(edge, middle.Y) -				if a != nil { -					childEdges[1][0] = append(childEdges[1][0], a) -				} -				if b != nil { -					childEdges[1][1] = append(childEdges[1][1], b) -				} -			} else if edge.bound.Y.Hi <= middle.Y.Lo { -				// Edge is entirely contained in the two lower children. -				if a := s.clipUBound(edge, 1, middle.X.Hi); a != nil { -					childEdges[0][0] = append(childEdges[0][0], a) -				} -				if b := s.clipUBound(edge, 0, middle.X.Lo); b != nil { -					childEdges[1][0] = append(childEdges[1][0], b) -				} -			} else if edge.bound.Y.Lo >= middle.Y.Hi { -				// Edge is entirely contained in the two upper children. -				if a := s.clipUBound(edge, 1, middle.X.Hi); a != nil { -					childEdges[0][1] = append(childEdges[0][1], a) -				} -				if b := s.clipUBound(edge, 0, middle.X.Lo); b != nil { -					childEdges[1][1] = append(childEdges[1][1], b) -				} -			} else { -				// The edge bound spans all four children. The edge -				// itself intersects either three or four padded children. -				left := s.clipUBound(edge, 1, middle.X.Hi) -				a, b := s.clipVAxis(left, middle.Y) -				if a != nil { -					childEdges[0][0] = append(childEdges[0][0], a) -				} -				if b != nil { -					childEdges[0][1] = append(childEdges[0][1], b) -				} -				right := s.clipUBound(edge, 0, middle.X.Lo) -				a, b = s.clipVAxis(right, middle.Y) -				if a != nil { -					childEdges[1][0] = append(childEdges[1][0], a) -				} -				if b != nil { -					childEdges[1][1] = append(childEdges[1][1], b) -				} -			} -		} - -		// Now recursively update the edges in each child. We call the children in -		// increasing order of CellID so that when the index is first constructed, -		// all insertions into cellMap are at the end (which is much faster). -		for pos := 0; pos < 4; pos++ { -			i, j := pcell.ChildIJ(pos) -			if len(childEdges[i][j]) > 0 || len(t.shapeIDs) > 0 { -				s.updateEdges(PaddedCellFromParentIJ(pcell, i, j), childEdges[i][j], -					t, disjointFromIndex) -			} -		} -	} - -	if indexCellAbsorbed { -		// Restore the state for any edges being removed that we are tracking. -		t.restoreStateBefore(s.pendingAdditionsPos) -	} -} - -// makeIndexCell builds an indexCell from the given padded cell and set of edges and adds -// it to the index. If the cell or edges are empty, no cell is added. -func (s *ShapeIndex) makeIndexCell(p *PaddedCell, edges []*clippedEdge, t *tracker) bool { -	// If the cell is empty, no index cell is needed. (In most cases this -	// situation is detected before we get to this point, but this can happen -	// when all shapes in a cell are removed.) -	if len(edges) == 0 && len(t.shapeIDs) == 0 { -		return true -	} - -	// Count the number of edges that have not reached their maximum level yet. -	// Return false if there are too many such edges. -	count := 0 -	for _, ce := range edges { -		if p.Level() < ce.faceEdge.maxLevel { -			count++ -		} - -		if count > s.maxEdgesPerCell { -			return false -		} -	} - -	// Possible optimization: Continue subdividing as long as exactly one child -	// of the padded cell intersects the given edges. This can be done by finding -	// the bounding box of all the edges and calling ShrinkToFit: -	// -	// cellID = p.ShrinkToFit(RectBound(edges)); -	// -	// Currently this is not beneficial; it slows down construction by 4-25% -	// (mainly computing the union of the bounding rectangles) and also slows -	// down queries (since more recursive clipping is required to get down to -	// the level of a spatial index cell). But it may be worth trying again -	// once containsCenter is computed and all algorithms are modified to -	// take advantage of it. - -	// We update the InteriorTracker as follows. For every Cell in the index -	// we construct two edges: one edge from entry vertex of the cell to its -	// center, and one from the cell center to its exit vertex. Here entry -	// and exit refer the CellID ordering, i.e. the order in which points -	// are encountered along the 2 space-filling curve. The exit vertex then -	// becomes the entry vertex for the next cell in the index, unless there are -	// one or more empty intervening cells, in which case the InteriorTracker -	// state is unchanged because the intervening cells have no edges. - -	// Shift the InteriorTracker focus point to the center of the current cell. -	if t.isActive && len(edges) != 0 { -		if !t.atCellID(p.id) { -			t.moveTo(p.EntryVertex()) -		} -		t.drawTo(p.Center()) -		s.testAllEdges(edges, t) -	} - -	// Allocate and fill a new index cell. To get the total number of shapes we -	// need to merge the shapes associated with the intersecting edges together -	// with the shapes that happen to contain the cell center. -	cshapeIDs := t.shapeIDs -	numShapes := s.countShapes(edges, cshapeIDs) -	cell := NewShapeIndexCell(numShapes) - -	// To fill the index cell we merge the two sources of shapes: edge shapes -	// (those that have at least one edge that intersects this cell), and -	// containing shapes (those that contain the cell center). We keep track -	// of the index of the next intersecting edge and the next containing shape -	// as we go along. Both sets of shape ids are already sorted. -	eNext := 0 -	cNextIdx := 0 -	for i := 0; i < numShapes; i++ { -		var clipped *clippedShape -		// advance to next value base + i -		eshapeID := int32(s.Len()) -		cshapeID := eshapeID // Sentinels - -		if eNext != len(edges) { -			eshapeID = edges[eNext].faceEdge.shapeID -		} -		if cNextIdx < len(cshapeIDs) { -			cshapeID = cshapeIDs[cNextIdx] -		} -		eBegin := eNext -		if cshapeID < eshapeID { -			// The entire cell is in the shape interior. -			clipped = newClippedShape(cshapeID, 0) -			clipped.containsCenter = true -			cNextIdx++ -		} else { -			// Count the number of edges for this shape and allocate space for them. -			for eNext < len(edges) && edges[eNext].faceEdge.shapeID == eshapeID { -				eNext++ -			} -			clipped = newClippedShape(eshapeID, eNext-eBegin) -			for e := eBegin; e < eNext; e++ { -				