summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/polygon.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/polygon.go')
-rw-r--r--vendor/github.com/golang/geo/s2/polygon.go1213
1 files changed, 0 insertions, 1213 deletions
diff --git a/vendor/github.com/golang/geo/s2/polygon.go b/vendor/github.com/golang/geo/s2/polygon.go
deleted file mode 100644
index c691ec083..000000000
--- a/vendor/github.com/golang/geo/s2/polygon.go
+++ /dev/null
@@ -1,1213 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-)
-
-// Polygon represents a sequence of zero or more loops; recall that the
-// interior of a loop is defined to be its left-hand side (see Loop).
-//
-// When the polygon is initialized, the given loops are automatically converted
-// into a canonical form consisting of "shells" and "holes". Shells and holes
-// are both oriented CCW, and are nested hierarchically. The loops are
-// reordered to correspond to a pre-order traversal of the nesting hierarchy.
-//
-// Polygons may represent any region of the sphere with a polygonal boundary,
-// including the entire sphere (known as the "full" polygon). The full polygon
-// consists of a single full loop (see Loop), whereas the empty polygon has no
-// loops at all.
-//
-// Use FullPolygon() to construct a full polygon. The zero value of Polygon is
-// treated as the empty polygon.
-//
-// Polygons have the following restrictions:
-//
-// - Loops may not cross, i.e. the boundary of a loop may not intersect
-// both the interior and exterior of any other loop.
-//
-// - Loops may not share edges, i.e. if a loop contains an edge AB, then
-// no other loop may contain AB or BA.
-//
-// - Loops may share vertices, however no vertex may appear twice in a
-// single loop (see Loop).
-//
-// - No loop may be empty. The full loop may appear only in the full polygon.
-type Polygon struct {
- loops []*Loop
-
- // index is a spatial index of all the polygon loops.
- index *ShapeIndex
-
- // hasHoles tracks if this polygon has at least one hole.
- hasHoles bool
-
- // numVertices keeps the running total of all of the vertices of the contained loops.
- numVertices int
-
- // numEdges tracks the total number of edges in all the loops in this polygon.
- numEdges int
-
- // bound is a conservative bound on all points contained by this loop.
- // If l.ContainsPoint(P), then l.bound.ContainsPoint(P).
- bound Rect
-
- // Since bound is not exact, it is possible that a loop A contains
- // another loop B whose bounds are slightly larger. subregionBound
- // has been expanded sufficiently to account for this error, i.e.
- // if A.Contains(B), then A.subregionBound.Contains(B.bound).
- subregionBound Rect
-
- // A slice where element i is the cumulative number of edges in the
- // preceding loops in the polygon. This field is used for polygons that
- // have a large number of loops, and may be empty for polygons with few loops.
- cumulativeEdges []int
-}
-
-// PolygonFromLoops constructs a polygon from the given set of loops. The polygon
-// interior consists of the points contained by an odd number of loops. (Recall
-// that a loop contains the set of points on its left-hand side.)
-//
-// This method determines the loop nesting hierarchy and assigns every loop a
-// depth. Shells have even depths, and holes have odd depths.
-//
-// Note: The given set of loops are reordered by this method so that the hierarchy
-// can be traversed using Parent, LastDescendant and the loops depths.
-func PolygonFromLoops(loops []*Loop) *Polygon {
- p := &Polygon{}
- // Empty polygons do not contain any loops, even the Empty loop.
- if len(loops) == 1 && loops[0].IsEmpty() {
- p.initLoopProperties()
- return p
- }
- p.loops = loops
- p.initNested()
- return p
-}
-
-// PolygonFromOrientedLoops returns a Polygon from the given set of loops,
-// like PolygonFromLoops. It expects loops to be oriented such that the polygon
-// interior is on the left-hand side of all loops. This implies that shells
-// and holes should have opposite orientations in the input to this method.
-// (During initialization, loops representing holes will automatically be
-// inverted.)
-func PolygonFromOrientedLoops(loops []*Loop) *Polygon {
- // Here is the algorithm:
- //
- // 1. Remember which of the given loops contain OriginPoint.
- //
- // 2. Invert loops as necessary to ensure that they are nestable (i.e., no
- // loop contains the complement of any other loop). This may result in a
- // set of loops corresponding to the complement of the given polygon, but
- // we will fix that problem later.
- //
- // We make the loops nestable by first normalizing all the loops (i.e.,
- // inverting any loops whose turning angle is negative). This handles
- // all loops except those whose turning angle is very close to zero
- // (within the maximum error tolerance). Any such loops are inverted if
- // and only if they contain OriginPoint(). (In theory this step is only
- // necessary if there are at least two such loops.) The resulting set of
- // loops is guaranteed to be nestable.
- //
- // 3. Build the polygon. This yields either the desired polygon or its
- // complement.
- //
- // 4. If there is at least one loop, we find a loop L that is adjacent to
- // OriginPoint() (where "adjacent" means that there exists a path
- // connecting OriginPoint() to some vertex of L such that the path does
- // not cross any loop). There may be a single such adjacent loop, or
- // there may be several (in which case they should all have the same
- // contains_origin() value). We choose L to be the loop containing the
- // origin whose depth is greatest, or loop(0) (a top-level shell) if no
- // such loop exists.
