diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s2/edge_query.go')
-rw-r--r-- | vendor/github.com/golang/geo/s2/edge_query.go | 803 |
1 files changed, 0 insertions, 803 deletions
diff --git a/vendor/github.com/golang/geo/s2/edge_query.go b/vendor/github.com/golang/geo/s2/edge_query.go deleted file mode 100644 index 2d443d1ce..000000000 --- a/vendor/github.com/golang/geo/s2/edge_query.go +++ /dev/null @@ -1,803 +0,0 @@ -// Copyright 2019 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( - "sort" - - "github.com/golang/geo/s1" -) - -// EdgeQueryOptions holds the options for controlling how EdgeQuery operates. -// -// Options can be chained together builder-style: -// -// opts = NewClosestEdgeQueryOptions(). -// MaxResults(1). -// DistanceLimit(s1.ChordAngleFromAngle(3 * s1.Degree)). -// MaxError(s1.ChordAngleFromAngle(0.001 * s1.Degree)) -// query = NewClosestEdgeQuery(index, opts) -// -// or set individually: -// -// opts = NewClosestEdgeQueryOptions() -// opts.IncludeInteriors(true) -// -// or just inline: -// -// query = NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions().MaxResults(3)) -// -// If you pass a nil as the options you get the default values for the options. -type EdgeQueryOptions struct { - common *queryOptions -} - -// DistanceLimit specifies that only edges whose distance to the target is -// within, this distance should be returned. Edges whose distance is equal -// are not returned. To include values that are equal, specify the limit with -// the next largest representable distance. i.e. limit.Successor(). -func (e *EdgeQueryOptions) DistanceLimit(limit s1.ChordAngle) *EdgeQueryOptions { - e.common = e.common.DistanceLimit(limit) - return e -} - -// IncludeInteriors specifies whether polygon interiors should be -// included when measuring distances. -func (e *EdgeQueryOptions) IncludeInteriors(x bool) *EdgeQueryOptions { - e.common = e.common.IncludeInteriors(x) - return e -} - -// UseBruteForce sets or disables the use of brute force in a query. -func (e *EdgeQueryOptions) UseBruteForce(x bool) *EdgeQueryOptions { - e.common = e.common.UseBruteForce(x) - return e -} - -// MaxError specifies that edges up to dist away than the true -// matching edges may be substituted in the result set, as long as such -// edges satisfy all the remaining search criteria (such as DistanceLimit). -// This option only has an effect if MaxResults is also specified; -// otherwise all edges closer than MaxDistance will always be returned. -func (e *EdgeQueryOptions) MaxError(dist s1.ChordAngle) *EdgeQueryOptions { - e.common = e.common.MaxError(dist) - return e -} - -// MaxResults specifies that at most MaxResults edges should be returned. -// This must be at least 1. -func (e *EdgeQueryOptions) MaxResults(n int) *EdgeQueryOptions { - e.common = e.common.MaxResults(n) - return e -} - -// NewClosestEdgeQueryOptions returns a set of edge query options suitable -// for performing closest edge queries. -func NewClosestEdgeQueryOptions() *EdgeQueryOptions { - return &EdgeQueryOptions{ - common: newQueryOptions(minDistance(0)), - } -} - -// NewFurthestEdgeQueryOptions returns a set of edge query options suitable -// for performing furthest edge queries. -func NewFurthestEdgeQueryOptions() *EdgeQueryOptions { - return &EdgeQueryOptions{ - common: newQueryOptions(maxDistance(0)), - } -} - -// EdgeQueryResult represents an edge that meets the target criteria for the -// query. Note the following special cases: -// -// - ShapeID >= 0 && EdgeID < 0 represents the interior of a shape. -// Such results may be returned when the option IncludeInteriors is true. -// -// - ShapeID < 0 && EdgeID < 0 is returned to indicate that no edge -// satisfies the requested query options. -type EdgeQueryResult struct { - distance distance - shapeID int32 - edgeID int32 -} - -// Distance reports the distance between the edge in this shape that satisfied -// the query's parameters. -func (e EdgeQueryResult) Distance() s1.ChordAngle { return e.distance.chordAngle() } - -// ShapeID reports the ID of the Shape this result is for. -func (e EdgeQueryResult) ShapeID() int32 { return e.shapeID } - -// EdgeID reports the ID of the edge in the results Shape. -func (e EdgeQueryResult) EdgeID() int32 { return e.edgeID } - -// newEdgeQueryResult returns a result instance with default values. -func