summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/matrix3x3.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/matrix3x3.go')
-rw-r--r--vendor/github.com/golang/geo/s2/matrix3x3.go127
1 files changed, 0 insertions, 127 deletions
diff --git a/vendor/github.com/golang/geo/s2/matrix3x3.go b/vendor/github.com/golang/geo/s2/matrix3x3.go
deleted file mode 100644
index 01696fe83..000000000
--- a/vendor/github.com/golang/geo/s2/matrix3x3.go
+++ /dev/null
@@ -1,127 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
-
- "github.com/golang/geo/r3"
-)
-
-// matrix3x3 represents a traditional 3x3 matrix of floating point values.
-// This is not a full fledged matrix. It only contains the pieces needed
-// to satisfy the computations done within the s2 package.
-type matrix3x3 [3][3]float64
-
-// col returns the given column as a Point.
-func (m *matrix3x3) col(col int) Point {
- return Point{r3.Vector{m[0][col], m[1][col], m[2][col]}}
-}
-
-// row returns the given row as a Point.
-func (m *matrix3x3) row(row int) Point {
- return Point{r3.Vector{m[row][0], m[row][1], m[row][2]}}
-}
-
-// setCol sets the specified column to the value in the given Point.
-func (m *matrix3x3) setCol(col int, p Point) *matrix3x3 {
- m[0][col] = p.X
- m[1][col] = p.Y
- m[2][col] = p.Z
-
- return m
-}
-
-// setRow sets the specified row to the value in the given Point.
-func (m *matrix3x3) setRow(row int, p Point) *matrix3x3 {
- m[row][0] = p.X
- m[row][1] = p.Y
- m[row][2] = p.Z
-
- return m
-}
-
-// scale multiplies the matrix by the given value.
-func (m *matrix3x3) scale(f float64) *matrix3x3 {
- return &matrix3x3{
- [3]float64{f * m[0][0], f * m[0][1], f * m[0][2]},
- [3]float64{f * m[1][0], f * m[1][1], f * m[1][2]},
- [3]float64{f * m[2][0], f * m[2][1], f * m[2][2]},
- }
-}
-
-// mul returns the multiplication of m by the Point p and converts the
-// resulting 1x3 matrix into a Point.
-func (m *matrix3x3) mul(p Point) Point {
- return Point{r3.Vector{
- m[0][0]*p.X + m[0][1]*p.Y + m[0][2]*p.Z,
- m[1][0]*p.X + m[1][1]*p.Y + m[1][2]*p.Z,
- m[2][0]*p.X + m[2][1]*p.Y + m[2][2]*p.Z,
- }}
-}
-
-// det returns the determinant of this matrix.
-func (m *matrix3x3) det() float64 {
- // | a b c |
- // det | d e f | = aei + bfg + cdh - ceg - bdi - afh
- // | g h i |
- return m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1] -
- m[0][2]*m[1][1]*m[2][0] - m[0][1]*m[1][0]*m[2][2] - m[0][0]*m[1][2]*m[2][1]
-}
-
-// transpose reflects the matrix along its diagonal and returns the result.
-func (m *matrix3x3) transpose() *matrix3x3 {
- m[0][1], m[1][0] = m[1][0], m[0][1]
- m[0][2], m[2][0] = m[2][0], m[0][2]
- m[1][2], m[2][1] = m[2][1], m[1][2]
-
- return m
-}
-
-// String formats the matrix into an easier to read layout.
-func (m *matrix3x3) String() string {
- return fmt.Sprintf("[ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ]",
- m[0][0], m[0][1], m[0][2],
- m[1][0], m[1][1], m[1][2],
- m[2][0], m[2][1], m[2][2],
- )
-}
-
-// getFrame returns the orthonormal frame for the given point on the unit sphere.
-func getFrame(p Point) matrix3x3 {
- // Given the point p on the unit sphere, extend this into a right-handed
- // coordinate frame of unit-length column vectors m = (x,y,z). Note that
- // the vectors (x,y) are an orthonormal frame for the tangent space at point p,
- // while p itself is an orthonormal frame for the normal space at p.
- m := matrix3x3{}
- m.setCol(2, p)
- m.setCol(1, Point{p.Ortho()})
- m.setCol(0, Point{m.col(1).Cross(p.Vector)})
- return m
-}
-
-// toFrame returns the coordinates of the given point with respect to its orthonormal basis m.
-// The resulting point q satisfies the identity (m * q == p).
-func toFrame(m matrix3x3, p Point) Point {
- // The inverse of an orthonormal matrix is its transpose.
- return m.transpose().mul(p)
-}
-
-// fromFrame returns the coordinates of the given point in standard axis-aligned basis
-// from its orthonormal basis m.
-// The resulting point p satisfies the identity (p == m * q).
-func fromFrame(m matrix3x3, q Point) Point {
- return m.mul(q)
-}