- //
- // 5. If (L originally contained origin) != (polygon contains origin), we
- // invert the polygon. This is done by inverting a top-level shell whose
- // turning angle is minimal and then fixing the nesting hierarchy. Note
- // that because we normalized all the loops initially, this step is only
- // necessary if the polygon requires at least one non-normalized loop to
- // represent it.
-
- containedOrigin := make(map[*Loop]bool)
- for _, l := range loops {
- containedOrigin[l] = l.ContainsOrigin()
- }
-
- for _, l := range loops {
- angle := l.TurningAngle()
- if math.Abs(angle) > l.turningAngleMaxError() {
- // Normalize the loop.
- if angle < 0 {
- l.Invert()
- }
- } else {
- // Ensure that the loop does not contain the origin.
- if l.ContainsOrigin() {
- l.Invert()
- }
- }
- }
-
- p := PolygonFromLoops(loops)
-
- if p.NumLoops() > 0 {
- originLoop := p.Loop(0)
- polygonContainsOrigin := false
- for _, l := range p.Loops() {
- if l.ContainsOrigin() {
- polygonContainsOrigin = !polygonContainsOrigin
-
- originLoop = l
- }
- }
- if containedOrigin[originLoop] != polygonContainsOrigin {
- p.Invert()
- }
- }
-
- return p
-}
-
-// Invert inverts the polygon (replaces it by its complement).
-func (p *Polygon) Invert() {
- // Inverting any one loop will invert the polygon. The best loop to invert
- // is the one whose area is largest, since this yields the smallest area
- // after inversion. The loop with the largest area is always at depth 0.
- // The descendents of this loop all have their depth reduced by 1, while the
- // former siblings of this loop all have their depth increased by 1.
-
- // The empty and full polygons are handled specially.
- if p.IsEmpty() {
- *p = *FullPolygon()
- p.initLoopProperties()
- return
- }
- if p.IsFull() {
- *p = Polygon{}
- p.initLoopProperties()
- return
- }
-
- // Find the loop whose area is largest (i.e., whose turning angle is
- // smallest), minimizing calls to TurningAngle(). In particular, for
- // polygons with a single shell at level 0 there is no need to call
- // TurningAngle() at all. (This method is relatively expensive.)
- best := 0
- const none = 10.0 // Flag that means "not computed yet"
- bestAngle := none
- for i := 1; i < p.NumLoops(); i++ {
- if p.Loop(i).depth != 0 {
- continue
- }
- // We defer computing the turning angle of loop 0 until we discover
- // that the polygon has another top-level shell.
- if bestAngle == none {
- bestAngle = p.Loop(best).TurningAngle()
- }
- angle := p.Loop(i).TurningAngle()
- // We break ties deterministically in order to avoid having the output
- // depend on the input order of the loops.
- if angle < bestAngle || (angle == bestAngle && compareLoops(p.Loop(i), p.Loop(best)) < 0) {
- best = i
- bestAngle = angle
- }
- }
- // Build the new loops vector, starting with the inverted loop.
- p.Loop(best).Invert()
- newLoops := make([]*Loop, 0, p.NumLoops())
- // Add the former siblings of this loop as descendants.
- lastBest := p.LastDescendant(best)
- newLoops = append(newLoops, p.Loop(best))
- for i, l := range p.Loops() {
- if i < best || i > lastBest {
- l.depth++
- newLoops = append(newLoops, l)
- }
- }
- // Add the former children of this loop as siblings.
- for i, l := range p.Loops() {
- if i > best && i <= lastBest {
- l.depth--
- newLoops = append(newLoops, l)
- }
- }
-
- p.loops = newLoops
- p.initLoopProperties()
-}
-
-// Defines a total ordering on Loops that does not depend on the cyclic
-// order of loop vertices. This function is used to choose which loop to
-// invert in the case where several loops have exactly the same area.
-func compareLoops(a, b *Loop) int {
- if na, nb := a.NumVertices(), b.NumVertices(); na != nb {
- return na - nb
- }
- ai, aDir := a.CanonicalFirstVertex()
- bi, bDir := b.CanonicalFirstVertex()
- if aDir != bDir {
- return aDir - bDir
- }
- for n := a.NumVertices() - 1; n >= 0; n, ai, bi = n-1, ai+aDir, bi+bDir {
- if cmp := a.Vertex(ai).Cmp(b.Vertex(bi).Vector); cmp != 0 {
- return cmp
- }
- }
- return 0
-}
-
-// PolygonFromCell returns a Polygon from a single loop created from the given Cell.
-func PolygonFromCell(cell Cell) *Polygon {
- return PolygonFromLoops([]*Loop{LoopFromCell(cell)})
-}
-
-// initNested takes the set of loops in this polygon and performs the nesting
-// computations to set the proper nesting and parent/child relationships.
-func (p *Polygon) initNested() {
- if len(p.loops) == 1 {
- p.initOneLoop()
- return
- }
-
- lm := make(loopMap)
-
- for _, l := range p.loops {
- lm.insertLoop(l, nil)
- }
- // The loops have all been added to the loopMap for ordering. Clear the
- // loops slice because we add all the loops in-order in initLoops.
- p.loops = nil
-
- // Reorder the loops in depth-first traversal order.