clipped.edges[e-eBegin] = edges[e].faceEdge.edgeID -			} -			if cshapeID == eshapeID { -				clipped.containsCenter = true -				cNextIdx++ -			} -		} -		cell.shapes[i] = clipped -	} - -	// Add this cell to the map. -	s.cellMap[p.id] = cell -	s.cells = append(s.cells, p.id) - -	// Shift the tracker focus point to the exit vertex of this cell. -	if t.isActive && len(edges) != 0 { -		t.drawTo(p.ExitVertex()) -		s.testAllEdges(edges, t) -		t.setNextCellID(p.id.Next()) -	} -	return true -} - -// updateBound updates the specified endpoint of the given clipped edge and returns the -// resulting clipped edge. -func (s *ShapeIndex) updateBound(edge *clippedEdge, uEnd int, u float64, vEnd int, v float64) *clippedEdge { -	c := &clippedEdge{faceEdge: edge.faceEdge} -	if uEnd == 0 { -		c.bound.X.Lo = u -		c.bound.X.Hi = edge.bound.X.Hi -	} else { -		c.bound.X.Lo = edge.bound.X.Lo -		c.bound.X.Hi = u -	} - -	if vEnd == 0 { -		c.bound.Y.Lo = v -		c.bound.Y.Hi = edge.bound.Y.Hi -	} else { -		c.bound.Y.Lo = edge.bound.Y.Lo -		c.bound.Y.Hi = v -	} - -	return c -} - -// clipUBound clips the given endpoint (lo=0, hi=1) of the u-axis so that -// it does not extend past the given value of the given edge. -func (s *ShapeIndex) clipUBound(edge *clippedEdge, uEnd int, u float64) *clippedEdge { -	// First check whether the edge actually requires any clipping. (Sometimes -	// this method is called when clipping is not necessary, e.g. when one edge -	// endpoint is in the overlap area between two padded child cells.) -	if uEnd == 0 { -		if edge.bound.X.Lo >= u { -			return edge -		} -	} else { -		if edge.bound.X.Hi <= u { -			return edge -		} -	} -	// We interpolate the new v-value from the endpoints of the original edge. -	// This has two advantages: (1) we don't need to store the clipped endpoints -	// at all, just their bounding box; and (2) it avoids the accumulation of -	// roundoff errors due to repeated interpolations. The result needs to be -	// clamped to ensure that it is in the appropriate range. -	e := edge.faceEdge -	v := edge.bound.Y.ClampPoint(interpolateFloat64(u, e.a.X, e.b.X, e.a.Y, e.b.Y)) - -	// Determine which endpoint of the v-axis bound to update. If the edge -	// slope is positive we update the same endpoint, otherwise we update the -	// opposite endpoint. -	var vEnd int -	positiveSlope := (e.a.X > e.b.X) == (e.a.Y > e.b.Y) -	if (uEnd == 1) == positiveSlope { -		vEnd = 1 -	} -	return s.updateBound(edge, uEnd, u, vEnd, v) -} - -// clipVBound clips the given endpoint (lo=0, hi=1) of the v-axis so that -// it does not extend past the given value of the given edge. -func (s *ShapeIndex) clipVBound(edge *clippedEdge, vEnd int, v float64) *clippedEdge { -	if vEnd == 0 { -		if edge.bound.Y.Lo >= v { -			return edge -		} -	} else { -		if edge.bound.Y.Hi <= v { -			return edge -		} -	} - -	// We interpolate the new v-value from the endpoints of the original edge. -	// This has two advantages: (1) we don't need to store the clipped endpoints -	// at all, just their bounding box; and (2) it avoids the accumulation of -	// roundoff errors due to repeated interpolations. The result needs to be -	// clamped to ensure that it is in the appropriate range. -	e := edge.faceEdge -	u := edge.bound.X.ClampPoint(interpolateFloat64(v, e.a.Y, e.b.Y, e.a.X, e.b.X)) - -	// Determine which endpoint of the v-axis bound to update. If the edge -	// slope is positive we update the same endpoint, otherwise we update the -	// opposite endpoint. -	var uEnd int -	positiveSlope := (e.a.X > e.b.X) == (e.a.Y > e.b.Y) -	if (vEnd == 1) == positiveSlope { -		uEnd = 1 -	} -	return s.updateBound(edge, uEnd, u, vEnd, v) -} - -// cliupVAxis returns the given edge clipped to within the boundaries of the middle -// interval along the v-axis, and adds the result to its children. -func (s *ShapeIndex) clipVAxis(edge *clippedEdge, middle r1.Interval) (a, b *clippedEdge) { -	if edge.bound.Y.Hi <= middle.Lo { -		// Edge is entirely contained in the lower child. -		return edge, nil -	} else if edge.bound.Y.Lo >= middle.Hi { -		// Edge is entirely contained in the upper child. -		return nil, edge -	} -	// The edge bound spans both children. -	return s.clipVBound(edge, 1, middle.Hi), s.clipVBound(edge, 0, middle.Lo) -} - -// absorbIndexCell absorbs an index cell by transferring its contents to edges -// and/or "tracker", and then delete this cell from the index. If edges includes -// any edges that are being removed, this method also updates their -// InteriorTracker state to correspond to the exit vertex of this cell. -func (s *ShapeIndex) absorbIndexCell(p *PaddedCell, iter *ShapeIndexIterator, edges []*clippedEdge, t *tracker) { -	// When we absorb a cell, we erase all the edges that are being removed. -	// However when we are finished with this cell, we want to restore the state -	// of those edges (since that is how we find all the index cells that need -	// to be updated).  The edges themselves are restored automatically when -	// UpdateEdges returns from its recursive call, but the InteriorTracker -	// state needs to be restored explicitly. -	// -	// Here we first update the InteriorTracker state for removed edges to -	// correspond to the exit vertex of this cell, and then save the -	// InteriorTracker state.  This state will be restored by UpdateEdges when -	// it is finished processing the contents of this cell. -	if t.isActive && len(edges) != 0 && s.isShapeBeingRemoved(edges[0].faceEdge.shapeID) { -		// We probably need to update the tracker. ("Probably" because -		// it's possible that all shapes being removed do not have interiors.) -		if !t.atCellID(p.id) { -			t.moveTo(p.EntryVertex()) -		} -		t.drawTo(p.ExitVertex()) -		t.setNextCellID(p.id.Next()) -		for _, edge := range edges { -			fe := edge.faceEdge -			if !s.isShapeBeingRemoved(fe.shapeID) { -				break // All shapes being removed come first. -			} -			if fe.hasInterior { -				t.testEdge(fe.shapeID, fe.edge) -			} -		} -	} - -	// Save the state of the edges being removed, so that it can be restored -	// when we are finished processing this cell and its children.  