summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/edge_query.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/edge_query.go')
-rw-r--r--vendor/github.com/golang/geo/s2/edge_query.go803
1 files changed, 0 insertions, 803 deletions
diff --git a/vendor/github.com/golang/geo/s2/edge_query.go b/vendor/github.com/golang/geo/s2/edge_query.go
deleted file mode 100644
index 2d443d1ce..000000000
--- a/vendor/github.com/golang/geo/s2/edge_query.go
+++ /dev/null
@@ -1,803 +0,0 @@
-// Copyright 2019 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "sort"
-
- "github.com/golang/geo/s1"
-)
-
-// EdgeQueryOptions holds the options for controlling how EdgeQuery operates.
-//
-// Options can be chained together builder-style:
-//
-// opts = NewClosestEdgeQueryOptions().
-// MaxResults(1).
-// DistanceLimit(s1.ChordAngleFromAngle(3 * s1.Degree)).
-// MaxError(s1.ChordAngleFromAngle(0.001 * s1.Degree))
-// query = NewClosestEdgeQuery(index, opts)
-//
-// or set individually:
-//
-// opts = NewClosestEdgeQueryOptions()
-// opts.IncludeInteriors(true)
-//
-// or just inline:
-//
-// query = NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions().MaxResults(3))
-//
-// If you pass a nil as the options you get the default values for the options.
-type EdgeQueryOptions struct {
- common *queryOptions
-}
-
-// DistanceLimit specifies that only edges whose distance to the target is
-// within, this distance should be returned. Edges whose distance is equal
-// are not returned. To include values that are equal, specify the limit with
-// the next largest representable distance. i.e. limit.Successor().
-func (e *EdgeQueryOptions) DistanceLimit(limit s1.ChordAngle) *EdgeQueryOptions {
- e.common = e.common.DistanceLimit(limit)
- return e
-}
-
-// IncludeInteriors specifies whether polygon interiors should be
-// included when measuring distances.
-func (e *EdgeQueryOptions) IncludeInteriors(x bool) *EdgeQueryOptions {
- e.common = e.common.IncludeInteriors(x)
- return e
-}
-
-// UseBruteForce sets or disables the use of brute force in a query.
-func (e *EdgeQueryOptions) UseBruteForce(x bool) *EdgeQueryOptions {
- e.common = e.common.UseBruteForce(x)
- return e
-}
-
-// MaxError specifies that edges up to dist away than the true
-// matching edges may be substituted in the result set, as long as such
-// edges satisfy all the remaining search criteria (such as DistanceLimit).
-// This option only has an effect if MaxResults is also specified;
-// otherwise all edges closer than MaxDistance will always be returned.
-func (e *EdgeQueryOptions) MaxError(dist s1.ChordAngle) *EdgeQueryOptions {
- e.common = e.common.MaxError(dist)
- return e
-}
-
-// MaxResults specifies that at most MaxResults edges should be returned.
-// This must be at least 1.
-func (e *EdgeQueryOptions) MaxResults(n int) *EdgeQueryOptions {
- e.common = e.common.MaxResults(n)
- return e
-}
-
-// NewClosestEdgeQueryOptions returns a set of edge query options suitable
-// for performing closest edge queries.
-func NewClosestEdgeQueryOptions() *EdgeQueryOptions {
- return &EdgeQueryOptions{
- common: newQueryOptions(minDistance(0)),
- }
-}
-
-// NewFurthestEdgeQueryOptions returns a set of edge query options suitable
-// for performing furthest edge queries.
-func NewFurthestEdgeQueryOptions() *EdgeQueryOptions {
- return &EdgeQueryOptions{
- common: newQueryOptions(maxDistance(0)),
- }
-}
-
-// EdgeQueryResult represents an edge that meets the target criteria for the
-// query. Note the following special cases:
-//
-// - ShapeID >= 0 && EdgeID < 0 represents the interior of a shape.
-// Such results may be returned when the option IncludeInteriors is true.
-//
-// - ShapeID < 0 && EdgeID < 0 is returned to indicate that no edge
-// satisfies the requested query options.
-type EdgeQueryResult struct {
- distance distance
- shapeID int32
- edgeID int32
-}
-
-// Distance reports the distance between the edge in this shape that satisfied
-// the query's parameters.
-func (e EdgeQueryResult) Distance() s1.ChordAngle { return e.distance.chordAngle() }
-
-// ShapeID reports the ID of the Shape this result is for.
-func (e EdgeQueryResult) ShapeID() int32 { return e.shapeID }
-
-// EdgeID reports the ID of the edge in the results Shape.