- p.initLoops(lm)
- p.initLoopProperties()
-}
-
-// loopMap is a map of a loop to its immediate children with respect to nesting.
-// It is used to determine which loops are shells and which are holes.
-type loopMap map[*Loop][]*Loop
-
-// insertLoop adds the given loop to the loop map under the specified parent.
-// All children of the new entry are checked to see if the need to move up to
-// a different level.
-func (lm loopMap) insertLoop(newLoop, parent *Loop) {
- var children []*Loop
- for done := false; !done; {
- children = lm[parent]
- done = true
- for _, child := range children {
- if child.ContainsNested(newLoop) {
- parent = child
- done = false
- break
- }
- }
- }
-
- // Now, we have found a parent for this loop, it may be that some of the
- // children of the parent of this loop may now be children of the new loop.
- newChildren := lm[newLoop]
- for i := 0; i < len(children); {
- child := children[i]
- if newLoop.ContainsNested(child) {
- newChildren = append(newChildren, child)
- children = append(children[0:i], children[i+1:]...)
- } else {
- i++
- }
- }
-
- lm[newLoop] = newChildren
- lm[parent] = append(children, newLoop)
-}
-
-// loopStack simplifies access to the loops while being initialized.
-type loopStack []*Loop
-
-func (s *loopStack) push(v *Loop) {
- *s = append(*s, v)
-}
-func (s *loopStack) pop() *Loop {
- l := len(*s)
- r := (*s)[l-1]
- *s = (*s)[:l-1]
- return r
-}
-
-// initLoops walks the mapping of loops to all of their children, and adds them in
-// order into to the polygons set of loops.
-func (p *Polygon) initLoops(lm loopMap) {
- var stack loopStack
- stack.push(nil)
- depth := -1
-
- for len(stack) > 0 {
- loop := stack.pop()
- if loop != nil {
- depth = loop.depth
- p.loops = append(p.loops, loop)
- }
- children := lm[loop]
- for i := len(children) - 1; i >= 0; i-- {
- child := children[i]
- child.depth = depth + 1
- stack.push(child)
- }
- }
-}
-
-// initOneLoop set the properties for a polygon made of a single loop.
-// TODO(roberts): Can this be merged with initLoopProperties
-func (p *Polygon) initOneLoop() {
- p.hasHoles = false
- p.numVertices = len(p.loops[0].vertices)
- p.bound = p.loops[0].RectBound()
- p.subregionBound = ExpandForSubregions(p.bound)
- // Ensure the loops depth is set correctly.
- p.loops[0].depth = 0
-
- p.initEdgesAndIndex()
-}
-
-// initLoopProperties sets the properties for polygons with multiple loops.
-func (p *Polygon) initLoopProperties() {
- p.numVertices = 0
- // the loops depths are set by initNested/initOriented prior to this.
- p.bound = EmptyRect()
- p.hasHoles = false
- for _, l := range p.loops {
- if l.IsHole() {
- p.hasHoles = true
- } else {
- p.bound = p.bound.Union(l.RectBound())
- }
- p.numVertices += l.NumVertices()
- }
- p.subregionBound = ExpandForSubregions(p.bound)
-
- p.initEdgesAndIndex()
-}
-
-// initEdgesAndIndex performs the shape related initializations and adds the final
-// polygon to the index.
-func (p *Polygon) initEdgesAndIndex() {
- p.numEdges = 0
- p.cumulativeEdges = nil
- if p.IsFull() {
- return
- }
- const maxLinearSearchLoops = 12 // Based on benchmarks.
- if len(p.loops) > maxLinearSearchLoops {
- p.cumulativeEdges = make([]int, 0, len(p.loops))
- }
-
- for _, l := range p.loops {
- if p.cumulativeEdges != nil {
- p.cumulativeEdges = append(p.cumulativeEdges, p.numEdges)
- }
- p.numEdges += len(l.vertices)
- }
-
- p.index = NewShapeIndex()
- p.index.Add(p)
-}
-
-// FullPolygon returns a special "full" polygon.
-func FullPolygon() *Polygon {
- ret := &Polygon{
- loops: []*Loop{
- FullLoop(),
- },
- numVertices: len(FullLoop().Vertices()),
- bound: FullRect(),
- subregionBound: FullRect(),
- }
- ret.initEdgesAndIndex()
- return ret
-}
-
-// Validate checks whether this is a valid polygon,
-// including checking whether all the loops are themselves valid.
-func (p *Polygon) Validate() error {
- for i, l := range p.loops {
- // Check for loop errors that don't require building a ShapeIndex.
- if err := l.findValidationErrorNoIndex(); err != nil {
- return fmt.Errorf("loop %d: %v", i, err)
- }
- // Check that no loop is empty, and that the full loop only appears in the
- // full polygon.
- if l.IsEmpty() {
- return fmt.Errorf("loop %d: empty loops are not allowed", i)
- }
- if l.IsFull() && len(p.loops) > 1 {
- return fmt.Errorf("loop %d: full loop appears in non-full polygon", i)
- }
- }
-
- // TODO(roberts): Uncomment the remaining checks when they are completed.
-
- // Check for loop self-intersections and loop pairs that cross
- // (including duplicate edges and vertices).