newEdgeQueryResult(target distanceTarget) EdgeQueryResult { - return EdgeQueryResult{ - distance: target.distance().infinity(), - shapeID: -1, - edgeID: -1, - } -} - -// IsInterior reports if this result represents the interior of a Shape. -func (e EdgeQueryResult) IsInterior() bool { - return e.shapeID >= 0 && e.edgeID < 0 -} - -// IsEmpty reports if this has no edge that satisfies the given edge query options. -// This result is only returned in one special case, namely when FindEdge() does -// not find any suitable edges. -func (e EdgeQueryResult) IsEmpty() bool { - return e.shapeID < 0 -} - -// Less reports if this results is less that the other first by distance, -// then by (shapeID, edgeID). This is used for sorting. -func (e EdgeQueryResult) Less(other EdgeQueryResult) bool { - if e.distance.chordAngle() != other.distance.chordAngle() { - return e.distance.less(other.distance) - } - if e.shapeID != other.shapeID { - return e.shapeID < other.shapeID - } - return e.edgeID < other.edgeID -} - -// EdgeQuery is used to find the edge(s) between two geometries that match a -// given set of options. It is flexible enough so that it can be adapted to -// compute maximum distances and even potentially Hausdorff distances. -// -// By using the appropriate options, this type can answer questions such as: -// -// - Find the minimum distance between two geometries A and B. -// - Find all edges of geometry A that are within a distance D of geometry B. -// - Find the k edges of geometry A that are closest to a given point P. -// -// You can also specify whether polygons should include their interiors (i.e., -// if a point is contained by a polygon, should the distance be zero or should -// it be measured to the polygon boundary?) -// -// The input geometries may consist of any number of points, polylines, and -// polygons (collectively referred to as "shapes"). Shapes do not need to be -// disjoint; they may overlap or intersect arbitrarily. The implementation is -// designed to be fast for both simple and complex geometries. -type EdgeQuery struct { - index *ShapeIndex - opts *queryOptions - target distanceTarget - - // True if opts.maxError must be subtracted from ShapeIndex cell distances - // in order to ensure that such distances are measured conservatively. This - // is true only if the target takes advantage of maxError in order to - // return faster results, and 0 < maxError < distanceLimit. - useConservativeCellDistance bool - - // The decision about whether to use the brute force algorithm is based on - // counting the total number of edges in the index. However if the index - // contains a large number of shapes, this in itself might take too long. - // So instead we only count edges up to (maxBruteForceIndexSize() + 1) - // for the current target type (stored as indexNumEdgesLimit). - indexNumEdges int - indexNumEdgesLimit int - - // The distance beyond which we can safely ignore further candidate edges. - // (Candidates that are exactly at the limit are ignored; this is more - // efficient for UpdateMinDistance and should not affect clients since - // distance measurements have a small amount of error anyway.) - // - // Initially this is the same as the maximum distance specified by the user, - // but it can also be updated by the algorithm (see maybeAddResult). - distanceLimit distance - - // The current set of results of the query. - results []EdgeQueryResult - - // This field is true when duplicates must be avoided explicitly. This - // is achieved by maintaining a separate set keyed by (shapeID, edgeID) - // only, and checking whether each edge is in that set before computing the - // distance to it. - avoidDuplicates bool - - // testedEdges tracks the set of shape and edges that have already been tested. - testedEdges map[ShapeEdgeID]uint32 - - // For the optimized algorihm we precompute the top-level CellIDs that - // will be added to the priority queue. There can be at most 6 of these - // cells. Essentially this is just a covering of the indexed edges, except - // that we also store pointers to the corresponding ShapeIndexCells to - // reduce the number of index seeks required. - indexCovering []CellID - indexCells []*ShapeIndexCell - - // The algorithm maintains a priority queue of unprocessed CellIDs, sorted - // in increasing order of distance from the target. - queue *queryQueue - - iter *ShapeIndexIterator - maxDistanceCovering []CellID - initialCells []CellID -} - -// NewClosestEdgeQuery returns an EdgeQuery that is used for finding the -// closest edge(s) to a given Point, Edge, Cell, or geometry collection. -// -// You can find either the k closest edges, or all edges within a given -// radius, or both (i.e., the k closest edges up to a given maximum radius). -// E.g. to find all the edges within 5 kilometers, set the DistanceLimit in -// the options. -// -// By default *all* edges are returned, so you should always specify either -// MaxResults or DistanceLimit options or both. -// -// Note that by default, distances are measured to the boundary and interior -// of polygons. For example, if a point is inside a polygon then its distance -// is zero. To change this behavior, set the IncludeInteriors option to false. -// -// If you only need to test whether the distance is above or below a given -// threshold (e.g., 10 km), you can use the IsDistanceLess() method. This is -// much faster than actually calculating the distance with FindEdge, -// since the implementation can stop as soon as it can prove that the minimum -// distance is either above or below the threshold. -func NewClosestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery { - if opts == nil { - opts = NewClosestEdgeQueryOptions() - } - e := &EdgeQuery{ - testedEdges: make(map[ShapeEdgeID]uint32), - index: index, - opts: opts.common, - queue: newQueryQueue(), - } - - return e -} - -// NewFurthestEdgeQuery returns an EdgeQuery that is used for finding the -// furthest edge(s) to a given Point, Edge, Cell, or geometry collection. -// -// The furthest edge is defined as the one which maximizes the -// distance from any point on that edge to any point on the target geometry. -// -// Similar to the example in NewClosestEdgeQuery, to find the 5 furthest edges -// from a given Point: -func NewFurthestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery { - if opts == nil { - opts = NewFurthestEdgeQueryOptions() - } - e := &EdgeQuery{ - testedEdges: make(map[ShapeEdgeID]uint32), - index: index, - opts: opts.common, - queue: newQueryQueue(), - } - - return e -} - -// Reset resets the state of this EdgeQuery. -func (e *EdgeQuery) Reset() { - e.indexNumEdges = 0 - e.indexNumEdgesLimit = 0 - e.indexCovering = nil - e.indexCells = nil -} - -// FindEdges returns the edges for the given target that satisfy the current options. -// -// Note that if opts.IncludeInteriors is true, the results may include some -// entries with edge_id == -1. This indicates that the target intersects -// the indexed polygon with the given ShapeID. -func (e *EdgeQuery) FindEdges(target distanceTarget) []EdgeQueryResult { - return e.findEdges(target, e.opts) -} - -// Distance reports the distance to the target. If the index or target is empty, -// returns the EdgeQuery's maximal sentinel. -// -// Use IsDistanceLess()/IsDistanceGreater() if you only want to compare the -// distance against a threshold value, since it is often much faster. -func (e *EdgeQuery) Distance(target distanceTarget) s1.ChordAngle { - return e.findEdge(target, e.opts).Distance() -} - -// IsDistanceLess reports if the distance to target is less than the given limit. -// -// This method is usually much faster than Distance(), since it is much -// less work to determine whether the minimum distance is above or below a -// threshold than it is to calculate the actual minimum distance. -// -// If you wish to check if the distance is less than or equal to the limit, use: -// -// query.IsDistanceLess(target, limit.Successor()) -// -func (e *EdgeQuery) IsDistanceLess(target distanceTarget, limit s1.ChordAngle) bool { - opts := e.opts - opts = opts.MaxResults(1). - DistanceLimit(limit). - MaxError(s1.StraightChordAngle) - return !e.findEdge(target, opts).IsEmpty() -} - -// IsDistanceGreater reports if the distance to target is greater than limit. -// -// This method is usually much faster than Distance, since it is much -// less work to determine whether the maximum distance is above or below a -// threshold than it is to calculate the actual maximum distance. -// If you wish to check if the distance is less than or equal to the limit, use: -// -// query.IsDistanceGreater(target, limit.Predecessor()) -// -func (e *EdgeQuery) IsDistanceGreater(target