We don't -	// need to save the state of the edges being added because they aren't being -	// removed from "edges" and will therefore be updated normally as we visit -	// this cell and its children. -	t.saveAndClearStateBefore(s.pendingAdditionsPos) - -	// Create a faceEdge for each edge in this cell that isn't being removed. -	var faceEdges []*faceEdge -	trackerMoved := false - -	cell := iter.IndexCell() -	for _, clipped := range cell.shapes { -		shapeID := clipped.shapeID -		shape := s.Shape(shapeID) -		if shape == nil { -			continue // This shape is being removed. -		} - -		numClipped := clipped.numEdges() - -		// If this shape has an interior, start tracking whether we are inside the -		// shape. updateEdges wants to know whether the entry vertex of this -		// cell is inside the shape, but we only know whether the center of the -		// cell is inside the shape, so we need to test all the edges against the -		// line segment from the cell center to the entry vertex. -		edge := &faceEdge{ -			shapeID:     shapeID, -			hasInterior: shape.Dimension() == 2, -		} - -		if edge.hasInterior { -			t.addShape(shapeID, clipped.containsCenter) -			// There might not be any edges in this entire cell (i.e., it might be -			// in the interior of all shapes), so we delay updating the tracker -			// until we see the first edge. -			if !trackerMoved && numClipped > 0 { -				t.moveTo(p.Center()) -				t.drawTo(p.EntryVertex()) -				t.setNextCellID(p.id) -				trackerMoved = true -			} -		} -		for i := 0; i < numClipped; i++ { -			edgeID := clipped.edges[i] -			edge.edgeID = edgeID -			edge.edge = shape.Edge(edgeID) -			edge.maxLevel = maxLevelForEdge(edge.edge) -			if edge.hasInterior { -				t.testEdge(shapeID, edge.edge) -			} -			var ok bool -			edge.a, edge.b, ok = ClipToPaddedFace(edge.edge.V0, edge.edge.V1, p.id.Face(), cellPadding) -			if !ok { -				panic("invariant failure in ShapeIndex") -			} -			faceEdges = append(faceEdges, edge) -		} -	} -	// Now create a clippedEdge for each faceEdge, and put them in "new_edges". -	var newEdges []*clippedEdge -	for _, faceEdge := range faceEdges { -		clipped := &clippedEdge{ -			faceEdge: faceEdge, -			bound:    clippedEdgeBound(faceEdge.a, faceEdge.b, p.bound), -		} -		newEdges = append(newEdges, clipped) -	} - -	// Discard any edges from "edges" that are being removed, and append the -	// remainder to "newEdges"  (This keeps the edges sorted by shape id.) -	for i, clipped := range edges { -		if !s.isShapeBeingRemoved(clipped.faceEdge.shapeID) { -			newEdges = append(newEdges, edges[i:]...) -			break -		} -	} - -	// Update the edge list and delete this cell from the index. -	edges, newEdges = newEdges, edges -	delete(s.cellMap, p.id) -	// TODO(roberts): delete from s.Cells -} - -// testAllEdges calls the trackers testEdge on all edges from shapes that have interiors. -func (s *ShapeIndex) testAllEdges(edges []*clippedEdge, t *tracker) { -	for _, edge := range edges { -		if edge.faceEdge.hasInterior { -			t.testEdge(edge.faceEdge.shapeID, edge.faceEdge.edge) -		} -	} -} - -// countShapes reports the number of distinct shapes that are either associated with the -// given edges, or that are currently stored in the InteriorTracker. -func (s *ShapeIndex) countShapes(edges []*clippedEdge, shapeIDs []int32) int { -	count := 0 -	lastShapeID := int32(-1) - -	// next clipped shape id in the shapeIDs list. -	clippedNext := int32(0) -	// index of the current element in the shapeIDs list. -	shapeIDidx := 0 -	for _, edge := range edges { -		if edge.faceEdge.shapeID == lastShapeID { -			continue -		} - -		count++ -		lastShapeID = edge.faceEdge.shapeID - -		// Skip over any containing shapes up to and including this one, -		// updating count as appropriate. -		for ; shapeIDidx < len(shapeIDs); shapeIDidx++ { -			clippedNext = shapeIDs[shapeIDidx] -			if clippedNext > lastShapeID { -				break -			} -			if clippedNext < lastShapeID { -				count++ -			} -		} -	} - -	// Count any remaining containing shapes. -	count += len(shapeIDs) - shapeIDidx -	return count -} - -// maxLevelForEdge reports the maximum level for a given edge. -func maxLevelForEdge(edge Edge) int { -	// Compute the maximum cell size for which this edge is considered long. -	// The calculation does not need to be perfectly accurate, so we use Norm -	// rather than Angle for speed. -	cellSize := edge.V0.Sub(edge.V1.Vector).Norm() * cellSizeToLongEdgeRatio -	// Now return the first level encountered during subdivision where the -	// average cell size is at most cellSize. -	return AvgEdgeMetric.MinLevel(cellSize) -} - -// removeShapeInternal does the actual work for removing a given shape from the index. -func (s *ShapeIndex) removeShapeInternal(removed *removedShape, allEdges [][]faceEdge, t *tracker) { -	// TODO(roberts): finish the implementation of this. -} diff --git a/vendor/github.com/golang/geo/s2/shapeutil.go b/vendor/github.com/golang/geo/s2/shapeutil.go deleted file mode 100644 index 64245dfa1..000000000 --- a/vendor/github.com/golang/geo/s2/shapeutil.go +++ /dev/null @@ -1,228 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// CrossingType defines different ways of reporting edge intersections. -type CrossingType int - -const ( -	// CrossingTypeInterior reports intersections that occur at a point -	// interior to both edges (i.e., not at a vertex). -	CrossingTypeInterior CrossingType = iota - -	// CrossingTypeAll reports all intersections, even those where two edges -	// intersect only because they share a common vertex. -	CrossingTypeAll - -	// CrossingTypeNonAdjacent reports all intersections except for pairs of -	// the form (AB, BC) where both edges are from the same ShapeIndex. -	CrossingTypeNonAdjacent -) - -// rangeIterator is a wrapper over ShapeIndexIterator with extra methods -// that are useful for merging the contents of two or more ShapeIndexes. -type rangeIterator struct { -	it *ShapeIndexIterator -	// The