- // if findSelfIntersection(p.index) {
- // return fmt.Errorf("polygon has loop pairs that cross")
- // }
-
- // Check whether initOriented detected inconsistent loop orientations.
- // if p.hasInconsistentLoopOrientations {
- // return fmt.Errorf("inconsistent loop orientations detected")
- // }
-
- // Finally, verify the loop nesting hierarchy.
- return p.findLoopNestingError()
-}
-
-// findLoopNestingError reports if there is an error in the loop nesting hierarchy.
-func (p *Polygon) findLoopNestingError() error {
- // First check that the loop depths make sense.
- lastDepth := -1
- for i, l := range p.loops {
- depth := l.depth
- if depth < 0 || depth > lastDepth+1 {
- return fmt.Errorf("loop %d: invalid loop depth (%d)", i, depth)
- }
- lastDepth = depth
- }
- // Then check that they correspond to the actual loop nesting. This test
- // is quadratic in the number of loops but the cost per iteration is small.
- for i, l := range p.loops {
- last := p.LastDescendant(i)
- for j, l2 := range p.loops {
- if i == j {
- continue
- }
- nested := (j >= i+1) && (j <= last)
- const reverseB = false
-
- if l.containsNonCrossingBoundary(l2, reverseB) != nested {
- nestedStr := ""
- if !nested {
- nestedStr = "not "
- }
- return fmt.Errorf("invalid nesting: loop %d should %scontain loop %d", i, nestedStr, j)
- }
- }
- }
- return nil
-}
-
-// IsEmpty reports whether this is the special "empty" polygon (consisting of no loops).
-func (p *Polygon) IsEmpty() bool {
- return len(p.loops) == 0
-}
-
-// IsFull reports whether this is the special "full" polygon (consisting of a
-// single loop that encompasses the entire sphere).
-func (p *Polygon) IsFull() bool {
- return len(p.loops) == 1 && p.loops[0].IsFull()
-}
-
-// NumLoops returns the number of loops in this polygon.
-func (p *Polygon) NumLoops() int {
- return len(p.loops)
-}
-
-// Loops returns the loops in this polygon.
-func (p *Polygon) Loops() []*Loop {
- return p.loops
-}
-
-// Loop returns the loop at the given index. Note that during initialization,
-// the given loops are reordered according to a pre-order traversal of the loop
-// nesting hierarchy. This implies that every loop is immediately followed by
-// its descendants. This hierarchy can be traversed using the methods Parent,
-// LastDescendant, and Loop.depth.
-func (p *Polygon) Loop(k int) *Loop {
- return p.loops[k]
-}
-
-// Parent returns the index of the parent of loop k.
-// If the loop does not have a parent, ok=false is returned.
-func (p *Polygon) Parent(k int) (index int, ok bool) {
- // See where we are on the depth hierarchy.
- depth := p.loops[k].depth
- if depth == 0 {
- return -1, false
- }
-
- // There may be several loops at the same nesting level as us that share a
- // parent loop with us. (Imagine a slice of swiss cheese, of which we are one loop.
- // we don't know how many may be next to us before we get back to our parent loop.)
- // Move up one position from us, and then begin traversing back through the set of loops
- // until we find the one that is our parent or we get to the top of the polygon.
- for k--; k >= 0 && p.loops[k].depth <= depth; k-- {
- }
- return k, true
-}
-
-// LastDescendant returns the index of the last loop that is contained within loop k.
-// If k is negative, it returns the last loop in the polygon.
-// Note that loops are indexed according to a pre-order traversal of the nesting
-// hierarchy, so the immediate children of loop k can be found by iterating over
-// the loops (k+1)..LastDescendant(k) and selecting those whose depth is equal
-// to Loop(k).depth+1.
-func (p *Polygon) LastDescendant(k int) int {
- if k < 0 {
- return len(p.loops) - 1
- }
-
- depth := p.loops[k].depth
-
- // Find the next loop immediately past us in the set of loops, and then start
- // moving down the list until we either get to the end or find the next loop
- // that is higher up the hierarchy than we are.
- for k++; k < len(p.loops) && p.loops[k].depth > depth; k++ {
- }
- return k - 1
-}
-
-// CapBound returns a bounding spherical cap.
-func (p *Polygon) CapBound() Cap { return p.bound.CapBound() }
-
-// RectBound returns a bounding latitude-longitude rectangle.
-func (p *Polygon) RectBound() Rect { return p.bound }
-
-// ContainsPoint reports whether the polygon contains the point.
-func (p *Polygon) ContainsPoint(point Point) bool {
- // NOTE: A bounds check slows down this function by about 50%. It is
- // worthwhile only when it might allow us to delay building the index.
- if !p.index.IsFresh() && !p.bound.ContainsPoint(point) {
- return false
- }
-
- // For small polygons, and during initial construction, it is faster to just
- // check all the crossing.
- const maxBruteForceVertices = 32
- if p.numVertices < maxBruteForceVertices || p.index == nil {
- inside := false
- for _, l := range p.loops {
- // use loops bruteforce to avoid building the index on each loop.
- inside = inside != l.bruteForceContainsPoint(point)
- }
- return inside
- }
-
- // Otherwise we look up the ShapeIndex cell containing this point.