distanceTarget, limit s1.ChordAngle) bool { - return e.IsDistanceLess(target, limit) -} - -// IsConservativeDistanceLessOrEqual reports if the distance to target is less -// or equal to the limit, where the limit has been expanded by the maximum error -// for the distance calculation. -// -// For example, suppose that we want to test whether two geometries might -// intersect each other after they are snapped together using Builder -// (using the IdentitySnapFunction with a given "snap radius"). Since -// Builder uses exact distance predicates (s2predicates), we need to -// measure the distance between the two geometries conservatively. If the -// distance is definitely greater than "snap radius", then the geometries -// are guaranteed to not intersect after snapping. -func (e *EdgeQuery) IsConservativeDistanceLessOrEqual(target distanceTarget, limit s1.ChordAngle) bool { - return e.IsDistanceLess(target, limit.Expanded(minUpdateDistanceMaxError(limit))) -} - -// IsConservativeDistanceGreaterOrEqual reports if the distance to the target is greater -// than or equal to the given limit with some small tolerance. -func (e *EdgeQuery) IsConservativeDistanceGreaterOrEqual(target distanceTarget, limit s1.ChordAngle) bool { - return e.IsDistanceGreater(target, limit.Expanded(-minUpdateDistanceMaxError(limit))) -} - -// findEdges returns the closest edges to the given target that satisfy the given options. -// -// Note that if opts.includeInteriors is true, the results may include some -// entries with edgeID == -1. This indicates that the target intersects the -// indexed polygon with the given shapeID. -func (e *EdgeQuery) findEdges(target distanceTarget, opts *queryOptions) []EdgeQueryResult { - e.findEdgesInternal(target, opts) - // TODO(roberts): Revisit this if there is a heap or other sorted and - // uniquing datastructure we can use instead of just a slice. - e.results = sortAndUniqueResults(e.results) - if len(e.results) > e.opts.maxResults { - e.results = e.results[:e.opts.maxResults] - } - return e.results -} - -func sortAndUniqueResults(results []EdgeQueryResult) []EdgeQueryResult { - if len(results) <= 1 { - return results - } - sort.Slice(results, func(i, j int) bool { return results[i].Less(results[j]) }) - j := 0 - for i := 1; i < len(results); i++ { - if results[j] == results[i] { - continue - } - j++ - results[j] = results[i] - } - return results[:j+1] -} - -// findEdge is a convenience method that returns exactly one edge, and if no -// edges satisfy the given search criteria, then a default Result is returned. -// -// This is primarily to ease the usage of a number of the methods in the DistanceTargets -// and in EdgeQuery. -func (e *EdgeQuery) findEdge(target distanceTarget, opts *queryOptions) EdgeQueryResult { - opts.MaxResults(1) - e.findEdges(target, opts) - if len(e.results) > 0 { - return e.results[0] - } - - return newEdgeQueryResult(target) -} - -// findEdgesInternal does the actual work for find edges that match the given options. -func (e *EdgeQuery) findEdgesInternal(target distanceTarget, opts *queryOptions) { - e.target = target - e.opts = opts - - e.testedEdges = make(map[ShapeEdgeID]uint32) - e.distanceLimit = target.distance().fromChordAngle(opts.distanceLimit) - e.results = make([]EdgeQueryResult, 0) - - if e.distanceLimit == target.distance().zero() { - return - } - - if opts.includeInteriors { - shapeIDs := map[int32]struct{}{} - e.target.visitContainingShapes(e.index, func(containingShape Shape, targetPoint Point) bool { - shapeIDs[e.index.idForShape(containingShape)] = struct{}{} - return len(shapeIDs) < opts.maxResults - }) - for shapeID := range shapeIDs { - e.addResult(EdgeQueryResult{target.distance().zero(), shapeID, -1}) - } - - if e.distanceLimit == target.distance().zero() { - return - } - } - - // If maxError > 0 and the target takes advantage of this, then we may - // need to adjust the distance estimates to ShapeIndex cells to ensure - // that they are always a lower bound on the true distance. For example, - // suppose max_distance == 100, maxError == 30, and we compute the distance - // to the target from some cell C0 as d(C0) == 80. Then because the target - // takes advantage of maxError, the true distance could be as low as 50. - // In order not to miss edges contained by such cells, we need to subtract - // maxError from the