min and max leaf cell ids covered by the current cell. If done() is -	// true, these methods return a value larger than any valid cell id. -	rangeMin CellID -	rangeMax CellID -} - -// newRangeIterator creates a new rangeIterator positioned at the first cell of the given index. -func newRangeIterator(index *ShapeIndex) *rangeIterator { -	r := &rangeIterator{ -		it: index.Iterator(), -	} -	r.refresh() -	return r -} - -func (r *rangeIterator) cellID() CellID             { return r.it.CellID() } -func (r *rangeIterator) indexCell() *ShapeIndexCell { return r.it.IndexCell() } -func (r *rangeIterator) next()                      { r.it.Next(); r.refresh() } -func (r *rangeIterator) done() bool                 { return r.it.Done() } - -// seekTo positions the iterator at the first cell that overlaps or follows -// the current range minimum of the target iterator, i.e. such that its -// rangeMax >= target.rangeMin. -func (r *rangeIterator) seekTo(target *rangeIterator) { -	r.it.seek(target.rangeMin) -	// If the current cell does not overlap target, it is possible that the -	// previous cell is the one we are looking for. This can only happen when -	// the previous cell contains target but has a smaller CellID. -	if r.it.Done() || r.it.CellID().RangeMin() > target.rangeMax { -		if r.it.Prev() && r.it.CellID().RangeMax() < target.cellID() { -			r.it.Next() -		} -	} -	r.refresh() -} - -// seekBeyond positions the iterator at the first cell that follows the current -// range minimum of the target iterator. i.e. the first cell such that its -// rangeMin > target.rangeMax. -func (r *rangeIterator) seekBeyond(target *rangeIterator) { -	r.it.seek(target.rangeMax.Next()) -	if !r.it.Done() && r.it.CellID().RangeMin() <= target.rangeMax { -		r.it.Next() -	} -	r.refresh() -} - -// refresh updates the iterators min and max values. -func (r *rangeIterator) refresh() { -	r.rangeMin = r.cellID().RangeMin() -	r.rangeMax = r.cellID().RangeMax() -} - -// referencePointForShape is a helper function for implementing various Shapes -// ReferencePoint functions. -// -// Given a shape consisting of closed polygonal loops, the interior of the -// shape is defined as the region to the left of all edges (which must be -// oriented consistently). This function then chooses an arbitrary point and -// returns true if that point is contained by the shape. -// -// Unlike Loop and Polygon, this method allows duplicate vertices and -// edges, which requires some extra care with definitions. The rule that we -// apply is that an edge and its reverse edge cancel each other: the result -// is the same as if that edge pair were not present. Therefore shapes that -// consist only of degenerate loop(s) are either empty or full; by convention, -// the shape is considered full if and only if it contains an empty loop (see -// laxPolygon for details). -// -// Determining whether a loop on the sphere contains a point is harder than -// the corresponding problem in 2D plane geometry. It cannot be implemented -// just by counting edge crossings because there is no such thing as a point -// at infinity that is guaranteed to be outside the loop. -// -// This function requires that the given Shape have an interior. -func referencePointForShape(shape Shape) ReferencePoint { -	if shape.NumEdges() == 0 { -		// A shape with no edges is defined to be full if and only if it -		// contains at least one chain. -		return OriginReferencePoint(shape.NumChains() > 0) -	} -	// Define a "matched" edge as one that can be paired with a corresponding -	// reversed edge. Define a vertex as "balanced" if all of its edges are -	// matched. In order to determine containment, we must find an unbalanced -	// vertex. Often every vertex is unbalanced, so we start by trying an -	// arbitrary vertex. -	edge := shape.Edge(0) - -	if ref, ok := referencePointAtVertex(shape, edge.V0); ok { -		return ref -	} - -	// That didn't work, so now we do some extra work to find an unbalanced -	// vertex (if any). Essentially we gather a list of edges and a list of -	// reversed edges, and then sort them. The first edge that appears in one -	// list but not the other is guaranteed to be unmatched. -	n := shape.NumEdges() -	var edges = make([]Edge, n) -	var revEdges = make([]Edge, n) -	for i := 0; i < n; i++ { -		edge := shape.Edge(i) -		edges[i] = edge -		revEdges[i] = Edge{V0: edge.V1, V1: edge.V0} -	} - -	sortEdges(edges) -	sortEdges(revEdges) - -	for i := 0; i < n; i++ { -		if edges[i].Cmp(revEdges[i]) == -1 { // edges[i] is unmatched -			if ref, ok := referencePointAtVertex(shape, edges[i].V0); ok { -				return ref -			} -		} -		if revEdges[i].Cmp(edges[i]) == -1 { // revEdges[i] is unmatched -			if ref, ok := referencePointAtVertex(shape, revEdges[i].V0); ok { -				return ref -			} -		} -	} - -	// All vertices are balanced, so this polygon is either empty or full except -	// for degeneracies. By convention it is defined to be full if it contains -	// any chain with no edges. -	for i := 0; i < shape.NumChains(); i++ { -		if shape.Chain(i).Length == 0 { -			return OriginReferencePoint(true) -		} -	} - -	return OriginReferencePoint(false) -} - -// referencePointAtVertex reports whether the given vertex is unbalanced, and -// returns a ReferencePoint indicating if the point is contained. -// Otherwise returns false. -func referencePointAtVertex(shape Shape, vTest Point) (ReferencePoint, bool) { -	var ref ReferencePoint - -	// Let P be an unbalanced vertex. Vertex P is defined to be inside the -	// region if the region contains a particular direction vector starting from -	// P, namely the direction p.Ortho(). This can be calculated using -	// ContainsVertexQuery. - -	containsQuery := NewContainsVertexQuery(vTest) -	n := shape.NumEdges() -	for e := 0; e < n; e++ { -		edge := shape.Edge(e) -		if edge.V0 == vTest { -			containsQuery.AddEdge(edge.V1, 1) -		} -		if edge.V1 == vTest { -			containsQuery.AddEdge(edge.V0, -1) -		} -	} -	containsSign := containsQuery.ContainsVertex() -	