- return NewContainsPointQuery(p.index, VertexModelSemiOpen).Contains(point)
-}
-
-// ContainsCell reports whether the polygon contains the given cell.
-func (p *Polygon) ContainsCell(cell Cell) bool {
- it := p.index.Iterator()
- relation := it.LocateCellID(cell.ID())
-
- // If "cell" is disjoint from all index cells, it is not contained.
- // Similarly, if "cell" is subdivided into one or more index cells then it
- // is not contained, since index cells are subdivided only if they (nearly)
- // intersect a sufficient number of edges. (But note that if "cell" itself
- // is an index cell then it may be contained, since it could be a cell with
- // no edges in the loop interior.)
- if relation != Indexed {
- return false
- }
-
- // Otherwise check if any edges intersect "cell".
- if p.boundaryApproxIntersects(it, cell) {
- return false
- }
-
- // Otherwise check if the loop contains the center of "cell".
- return p.iteratorContainsPoint(it, cell.Center())
-}
-
-// IntersectsCell reports whether the polygon intersects the given cell.
-func (p *Polygon) IntersectsCell(cell Cell) bool {
- it := p.index.Iterator()
- relation := it.LocateCellID(cell.ID())
-
- // If cell does not overlap any index cell, there is no intersection.
- if relation == Disjoint {
- return false
- }
- // If cell is subdivided into one or more index cells, there is an
- // intersection to within the S2ShapeIndex error bound (see Contains).
- if relation == Subdivided {
- return true
- }
- // If cell is an index cell, there is an intersection because index cells
- // are created only if they have at least one edge or they are entirely
- // contained by the loop.
- if it.CellID() == cell.id {
- return true
- }
- // Otherwise check if any edges intersect cell.
- if p.boundaryApproxIntersects(it, cell) {
- return true
- }
- // Otherwise check if the loop contains the center of cell.
- return p.iteratorContainsPoint(it, cell.Center())
-}
-
-// CellUnionBound computes a covering of the Polygon.
-func (p *Polygon) CellUnionBound() []CellID {
- // TODO(roberts): Use ShapeIndexRegion when it's available.
- return p.CapBound().CellUnionBound()
-}
-
-// boundaryApproxIntersects reports whether the loop's boundary intersects cell.
-// It may also return true when the loop boundary does not intersect cell but
-// some edge comes within the worst-case error tolerance.
-//
-// This requires that it.Locate(cell) returned Indexed.
-func (p *Polygon) boundaryApproxIntersects(it *ShapeIndexIterator, cell Cell) bool {
- aClipped := it.IndexCell().findByShapeID(0)
-
- // If there are no edges, there is no intersection.
- if len(aClipped.edges) == 0 {
- return false
- }
-
- // We can save some work if cell is the index cell itself.
- if it.CellID() == cell.ID() {
- return true
- }
-
- // Otherwise check whether any of the edges intersect cell.
- maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist)
- bound := cell.BoundUV().ExpandedByMargin(maxError)
- for _, e := range aClipped.edges {
- edge := p.index.Shape(0).Edge(e)
- v0, v1, ok := ClipToPaddedFace(edge.V0, edge.V1, cell.Face(), maxError)
- if ok && edgeIntersectsRect(v0, v1, bound) {
- return true
- }
- }
-
- return false
-}
-
-// iteratorContainsPoint reports whether the iterator that is positioned at the
-// ShapeIndexCell that may contain p, contains the point p.
-func (p *Polygon) iteratorContainsPoint(it *ShapeIndexIterator, point Point) bool {
- // Test containment by drawing a line segment from the cell center to the
- // given point and counting edge crossings.
- aClipped := it.IndexCell().findByShapeID(0)
- inside := aClipped.containsCenter
-
- if len(aClipped.edges) == 0 {
- return inside
- }
-
- // This block requires ShapeIndex.
- crosser := NewEdgeCrosser(it.Center(), point)
- shape := p.index.Shape(0)
- for _, e := range aClipped.edges {
- edge := shape.Edge(e)
- inside = inside != crosser.EdgeOrVertexCrossing(edge.V0, edge.V1)
- }
-
- return inside
-}
-
-// Shape Interface
-
-// NumEdges returns the number of edges in this shape.
-func (p *Polygon) NumEdges() int {
- return p.numEdges
-}
-
-// Edge returns endpoints for the given edge index.
-func (p *Polygon) Edge(e int) Edge {
- var i int
-
- if len(p.cumulativeEdges) > 0 {
- for i = range p.cumulativeEdges {
- if i+1 >= len(p.cumulativeEdges) || e < p.cumulativeEdges[i+1] {
- e -= p.cumulativeEdges[i]
- break
- }
- }
- } else {
- // When the number of loops is small, use linear search. Most often
- // there is exactly one loop and the code below executes zero times.
- for i = 0; e >= len(p.Loop(i).vertices); i++ {
- e -= len(p.Loop(i).vertices)
- }
- }
-
- return Edge{p.Loop(i).OrientedVertex(e), p.Loop(i).OrientedVertex(e + 1)}
-}
-
-// ReferencePoint returns the reference point for this polygon.