distance estimates. This behavior is controlled by - // the useConservativeCellDistance flag. - // - // However there is one important case where this adjustment is not - // necessary, namely when distanceLimit < maxError, This is because - // maxError only affects the algorithm once at least maxEdges edges - // have been found that satisfy the given distance limit. At that point, - // maxError is subtracted from distanceLimit in order to ensure that - // any further matches are closer by at least that amount. But when - // distanceLimit < maxError, this reduces the distance limit to 0, - // i.e. all remaining candidate cells and edges can safely be discarded. - // (This is how IsDistanceLess() and friends are implemented.) - targetUsesMaxError := opts.maxError != target.distance().zero().chordAngle() && - e.target.setMaxError(opts.maxError) - - // Note that we can't compare maxError and distanceLimit directly - // because one is a Delta and one is a Distance. Instead we subtract them. - e.useConservativeCellDistance = targetUsesMaxError && - (e.distanceLimit == target.distance().infinity() || - target.distance().zero().less(e.distanceLimit.sub(target.distance().fromChordAngle(opts.maxError)))) - - // Use the brute force algorithm if the index is small enough. To avoid - // spending too much time counting edges when there are many shapes, we stop - // counting once there are too many edges. We may need to recount the edges - // if we later see a target with a larger brute force edge threshold. - minOptimizedEdges := e.target.maxBruteForceIndexSize() + 1 - if minOptimizedEdges > e.indexNumEdgesLimit && e.indexNumEdges >= e.indexNumEdgesLimit { - e.indexNumEdges = e.index.NumEdgesUpTo(minOptimizedEdges) - e.indexNumEdgesLimit = minOptimizedEdges - } - - if opts.useBruteForce || e.indexNumEdges < minOptimizedEdges { - // The brute force algorithm already considers each edge exactly once. - e.avoidDuplicates = false - e.findEdgesBruteForce() - } else { - // If the target takes advantage of maxError then we need to avoid - // duplicate edges explicitly. (Otherwise it happens automatically.) - e.avoidDuplicates = targetUsesMaxError && opts.maxResults > 1 - e.findEdgesOptimized() - } -} - -func (e *EdgeQuery) addResult(r EdgeQueryResult) { - e.results = append(e.results, r) - if e.opts.maxResults == 1 { - // Optimization for the common case where only the closest edge is wanted. - e.distanceLimit = r.distance.sub(e.target.distance().fromChordAngle(e.opts.maxError)) - } - // TODO(roberts): Add the other if/else cases when a different data structure - // is used for the results. -} - -func (e *EdgeQuery) maybeAddResult(shape Shape, edgeID int32) { - if _, ok := e.testedEdges[ShapeEdgeID{e.index.idForShape(shape), edgeID}]; e.avoidDuplicates && !ok { - return - } - edge := shape.Edge(int(edgeID)) - dist := e.distanceLimit - - if dist, ok := e.target.updateDistanceToEdge(edge, dist); ok { - e.addResult(EdgeQueryResult{dist, e.index.idForShape(shape), edgeID}) - } -} - -func (e *EdgeQuery) findEdgesBruteForce() { - // Range over all shapes in the index. Does order matter here? if so - // switch to for i = 0 .. n? - for _, shape := range e.index.shapes { - // TODO(roberts): can this happen if we are only ranging over current entries? - if shape == nil { - continue - } - for edgeID := int32(0); edgeID < int32(shape.NumEdges()); edgeID++ { - e.maybeAddResult(shape, edgeID) - } - } -} - -func (e *EdgeQuery) findEdgesOptimized() { - e.initQueue() - // Repeatedly find the closest Cell to "target" and either split it into - // its four children or process all of its edges. - for e.queue.size() > 0 { - // We need to copy the top entry before removing it, and we need to - // remove it before adding any new entries to the queue. - entry := e.queue.pop() - - if !entry.distance.less(e.distanceLimit) { - e.queue.reset() // Clear any remaining entries. - break - } - // If this is already known to be an index cell, just process it. - if entry.indexCell != nil { - e.processEdges(entry) - continue - } - // Otherwise split the cell into its four children. Before adding a - // child back to the queue, we first check whether it is empty. We do - // this in two seek operations rather than four by seeking to the key - // between children 0 and 1 and to the key between children 2 and 3. - id := entry.id - ch := id.Children() - e.iter.seek(ch[1].RangeMin()) - - if !e.iter.Done() && e.iter.CellID() <= ch[1].RangeMax() { - e.processOrEnqueueCell(ch[1]) - } - if e.iter.Prev() && e.iter.CellID() >= id.RangeMin() { - e.processOrEnqueueCell(ch[0]) - } - - e.iter.seek(ch[3].RangeMin()) - if !e.iter.Done() && e.iter.CellID() <= id.RangeMax() { - e.processOrEnqueueCell(ch[3]) - } - if e.iter.Prev() && e.iter.CellID() >= ch[2].RangeMin() { - e.processOrEnqueueCell(ch[2]) - } - } -} - -func (e *EdgeQuery) processOrEnqueueCell(id CellID) { - if e.iter.CellID() == id { - e.processOrEnqueue(id, e.iter.IndexCell()) - } else { - e.processOrEnqueue(id, nil) - } -} - -func (e *EdgeQuery) initQueue() { - if len(e.indexCovering) == 0 { - // We delay iterator initialization until now to make queries on very - // small indexes a bit faster (i.e., where brute force is used). - e.iter = NewShapeIndexIterator(e.index) - } - - // Optimization: if the user is searching for just the closest edge, and the - // center of the target's bounding cap happens to intersect an index cell, - // then we try to limit the search region to a small disc by first - // processing the edges in that cell. This sets distance_limit_ based on - // the closest edge in that cell, which we can then use to limit the search - // area. This means that the cell containing "target" will be processed - // twice, but in general this is still faster. - // - // TODO(roberts): Even if the cap center is not contained, we could still - // process one or both of the adjacent index cells in CellID order, - // provided that those cells are closer than distanceLimit. - cb := e.target.capBound() - if cb.IsEmpty() { - return // Empty target. - } - - if e.opts.maxResults == 1 && e.iter.LocatePoint(cb.Center()) { - e.processEdges(&queryQueueEntry{ - distance: e.target.distance().zero(), - id: e.iter.CellID(), - indexCell: e.iter.IndexCell(), - }) - // Skip the rest of the algorithm if we found an intersecting edge. - if e.distanceLimit == e.target.distance().zero() { - return - } - } - if len(e.indexCovering) == 0 { - e.initCovering() - } - if e.distanceLimit == e.target.distance().infinity() { - // Start with the precomputed index covering. - for i := range e.indexCovering { - e.processOrEnqueue(e.indexCovering[i], e.indexCells[i]) - } - } else { - // Compute a covering of the search disc and intersect it with the - // precomputed index covering. - coverer := &RegionCoverer{MaxCells: 4, LevelMod: 1, MaxLevel: maxLevel} - - radius := cb.Radius() + e.distanceLimit.chordAngleBound().Angle() - searchCB := CapFromCenterAngle(cb.Center(), radius) - maxDistCover := coverer.FastCovering(searchCB) - e.initialCells = CellUnionFromIntersection(e.indexCovering, maxDistCover) - - // Now we need to clean up the initial cells to ensure that they all - // contain at least one cell of the ShapeIndex. (Some may not intersect - // the index at all, while other may be descendants of an index cell.) - i, j := 0, 0 - for i < len(e.initialCells) { - idI := e.initialCells[i] - // Find the top-level cell that contains this initial cell. - for e.indexCovering[j].RangeMax() < idI { - j++ - } - - idJ := e.indexCovering[j] - if idI == idJ { - // This initial cell is one of the top-level cells. Use the - // precomputed ShapeIndexCell pointer to avoid an index seek. - e.processOrEnqueue(idJ, e.indexCells[j]) - i++ - j++ - } else { - // This initial cell is a proper descendant of a top-level cell. - // Check how it is related to the cells of the ShapeIndex. - r := e.iter.LocateCellID(idI) - if r == Indexed { - // This cell is a descendant of an index cell. - // Enqueue it and skip any other initial cells - // that are also descendants of this cell. - e.processOrEnqueue(e.iter.CellID(), e.iter.IndexCell()) - lastID := e.iter.CellID().RangeMax() - for i < len(e.initialCells) && e.initialCells[i] <= lastID { - i++ - } - } else { - // Enqueue the cell only if it contains at least one index cell. - if r == Subdivided { - e.processOrEnqueue(idI, nil) - } - i++ - } - } - } - } -} - -func (e *EdgeQuery) initCovering() { - // Find the range of Cells spanned by the index and choose a level such - // that the entire index can be covered with just a few cells. These are - // the "top-level" cells. There are two cases: - // - // - If the index spans more than one face, then there is one top-level cell - // per