if containsSign == 0 { -		return ref, false // There are no unmatched edges incident to this vertex. -	} -	ref.Point = vTest -	ref.Contained = containsSign > 0 - -	return ref, true -} - -// containsBruteForce reports whether the given shape contains the given point. -// Most clients should not use this method, since its running time is linear in -// the number of shape edges. Instead clients should create a ShapeIndex and use -// ContainsPointQuery, since this strategy is much more efficient when many -// points need to be tested. -// -// Polygon boundaries are treated as being semi-open (see ContainsPointQuery -// and VertexModel for other options). -func containsBruteForce(shape Shape, point Point) bool { -	if shape.Dimension() != 2 { -		return false -	} - -	refPoint := shape.ReferencePoint() -	if refPoint.Point == point { -		return refPoint.Contained -	} - -	crosser := NewEdgeCrosser(refPoint.Point, point) -	inside := refPoint.Contained -	for e := 0; e < shape.NumEdges(); e++ { -		edge := shape.Edge(e) -		inside = inside != crosser.EdgeOrVertexCrossing(edge.V0, edge.V1) -	} -	return inside -} diff --git a/vendor/github.com/golang/geo/s2/shapeutil_edge_iterator.go b/vendor/github.com/golang/geo/s2/shapeutil_edge_iterator.go deleted file mode 100644 index 2a0d82361..000000000 --- a/vendor/github.com/golang/geo/s2/shapeutil_edge_iterator.go +++ /dev/null @@ -1,72 +0,0 @@ -// Copyright 2020 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// EdgeIterator is an iterator that advances through all edges in an ShapeIndex. -// This is different to the ShapeIndexIterator, which advances through the cells in the -// ShapeIndex. -type EdgeIterator struct { -	index    *ShapeIndex -	shapeID  int32 -	numEdges int32 -	edgeID   int32 -} - -// NewEdgeIterator creates a new edge iterator for the given index. -func NewEdgeIterator(index *ShapeIndex) *EdgeIterator { -	e := &EdgeIterator{ -		index:   index, -		shapeID: -1, -		edgeID:  -1, -	} - -	e.Next() -	return e -} - -// ShapeID returns the current shape ID. -func (e *EdgeIterator) ShapeID() int32 { return e.shapeID } - -// EdgeID returns the current edge ID. -func (e *EdgeIterator) EdgeID() int32 { return e.edgeID } - -// ShapeEdgeID returns the current (shapeID, edgeID). -func (e *EdgeIterator) ShapeEdgeID() ShapeEdgeID { return ShapeEdgeID{e.shapeID, e.edgeID} } - -// Edge returns the current edge. -func (e *EdgeIterator) Edge() Edge { -	return e.index.Shape(e.shapeID).Edge(int(e.edgeID)) -} - -// Done reports if the iterator is positioned at or after the last index edge. -func (e *EdgeIterator) Done() bool { return e.shapeID >= int32(len(e.index.shapes)) } - -// Next positions the iterator at the next index edge. -func (e *EdgeIterator) Next() { -	e.edgeID++ -	for ; e.edgeID >= e.numEdges; e.edgeID++ { -		e.shapeID++ -		if e.shapeID >= int32(len(e.index.shapes)) { -			break -		} -		shape := e.index.Shape(e.shapeID) -		if shape == nil { -			e.numEdges = 0 -		} else { -			e.numEdges = int32(shape.NumEdges()) -		} -		e.edgeID = -1 -	} -} diff --git a/vendor/github.com/golang/geo/s2/stuv.go b/vendor/github.com/golang/geo/s2/stuv.go deleted file mode 100644 index 7663bb398..000000000 --- a/vendor/github.com/golang/geo/s2/stuv.go +++ /dev/null @@ -1,427 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( -	"math" - -	"github.com/golang/geo/r3" -) - -// -// This file contains documentation of the various coordinate systems used -// throughout the library. Most importantly, S2 defines a framework for -// decomposing the unit sphere into a hierarchy of "cells". Each cell is a -// quadrilateral bounded by four geodesics. The top level of the hierarchy is -// obtained by projecting the six faces of a cube onto the unit sphere, and -// lower levels are obtained by subdividing each cell into four children -// recursively. Cells are numbered such that sequentially increasing cells -// follow a continuous space-filling curve over the entire sphere. The -// transformation is designed to make the cells at each level fairly uniform -// in size. -// -////////////////////////// S2 Cell Decomposition ///////////////////////// -// -// The following methods define the cube-to-sphere projection used by -// the Cell decomposition. -// -// In the process of converting a latitude-longitude pair to a 64-bit cell -// id, the following coordinate systems are used: -// -//  (id) -//    An CellID is a 64-bit encoding of a face and a Hilbert curve position -//    on that face. The Hilbert curve position implicitly encodes both the -//    position of a cell and its subdivision level (see s2cellid.go). -// -//  (face, i, j) -//    Leaf-cell coordinates. "i" and "j" are integers in the range -//    [0,(2**30)-1] that identify a particular leaf cell on the given face. -//    The (i, j) coordinate system is right-handed on each face, and the -//    faces are oriented such that Hilbert curves connect continuously from -//    one face to the next. -// -//  (face, s, t) -//    Cell-space coordinates. "s" and "t" are real numbers in the range -//    [0,1] that identify a point on the given face. For example, the point -//    (s, t) = (0.5, 0.5) corresponds to the center of the top-level face -//    cell. This point is also a vertex of exactly four cells at each -//    subdivision level greater than zero. -// -//  (face, si, ti) -//    Discrete cell-space coordinates. These are obtained by multiplying -//    "s" and "t" by 2**31 and rounding to the nearest unsigned integer. -//    Discrete coordinates lie in the range [0,2**31]. This coordinate -//    system can represent the edge and center positions of all cells with -//    no loss of precision (including non-leaf cells). In binary, each -//    coordinate of a level-k cell center ends with a 1 followed by -//    (30 - k) 0s. The coordinates of its edges end with (at least) -//    (31 - k) 0s. -// -//  (face, u, v) -//    Cube-space coordinates in the range [-1,1]. To make the cells at each -//    level more uniform in size