-func (p *Polygon) ReferencePoint() ReferencePoint {
- containsOrigin := false
- for _, l := range p.loops {
- containsOrigin = containsOrigin != l.ContainsOrigin()
- }
- return OriginReferencePoint(containsOrigin)
-}
-
-// NumChains reports the number of contiguous edge chains in the Polygon.
-func (p *Polygon) NumChains() int {
- return p.NumLoops()
-}
-
-// Chain returns the i-th edge Chain (loop) in the Shape.
-func (p *Polygon) Chain(chainID int) Chain {
- if p.cumulativeEdges != nil {
- return Chain{p.cumulativeEdges[chainID], len(p.Loop(chainID).vertices)}
- }
- e := 0
- for j := 0; j < chainID; j++ {
- e += len(p.Loop(j).vertices)
- }
-
- // Polygon represents a full loop as a loop with one vertex, while
- // Shape represents a full loop as a chain with no vertices.
- if numVertices := p.Loop(chainID).NumVertices(); numVertices != 1 {
- return Chain{e, numVertices}
- }
- return Chain{e, 0}
-}
-
-// ChainEdge returns the j-th edge of the i-th edge Chain (loop).
-func (p *Polygon) ChainEdge(i, j int) Edge {
- return Edge{p.Loop(i).OrientedVertex(j), p.Loop(i).OrientedVertex(j + 1)}
-}
-
-// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge
-// of the i-th edge Chain.
-func (p *Polygon) ChainPosition(edgeID int) ChainPosition {
- var i int
-
- if len(p.cumulativeEdges) > 0 {
- for i = range p.cumulativeEdges {
- if i+1 >= len(p.cumulativeEdges) || edgeID < p.cumulativeEdges[i+1] {
- edgeID -= p.cumulativeEdges[i]
- break
- }
- }
- } else {
- // When the number of loops is small, use linear search. Most often
- // there is exactly one loop and the code below executes zero times.
- for i = 0; edgeID >= len(p.Loop(i).vertices); i++ {
- edgeID -= len(p.Loop(i).vertices)
- }
- }
- // TODO(roberts): unify this and Edge since they are mostly identical.
- return ChainPosition{i, edgeID}
-}
-
-// Dimension returns the dimension of the geometry represented by this Polygon.
-func (p *Polygon) Dimension() int { return 2 }
-
-func (p *Polygon) typeTag() typeTag { return typeTagPolygon }
-
-func (p *Polygon) privateInterface() {}
-
-// Contains reports whether this polygon contains the other polygon.
-// Specifically, it reports whether all the points in the other polygon
-// are also in this polygon.
-func (p *Polygon) Contains(o *Polygon) bool {
- // If both polygons have one loop, use the more efficient Loop method.
- // Note that Loop's Contains does its own bounding rectangle check.
- if len(p.loops) == 1 && len(o.loops) == 1 {
- return p.loops[0].Contains(o.loops[0])
- }
-
- // Otherwise if neither polygon has holes, we can still use the more
- // efficient Loop's Contains method (rather than compareBoundary),
- // but it's worthwhile to do our own bounds check first.
- if !p.subregionBound.Contains(o.bound) {
- // Even though Bound(A) does not contain Bound(B), it is still possible
- // that A contains B. This can only happen when union of the two bounds
- // spans all longitudes. For example, suppose that B consists of two
- // shells with a longitude gap between them, while A consists of one shell
- // that surrounds both shells of B but goes the other way around the
- // sphere (so that it does not intersect the longitude gap).
- if !p.bound.Lng.Union(o.bound.Lng).IsFull() {
- return false
- }
- }
-
- if !p.hasHoles && !o.hasHoles {
- for _, l := range o.loops {
- if !p.anyLoopContains(l) {
- return false
- }
- }
- return true
- }
-
- // Polygon A contains B iff B does not intersect the complement of A. From
- // the intersection algorithm below, this means that the complement of A
- // must exclude the entire boundary of B, and B must exclude all shell
- // boundaries of the complement of A. (It can be shown that B must then
- // exclude the entire boundary of the complement of A.) The first call
- // below returns false if the boundaries cross, therefore the second call
- // does not need to check for any crossing edges (which makes it cheaper).
- return p.containsBoundary(o) && o.excludesNonCrossingComplementShells(p)
-}
-
-// Intersects reports whether this polygon intersects the other polygon, i.e.
-// if there is a point that is contained by both polygons.
-func (p *Polygon) Intersects(o *Polygon) bool {
- // If both polygons have one loop, use the more efficient Loop method.
- // Note that Loop Intersects does its own bounding rectangle check.
- if len(p.loops) == 1 && len(o.loops) == 1 {
- return p.loops[0].Intersects(o.loops[0])
- }
-
- // Otherwise if neither polygon has holes, we can still use the more
- // efficient Loop.Intersects method. The polygons intersect if and
- // only if some pair of loop regions intersect.
- if !p.bound.Intersects(o.bound) {
- return false
- }
-
- if !p.hasHoles && !o.hasHoles {
- for _, l := range o.loops {
- if p.anyLoopIntersects(l) {
- return true
- }
- }
- return false
- }
-
- // Polygon A is disjoint from B if A excludes the entire boundary of B and B
- // excludes all shell boundaries of A. (It can be shown that B must then
- // exclude the entire boundary of A.) The first call below returns false if
- // the boundaries cross, therefore the second call does not need to check
- // for crossing edges.