spanned face, just big enough to cover the index cells on that face. - // - // - If the index spans only one face, then we find the smallest cell "C" - // that covers the index cells on that face (just like the case above). - // Then for each of the 4 children of "C", if the child contains any index - // cells then we create a top-level cell that is big enough to just fit - // those index cells (i.e., shrinking the child as much as possible to fit - // its contents). This essentially replicates what would happen if we - // started with "C" as the top-level cell, since "C" would immediately be - // split, except that we take the time to prune the children further since - // this will save work on every subsequent query. - e.indexCovering = make([]CellID, 0, 6) - - // TODO(roberts): Use a single iterator below and save position - // information using pair {CellID, ShapeIndexCell}. - next := NewShapeIndexIterator(e.index, IteratorBegin) - last := NewShapeIndexIterator(e.index, IteratorEnd) - last.Prev() - if next.CellID() != last.CellID() { - // The index has at least two cells. Choose a level such that the entire - // index can be spanned with at most 6 cells (if the index spans multiple - // faces) or 4 cells (it the index spans a single face). - level, ok := next.CellID().CommonAncestorLevel(last.CellID()) - if !ok { - level = 0 - } else { - level++ - } - - // Visit each potential top-level cell except the last (handled below). - lastID := last.CellID().Parent(level) - for id := next.CellID().Parent(level); id != lastID; id = id.Next() { - // Skip any top-level cells that don't contain any index cells. - if id.RangeMax() < next.CellID() { - continue - } - - // Find the range of index cells contained by this top-level cell and - // then shrink the cell if necessary so that it just covers them. - cellFirst := next.clone() - next.seek(id.RangeMax().Next()) - cellLast := next.clone() - cellLast.Prev() - e.addInitialRange(cellFirst, cellLast) - break - } - - } - e.addInitialRange(next, last) -} - -// addInitialRange adds an entry to the indexCovering and indexCells that covers the given -// inclusive range of cells. -// -// This requires that first and last cells have a common ancestor. -func (e *EdgeQuery) addInitialRange(first, last *ShapeIndexIterator) { - if first.CellID() == last.CellID() { - // The range consists of a single index cell. - e.indexCovering = append(e.indexCovering, first.CellID()) - e.indexCells = append(e.indexCells, first.IndexCell()) - } else { - // Add the lowest common ancestor of the given range. - level, _ := first.CellID().CommonAncestorLevel(last.CellID()) - e.indexCovering = append(e.indexCovering, first.CellID().Parent(level)) - e.indexCells = append(e.indexCells, nil) - } -} - -// processEdges processes all the edges of the given index cell. -func (e *EdgeQuery) processEdges(entry *queryQueueEntry) { - for _, clipped := range entry.indexCell.shapes { - shape := e.index.Shape(clipped.shapeID) - for j := 0; j < clipped.numEdges(); j++ { - e.maybeAddResult(shape, int32(clipped.edges[j])) - } - } -} - -// processOrEnqueue the given cell id and indexCell. -func (e *EdgeQuery) processOrEnqueue(id CellID, indexCell *ShapeIndexCell) { - if indexCell != nil { - // If this index cell has only a few edges, then it is faster to check - // them directly rather than computing the minimum distance to the Cell - // and inserting it into the queue. - const minEdgesToEnqueue = 10 - numEdges := indexCell.numEdges() - if numEdges == 0 { - return - } - if numEdges < minEdgesToEnqueue { - // Set "distance" to zero to avoid the expense of computing it. - e.processEdges(&queryQueueEntry{ - distance: e.target.distance().zero(), - id: id, - indexCell: indexCell, - }) - return - } - } - - // Otherwise compute the minimum distance to any point in the cell and add - // it to the priority queue. - cell := CellFromCellID(id) - dist := e.distanceLimit - var ok bool - if dist, ok = e.target.updateDistanceToCell(cell, dist); !ok { - return - } - if e.useConservativeCellDistance { - // Ensure that "distance" is a lower bound on the true distance to the cell. - dist = dist.sub(e.target.distance().fromChordAngle(e.opts.maxError)) - } - - e.queue.push(&queryQueueEntry{ - distance: dist, - id: id, - indexCell: indexCell, - }) -} - -// TODO(roberts): Remaining pieces -// GetEdge -// Project |