after they are projected onto the sphere, -//    we apply a nonlinear transformation of the form u=f(s), v=f(t). -//    The (u, v) coordinates after this transformation give the actual -//    coordinates on the cube face (modulo some 90 degree rotations) before -//    it is projected onto the unit sphere. -// -//  (face, u, v, w) -//    Per-face coordinate frame. This is an extension of the (face, u, v) -//    cube-space coordinates that adds a third axis "w" in the direction of -//    the face normal. It is always a right-handed 3D coordinate system. -//    Cube-space coordinates can be converted to this frame by setting w=1, -//    while (u,v,w) coordinates can be projected onto the cube face by -//    dividing by w, i.e. (face, u/w, v/w). -// -//  (x, y, z) -//    Direction vector (Point). Direction vectors are not necessarily unit -//    length, and are often chosen to be points on the biunit cube -//    [-1,+1]x[-1,+1]x[-1,+1]. They can be be normalized to obtain the -//    corresponding point on the unit sphere. -// -//  (lat, lng) -//    Latitude and longitude (LatLng). Latitudes must be between -90 and -//    90 degrees inclusive, and longitudes must be between -180 and 180 -//    degrees inclusive. -// -// Note that the (i, j), (s, t), (si, ti), and (u, v) coordinate systems are -// right-handed on all six faces. -// -// -// There are a number of different projections from cell-space (s,t) to -// cube-space (u,v): linear, quadratic, and tangent. They have the following -// tradeoffs: -// -//   Linear - This is the fastest transformation, but also produces the least -//   uniform cell sizes. Cell areas vary by a factor of about 5.2, with the -//   largest cells at the center of each face and the smallest cells in -//   the corners. -// -//   Tangent - Transforming the coordinates via Atan makes the cell sizes -//   more uniform. The areas vary by a maximum ratio of 1.4 as opposed to a -//   maximum ratio of 5.2. However, each call to Atan is about as expensive -//   as all of the other calculations combined when converting from points to -//   cell ids, i.e. it reduces performance by a factor of 3. -// -//   Quadratic - This is an approximation of the tangent projection that -//   is much faster and produces cells that are almost as uniform in size. -//   It is about 3 times faster than the tangent projection for converting -//   cell ids to points or vice versa. Cell areas vary by a maximum ratio of -//   about 2.1. -// -// Here is a table comparing the cell uniformity using each projection. Area -// Ratio is the maximum ratio over all subdivision levels of the largest cell -// area to the smallest cell area at that level, Edge Ratio is the maximum -// ratio of the longest edge of any cell to the shortest edge of any cell at -// the same level, and Diag Ratio is the ratio of the longest diagonal of -// any cell to the shortest diagonal of any cell at the same level. -// -//               Area    Edge    Diag -//              Ratio   Ratio   Ratio -// ----------------------------------- -// Linear:      5.200   2.117   2.959 -// Tangent:     1.414   1.414   1.704 -// Quadratic:   2.082   1.802   1.932 -// -// The worst-case cell aspect ratios are about the same with all three -// projections. The maximum ratio of the longest edge to the shortest edge -// within the same cell is about 1.4 and the maximum ratio of the diagonals -// within the same cell is about 1.7. -// -// For Go we have chosen to use only the Quadratic approach. Other language -// implementations may offer other choices. - -const ( -	// maxSiTi is the maximum value of an si- or ti-coordinate. -	// It is one shift more than maxSize. The range of valid (si,ti) -	// values is [0..maxSiTi]. -	maxSiTi = maxSize << 1 -) - -// siTiToST converts an si- or ti-value to the corresponding s- or t-value. -// Value is capped at 1.0 because there is no DCHECK in Go. -func siTiToST(si uint32) float64 { -	if si > maxSiTi { -		return 1.0 -	} -	return float64(si) / float64(maxSiTi) -} - -// stToSiTi converts the s- or t-value to the nearest si- or ti-coordinate. -// The result may be outside the range of valid (si,ti)-values. Value of -// 0.49999999999999994 (math.NextAfter(0.5, -1)), will be incorrectly rounded up. -func stToSiTi(s float64) uint32 { -	if s < 0 { -		return uint32(s*maxSiTi - 0.5) -	} -	return uint32(s*maxSiTi + 0.5) -} - -// stToUV converts an s or t value to the corresponding u or v value. -// This is a non-linear transformation from [-1,1] to [-1,1] that -// attempts to make the cell sizes more uniform. -// This uses what the C++ version calls 'the quadratic transform'. -func stToUV(s float64) float64 { -	if s >= 0.5 { -		return (1 / 3.) * (4*s*s - 1) -	} -	return (1 / 3.) * (1 - 4*(1-s)*(1-s)) -} - -// uvToST is the inverse of the stToUV transformation. Note that it -// is not always true that uvToST(stToUV(x)) == x due to numerical -// errors. -func uvToST(u float64) float64 { -	if u >= 0 { -		return 0.5 * math.Sqrt(1+3*u) -	} -	return 1 - 0.5*math.Sqrt(1-3*u) -} - -// face returns face ID from 0 to 5 containing the r. For points on the -// boundary between faces, the result is arbitrary but deterministic. -func face(r r3.Vector) int { -	f := r.LargestComponent() -	switch { -	case f == r3.XAxis && r.X < 0: -		f += 3 -	case f == r3.YAxis && r.Y < 0: -		f += 3 -	case f == r3.ZAxis && r.Z < 0: -		f += 3 -	} -	return int(f) -} - -// validFaceXYZToUV given a valid face for the given point r (meaning that -// dot product of r with the face normal is positive), returns -// the corresponding u and v values, which may lie outside the range [-1,1]. -func validFaceXYZToUV(face int, r r3.Vector) (float64, float64) { -	switch face { -	case 0: -		return r.Y / r.X, r.Z / r.X -	case 1: -		return -r.X / r.Y, r.Z / r.Y -	case 2: -		return -r.X / r.Z, -r.Y / r.Z -	case 3: -		return r.Z / r.X, r.Y / r.X -	case 4: -		return r.Z / r.Y, -r.X / r.Y -	} -	return -r.Y / r.Z, -r.X / r.Z -} - -// xyzToFaceUV converts a direction vector (not necessarily unit length) to -// (face, u, v) coordinates. -func xyzToFaceUV(r r3.Vector) (f int, u, v float64) { -	f = face(r) -	u, v = validFaceXYZToUV(f, r) -	return f, u, v -} - -// faceUVToXYZ turns face and UV coordinates into an unnormalized 3 vector. -func faceUVToXYZ(face int, u, v float64) r3.Vector { -	switch face { -	case 0: -		return r3.Vector{1, u, v} -	case 1: -		return r3.Vector{-u, 1, v} -	case 2: -		return r3.Vector{-u, -v, 1} -	case 3: -		return r3.Vector{-1, -v, -u} -	case 4: -		return r3.Vector{v, -1, -u} -	default: -		return r3.Vector{v, u, -1} -	} -} - -// faceXYZToUV returns the u and v values (which may lie outside the range -// [-1, 1]) if the dot product of the point p with the given face normal is positive. -func faceXYZToUV(face int, p Point) (u, v float64, ok bool) { -	switch face { -	case 0: -		if p.X <= 0 { -			return 0, 0, false -		} -	case 1: -		if p.Y <= 0 { -			return 0, 0, false -		} -	case 2: -		if p.Z <= 0 { -			return 0, 0, false -		} -	case 3: -		if p.X >= 0 { -			return 0, 0, false -		} -	case 4: -		if p.Y >= 0 { -			return 0, 0, false -		} -	default: -		if p.Z >= 0 { -			return 0, 0, false -		} -	} - -	u, v = validFaceXYZToUV(face, p.Vector) -	return u, v, true -} - -// faceXYZtoUVW transforms the given point P to the (u,v,w) coordinate frame of the given -// face where the w-axis represents the face normal. -func faceXYZtoUVW(face int, p Point) Point { -	// The result coordinates are simply the dot products of P with the (u,v,w) -	// axes for the given face (see faceUVWAxes). -	switch face { -	case 0: -		return Point{r3.Vector{p.Y, p.Z, p.X}} -	case 1: -		return Point{r3.Vector{-p.X, p.Z, p.Y}} -	case 2: -		return Point{r3.Vector{-p.X, -p.Y, p.Z}} -	case 3: -		return Point{r3.Vector{-p.Z, -p.Y, -p.X}} -	case 4: -		return Point{r3.Vector{-p.Z, p.X, -p.Y}} -	default: -		return Point{r3.Vector{p.Y, p.X, -p.Z}} -	} -} - -// faceSiTiToXYZ transforms the (si, ti) coordinates to a (not necessarily -// unit length) Point on the given face. -func faceSiTiToXYZ(face int, si, ti uint32) Point { -	return Point{faceUVToXYZ(face, stToUV(siTiToST(si)), stToUV(siTiToST(ti)))} -} - -// xyzToFaceSiTi transforms the (not necessarily unit length) Point to -// (face, si, ti) coordinates and the level the Point is at. -func xyzToFaceSiTi(p Point) (face int, si, ti uint32, level int) { -	face, u, v := xyzToFaceUV(p.Vector) -	si = stToSiTi(uvToST(u)) -	ti = stToSiTi(uvToST(v)) - -	// If the levels corresponding to si,ti are not equal, then p is not a cell -	// center. The si,ti values of 0 and maxSiTi need to be handled specially -	// because they do not correspond to cell centers at any valid level; they -	// are mapped to level -1 by the code at the end. -	level = maxLevel - findLSBSetNonZero64(uint64(si|maxSiTi)) -	if level < 0 || level != maxLevel-findLSBSetNonZero64(uint64(ti|maxSiTi)) { -		return face, si, ti, -1 -	} - -	// In infinite precision, this test could be changed to ST == SiTi. However, -	// due to rounding errors, uvToST(xyzToFaceUV(faceUVToXYZ(stToUV(...)))) is -	// not idempotent. On the other hand, the center is computed exactly the same -	// way p was originally computed (if it is indeed the center of a Cell); -	// the comparison can be exact. -	if p.Vector == faceSiTiToXYZ(face, si, ti).Normalize() { -		return face, si, ti, level -	} - -	return face, si, ti, -1 -} - -// uNorm returns the right-handed normal (not necessarily unit length) for an -// edge in the direction of the positive v-axis at the given u-value on -// the given face.  (This vector is perpendicular to the plane through -// the sphere origin that contains the given edge.) -func uNorm(face int, u float64) r3.Vector { -	switch face { -	case 0: -		return r3.Vector{u, -1, 0} -	case 1: -		return r3.Vector{1, u, 0} -	case 2: -		return r3.Vector{1, 0, u} -	case 3: -		return r3.Vector{-u, 0, 1} -	case 4: -		return r3.Vector{0, -u, 1} -	default: -		return r3.Vector{0, -1, -u} -	} -} - -// vNorm returns the right-handed normal (not necessarily unit length) for an -// edge in the direction of the positive u-axis at the given v-value on -// the given face. -func vNorm(face int, v float64) r3.Vector { -	switch face { -	case 0: -		return r3.Vector{-v, 0, 1} -	case 1: -		return r3.Vector{0, -v, 1} -	case 2: -		return r3.Vector{0, -1, -v} -	case 3: -		return r3.Vector{v, -1, 0} -	case 4: -		return r3.Vector{1, v, 0} -	default: -		return r3.Vector{1, 0, v} -	} -} - -// faceUVWAxes are the U, V, and W axes for each face. -var faceUVWAxes = [6][3]Point{ -	{Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{1, 0, 0}}}, -	{Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{0, 1, 0}}}, -	{Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{0, 0, 1}}}, -	{Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{-1, 0, 0}}}, -	{Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, -1, 0}}}, -	{Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, 0, -1}}}, -} - -// faceUVWFaces are the precomputed neighbors of each face. -var faceUVWFaces = [6][3][2]int{ -	{{4, 1}, {5, 2}, {3, 0}}, -	{{0, 3}, {5, 2}, {4, 1}}, -	{{0, 3}, {1, 4}, {5, 2}}, -	{{2, 5}, {1, 4}, {0, 3}}, -	{{2, 5}, {3, 0}, {1, 4}}, -	{{4, 1}, {3, 0}, {2, 5}}, -} - -// uvwAxis returns the given axis of the given face. -func uvwAxis(face, axis int) Point { -	return faceUVWAxes[face][axis] -} - -// uvwFaces returns the face in the (u,v,w) coordinate system on the given axis -// in the given direction. -func uvwFace(face, axis, direction int) int { -	return faceUVWFaces[face][axis][direction] -} - -// uAxis returns the u-axis for the given face. -func uAxis(face int) Point { -	return uvwAxis(face, 0) -} - -// vAxis returns the v-axis for the given face. -func vAxis(face int) Point { -	return uvwAxis(face, 1) -} - -// Return the unit-length normal for the given face. -func unitNorm(face int) Point { -	return uvwAxis(face, 2) -} diff --git a/vendor/github.com/golang/geo/s2/util.go b/vendor/github.com/golang/geo/s2/util.go deleted