- return !p.excludesBoundary(o) || !o.excludesNonCrossingShells(p)
-}
-
-// compareBoundary returns +1 if this polygon contains the boundary of B, -1 if A
-// excludes the boundary of B, and 0 if the boundaries of A and B cross.
-func (p *Polygon) compareBoundary(o *Loop) int {
- result := -1
- for i := 0; i < len(p.loops) && result != 0; i++ {
- // If B crosses any loop of A, the result is 0. Otherwise the result
- // changes sign each time B is contained by a loop of A.
- result *= -p.loops[i].compareBoundary(o)
- }
- return result
-}
-
-// containsBoundary reports whether this polygon contains the entire boundary of B.
-func (p *Polygon) containsBoundary(o *Polygon) bool {
- for _, l := range o.loops {
- if p.compareBoundary(l) <= 0 {
- return false
- }
- }
- return true
-}
-
-// excludesBoundary reports whether this polygon excludes the entire boundary of B.
-func (p *Polygon) excludesBoundary(o *Polygon) bool {
- for _, l := range o.loops {
- if p.compareBoundary(l) >= 0 {
- return false
- }
- }
- return true
-}
-
-// containsNonCrossingBoundary reports whether polygon A contains the boundary of
-// loop B. Shared edges are handled according to the rule described in loops
-// containsNonCrossingBoundary.
-func (p *Polygon) containsNonCrossingBoundary(o *Loop, reverse bool) bool {
- var inside bool
- for _, l := range p.loops {
- x := l.containsNonCrossingBoundary(o, reverse)
- inside = (inside != x)
- }
- return inside
-}
-
-// excludesNonCrossingShells reports wheterh given two polygons A and B such that the
-// boundary of A does not cross any loop of B, if A excludes all shell boundaries of B.
-func (p *Polygon) excludesNonCrossingShells(o *Polygon) bool {
- for _, l := range o.loops {
- if l.IsHole() {
- continue
- }
- if p.containsNonCrossingBoundary(l, false) {
- return false
- }
- }
- return true
-}
-
-// excludesNonCrossingComplementShells reports whether given two polygons A and B
-// such that the boundary of A does not cross any loop of B, if A excludes all
-// shell boundaries of the complement of B.
-func (p *Polygon) excludesNonCrossingComplementShells(o *Polygon) bool {
- // Special case to handle the complement of the empty or full polygons.
- if o.IsEmpty() {
- return !p.IsFull()
- }
- if o.IsFull() {
- return true
- }
-
- // Otherwise the complement of B may be obtained by inverting loop(0) and
- // then swapping the shell/hole status of all other loops. This implies
- // that the shells of the complement consist of loop 0 plus all the holes of
- // the original polygon.
- for j, l := range o.loops {
- if j > 0 && !l.IsHole() {
- continue
- }
-
- // The interior of the complement is to the right of loop 0, and to the
- // left of the loops that were originally holes.
- if p.containsNonCrossingBoundary(l, j == 0) {
- return false
- }
- }
- return true
-}
-
-// anyLoopContains reports whether any loop in this polygon contains the given loop.
-func (p *Polygon) anyLoopContains(o *Loop) bool {
- for _, l := range p.loops {
- if l.Contains(o) {
- return true
- }
- }
- return false
-}
-
-// anyLoopIntersects reports whether any loop in this polygon intersects the given loop.
-func (p *Polygon) anyLoopIntersects(o *Loop) bool {
- for _, l := range p.loops {
- if l.Intersects(o) {
- return true
- }
- }
- return false
-}
-
-// Area returns the area of the polygon interior, i.e. the region on the left side
-// of an odd number of loops. The return value is between 0 and 4*Pi.
-func (p *Polygon) Area() float64 {
- var area float64
- for _, loop := range p.loops {
- area += float64(loop.Sign()) * loop.Area()
- }
- return area
-}
-
-// Encode encodes the Polygon
-func (p *Polygon) Encode(w io.Writer) error {
- e := &encoder{w: w}
- p.encode(e)
- return e.err
-}
-
-// encode only supports lossless encoding and not compressed format.
-func (p *Polygon) encode(e *encoder) {
- if p.numVertices == 0 {
- p.encodeCompressed(e, maxLevel, nil)
- return
- }
-
- // Convert all the polygon vertices to XYZFaceSiTi format.
- vs := make([]xyzFaceSiTi, 0, p.numVertices)
- for _, l := range p.loops {
- vs = append(vs, l.xyzFaceSiTiVertices()...)
- }
-
- // Computes a histogram of the cell levels at which the vertices are snapped.
- // (histogram[0] is the number of unsnapped vertices, histogram[i] the number
- // of vertices snapped at level i-1).
- histogram := make([]int, maxLevel+2)
- for _, v := range vs {
- histogram[v.level+1]++
- }
-
- // Compute the level at which most of the vertices are snapped.
- // If multiple levels have the same maximum number of vertices
- // snapped to it, the first one (lowest level number / largest
- // area / smallest encoding length) will be chosen, so this
- // is desired.
- var snapLevel, numSnapped int
- for level, h := range histogram[1:] {
- if h > numSnapped {
- snapLevel, numSnapped = level, h
- }
- }
-
- // Choose an encoding format based on the number of unsnapped vertices and a
- // rough estimate of the encoded sizes.
- numUnsnapped := p.numVertices - numSnapped // Number of vertices that won't be snapped at snapLevel.
- const pointSize = 3 * 8 // s2.Point is an r3.Vector, which is 3 float64s. That's 3*8 = 24 bytes.
- compressedSize := 4*p.numVertices + (pointSize+2)*numUnsnapped
- losslessSize := pointSize * p.numVertices
- if compressedSize < losslessSize {
- p.encodeCompressed(e, snapLevel, vs)
- } else {
- p.encodeLossless(e)
- }
-}
-
-// encodeLossless encodes the polygon's Points as float64s.
-func (p *Polygon) encodeLossless(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeBool(true) // a legacy c++ value. must be true.
- e.writeBool(p.hasHoles)
- e.writeUint32(uint32(len(p.loops)))
-
- if e.err != nil {
- return
- }
- if len(p.loops) > maxEncodedLoops {
- e.err = fmt.Errorf("too many loops (%d; max is %d)", len(p.loops), maxEncodedLoops)
- return
- }
- for _, l := range p.loops {
- l.encode(e)
- }
-
- // Encode the bound.
- p.bound.encode(e)
-}
-
-func (p *Polygon) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) {
- e.writeUint8(uint8(encodingCompressedVersion))
- e.writeUint8(uint8(snapLevel))
- e.writeUvarint(uint64(len(p.loops)))
-
- if e.err != nil {
- return
- }
- if l := len(p.loops); l > maxEncodedLoops {
- e.err = fmt.Errorf("too many loops to encode: %d; max is %d", l, maxEncodedLoops)
- return
- }
-
- for _, l := range p.loops {
- l.encodeCompressed(e, snapLevel, vertices[:len(l.vertices)])
- vertices = vertices[len(l.vertices):]
- }
- // Do not write the bound, num_vertices, or has_holes_ as they can be
- // cheaply recomputed by decodeCompressed. Microbenchmarks show the
- // speed difference is inconsequential.
-}
-
-// Decode decodes the Polygon.
-func (p *Polygon) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- version := int8(d.readUint8())
- var dec func(*decoder)
- switch version {
- case encodingVersion:
- dec = p.decode
- case encodingCompressedVersion:
- dec = p.decodeCompressed
- default:
- return fmt.Errorf("unsupported version %d", version)
- }
- dec(d)
- return d.err
-}
-
-// maxEncodedLoops is the biggest supported number of loops in a polygon during encoding.
-// Setting a maximum guards an allocation: it prevents an attacker from easily pushing us OOM.
-const maxEncodedLoops = 10000000
-
-func (p *Polygon) decode(d *decoder) {
- *p = Polygon{}
- d.readUint8() // Ignore irrelevant serialized owns_loops_ value.
-
- p.hasHoles = d.readBool()
-
- // Polygons with no loops are explicitly allowed here: a newly created
- // polygon has zero loops and such polygons encode and decode properly.
- nloops := d.readUint32()
- if d.err != nil {
- return
- }
- if nloops > maxEncodedLoops {
- d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
- return
- }
- p.loops = make([]*Loop, nloops)
- for i := range p.loops {
- p.loops[i] = new(Loop)
- p.loops[i].decode(d)
- p.numVertices += len(p.loops[i].vertices)
- }
-
- p.bound.decode(d)
- if d.err != nil {
- return
- }
- p.subregionBound = ExpandForSubregions(p.bound)
- p.initEdgesAndIndex()
-}
-
-func (p *Polygon) decodeCompressed(d *decoder) {
- snapLevel := int(d.readUint8())
-
- if snapLevel > maxLevel {
- d.err = fmt.Errorf("snaplevel too big: %d", snapLevel)
- return
- }
- // Polygons with no loops are explicitly allowed here: a newly created
- // polygon has zero loops and such polygons encode and decode properly.
- nloops := int(d.readUvarint())
- if nloops > maxEncodedLoops {
- d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
- }
- p.loops = make([]*Loop, nloops)
- for i := range p.loops {
- p.loops[i] = new(Loop)
- p.loops[i].decodeCompressed(d, snapLevel)
- }
- p.initLoopProperties()
-}
-
-// TODO(roberts): Differences from C++
-// Centroid
-// SnapLevel
-// DistanceToPoint
-// DistanceToBoundary
-// Project
-// ProjectToBoundary
-// ApproxContains/ApproxDisjoint for Polygons
-// InitTo{Intersection/ApproxIntersection/Union/ApproxUnion/Diff/ApproxDiff}
-// InitToSimplified
-// InitToSnapped
-// IntersectWithPolyline
-// ApproxIntersectWithPolyline
-// SubtractFromPolyline
-// ApproxSubtractFromPolyline
-// DestructiveUnion
-// DestructiveApproxUnion
-// InitToCellUnionBorder
-// IsNormalized
-// Equal/BoundaryEqual/BoundaryApproxEqual/BoundaryNear Polygons
-// BreakEdgesAndAddToBuilder
-//
-// clearLoops
-// findLoopNestingError
-// initToSimplifiedInternal
-// internalClipPolyline
-// clipBoundary