file mode 100644 index 7cab746d8..000000000 --- a/vendor/github.com/golang/geo/s2/util.go +++ /dev/null @@ -1,125 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import "github.com/golang/geo/s1" - -// roundAngle returns the value rounded to nearest as an int32. -// This does not match C++ exactly for the case of x.5. -func roundAngle(val s1.Angle) int32 { -	if val < 0 { -		return int32(val - 0.5) -	} -	return int32(val + 0.5) -} - -// minAngle returns the smallest of the given values. -func minAngle(x s1.Angle, others ...s1.Angle) s1.Angle { -	min := x -	for _, y := range others { -		if y < min { -			min = y -		} -	} -	return min -} - -// maxAngle returns the largest of the given values. -func maxAngle(x s1.Angle, others ...s1.Angle) s1.Angle { -	max := x -	for _, y := range others { -		if y > max { -			max = y -		} -	} -	return max -} - -// minChordAngle returns the smallest of the given values. -func minChordAngle(x s1.ChordAngle, others ...s1.ChordAngle) s1.ChordAngle { -	min := x -	for _, y := range others { -		if y < min { -			min = y -		} -	} -	return min -} - -// maxChordAngle returns the largest of the given values. -func maxChordAngle(x s1.ChordAngle, others ...s1.ChordAngle) s1.ChordAngle { -	max := x -	for _, y := range others { -		if y > max { -			max = y -		} -	} -	return max -} - -// minFloat64 returns the smallest of the given values. -func minFloat64(x float64, others ...float64) float64 { -	min := x -	for _, y := range others { -		if y < min { -			min = y -		} -	} -	return min -} - -// maxFloat64 returns the largest of the given values. -func maxFloat64(x float64, others ...float64) float64 { -	max := x -	for _, y := range others { -		if y > max { -			max = y -		} -	} -	return max -} - -// minInt returns the smallest of the given values. -func minInt(x int, others ...int) int { -	min := x -	for _, y := range others { -		if y < min { -			min = y -		} -	} -	return min -} - -// maxInt returns the largest of the given values. -func maxInt(x int, others ...int) int { -	max := x -	for _, y := range others { -		if y > max { -			max = y -		} -	} -	return max -} - -// clampInt returns the number closest to x within the range min..max. -func clampInt(x, min, max int) int { -	if x < min { -		return min -	} -	if x > max { -		return max -	} -	return x -} diff --git a/vendor/github.com/golang/geo/s2/wedge_relations.go b/vendor/github.com/golang/geo/s2/wedge_relations.go deleted file mode 100644 index d637bb68c..000000000 --- a/vendor/github.com/golang/geo/s2/wedge_relations.go +++ /dev/null @@ -1,97 +0,0 @@ -// Copyright 2017 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -//     http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -// WedgeRel enumerates the possible relation between two wedges A and B. -type WedgeRel int - -// Define the different possible relationships between two wedges. -// -// Given an edge chain (x0, x1, x2), the wedge at x1 is the region to the -// left of the edges. More precisely, it is the set of all rays from x1x0 -// (inclusive) to x1x2 (exclusive) in the *clockwise* direction. -const ( -	WedgeEquals              WedgeRel = iota // A and B are equal. -	WedgeProperlyContains                    // A is a strict superset of B. -	WedgeIsProperlyContained                 // A is a strict subset of B. -	WedgeProperlyOverlaps                    // A-B, B-A, and A intersect B are non-empty. -	WedgeIsDisjoint                          // A and B are disjoint. -) - -// WedgeRelation reports the relation between two non-empty wedges -// A=(a0, ab1, a2) and B=(b0, ab1, b2). -func WedgeRelation(a0, ab1, a2, b0, b2 Point) WedgeRel { -	// There are 6 possible edge orderings at a shared vertex (all -	// of these orderings are circular, i.e. abcd == bcda): -	// -	//  (1) a2 b2 b0 a0: A contains B -	//  (2) a2 a0 b0 b2: B contains A -	//  (3) a2 a0 b2 b0: A and B are disjoint -	//  (4) a2 b0 a0 b2: A and B intersect in one wedge -	//  (5) a2 b2 a0 b0: A and B intersect in one wedge -	//  (6) a2 b0 b2 a0: A and B intersect in two wedges -	// -	// We do not distinguish between 4, 5, and 6. -	// We pay extra attention when some of the edges overlap.  When edges -	// overlap, several of these orderings can be satisfied, and we take -	// the most specific. -	if a0 == b0 && a2 == b2 { -		return WedgeEquals -	} - -	// Cases 1, 2, 5, and 6 -	if OrderedCCW(a0, a2, b2, ab1) { -		// The cases with this vertex ordering are 1, 5, and 6, -		if OrderedCCW(b2, b0, a0, ab1) { -			return WedgeProperlyContains -		} - -		// We are in case 5 or 6, or case 2 if a2 == b2. -		if a2 == b2 { -			return WedgeIsProperlyContained -		} -		return WedgeProperlyOverlaps - -	} -	// We are in case 2, 3, or 4. -	if OrderedCCW(a0, b0, b2, ab1) { -		return WedgeIsProperlyContained -	} - -	if OrderedCCW(a0, b0, a2, ab1) { -		return WedgeIsDisjoint -	} -	return WedgeProperlyOverlaps -} - -// WedgeContains reports whether non-empty wedge A=(a0, ab1, a2) contains B=(b0, ab1, b2). -// Equivalent to WedgeRelation == WedgeProperlyContains || WedgeEquals. -func WedgeContains(a0, ab1, a2, b0, b2 Point) bool { -	// For A to contain B (where each loop interior is defined to be its left -	// side), the CCW edge order around ab1 must be a2 b2 b0 a0.  We split -	// this test into two parts that test three vertices each. -	return OrderedCCW(a2, b2, b0, ab1) && OrderedCCW(b0, a0, a2, ab1) -} - -// WedgeIntersects reports whether non-empty wedge A=(a0, ab1, a2) intersects B=(b0, ab1, b2). -// Equivalent but faster than WedgeRelation != WedgeIsDisjoint -func WedgeIntersects(a0, ab1, a2, b0, b2 Point) bool { -	// For A not to intersect B (where each loop interior is defined to be -	// its left side), the CCW edge order around ab1 must be a0 b2 b0 a2. -	// Note that it's important to write these conditions as negatives -	// (!OrderedCCW(a,b,c,o) rather than Ordered(c,b,a,o)) to get correct -	// results when two vertices are the same. -	return !(OrderedCCW(a0, b2, b0, ab1) && OrderedCCW(b0, a2, a0, ab1)) -}  | 