-func (e EdgeQueryResult) EdgeID() int32 { return e.edgeID }
-
-// newEdgeQueryResult returns a result instance with default values.
-func newEdgeQueryResult(target distanceTarget) EdgeQueryResult {
- return EdgeQueryResult{
- distance: target.distance().infinity(),
- shapeID: -1,
- edgeID: -1,
- }
-}
-
-// IsInterior reports if this result represents the interior of a Shape.
-func (e EdgeQueryResult) IsInterior() bool {
- return e.shapeID >= 0 && e.edgeID < 0
-}
-
-// IsEmpty reports if this has no edge that satisfies the given edge query options.
-// This result is only returned in one special case, namely when FindEdge() does
-// not find any suitable edges.
-func (e EdgeQueryResult) IsEmpty() bool {
- return e.shapeID < 0
-}
-
-// Less reports if this results is less that the other first by distance,
-// then by (shapeID, edgeID). This is used for sorting.
-func (e EdgeQueryResult) Less(other EdgeQueryResult) bool {
- if e.distance.chordAngle() != other.distance.chordAngle() {
- return e.distance.less(other.distance)
- }
- if e.shapeID != other.shapeID {
- return e.shapeID < other.shapeID
- }
- return e.edgeID < other.edgeID
-}
-
-// EdgeQuery is used to find the edge(s) between two geometries that match a
-// given set of options. It is flexible enough so that it can be adapted to
-// compute maximum distances and even potentially Hausdorff distances.
-//
-// By using the appropriate options, this type can answer questions such as:
-//
-// - Find the minimum distance between two geometries A and B.
-// - Find all edges of geometry A that are within a distance D of geometry B.
-// - Find the k edges of geometry A that are closest to a given point P.
-//
-// You can also specify whether polygons should include their interiors (i.e.,
-// if a point is contained by a polygon, should the distance be zero or should
-// it be measured to the polygon boundary?)
-//
-// The input geometries may consist of any number of points, polylines, and
-// polygons (collectively referred to as "shapes"). Shapes do not need to be
-// disjoint; they may overlap or intersect arbitrarily. The implementation is
-// designed to be fast for both simple and complex geometries.
-type EdgeQuery struct {
- index *ShapeIndex
- opts *queryOptions
- target distanceTarget
-
- // True if opts.maxError must be subtracted from ShapeIndex cell distances
- // in order to ensure that such distances are measured conservatively. This
- // is true only if the target takes advantage of maxError in order to
- // return faster results, and 0 < maxError < distanceLimit.
- useConservativeCellDistance bool
-
- // The decision about whether to use the brute force algorithm is based on
- // counting the total number of edges in the index. However if the index
- // contains a large number of shapes, this in itself might take too long.
- // So instead we only count edges up to (maxBruteForceIndexSize() + 1)
- // for the current target type (stored as indexNumEdgesLimit).
- indexNumEdges int
- indexNumEdgesLimit int
-
- // The distance beyond which we can safely ignore further candidate edges.
- // (Candidates that are exactly at the limit are ignored; this is more
- // efficient for UpdateMinDistance and should not affect clients since
- // distance measurements have a small amount of error anyway.)
- //
- // Initially this is the same as the maximum distance specified by the user,
- // but it can also be updated by the algorithm (see maybeAddResult).
- distanceLimit distance
-
- // The current set of results of the query.
- results []EdgeQueryResult
-
- // This field is true when duplicates must be avoided explicitly. This
- // is achieved by maintaining a separate set keyed by (shapeID, edgeID)
- // only, and checking whether each edge is in that set before computing the
- // distance to it.
- avoidDuplicates bool
-
- // testedEdges tracks the set of shape and edges that have already been tested.
- testedEdges map[ShapeEdgeID]uint32
-
- // For the optimized algorihm we precompute the top-level CellIDs that
- // will be added to the priority queue. There can be at most 6 of these
- // cells. Essentially this is just a covering of the indexed edges, except
- // that we also store pointers to the corresponding ShapeIndexCells to
- // reduce the number of index seeks required.
- indexCovering []CellID
- indexCells []*ShapeIndexCell
-
- // The algorithm maintains a priority queue of unprocessed CellIDs, sorted
- // in increasing order of distance from the target.
- queue *queryQueue
-
- iter *ShapeIndexIterator
- maxDistanceCovering []CellID
- initialCells []CellID
-}
-
-// NewClosestEdgeQuery returns an EdgeQuery that is used for finding the
-// closest edge(s) to a given Point, Edge, Cell, or geometry collection.
-//
-// You can find either the k closest edges, or all edges within a given
-// radius, or both (i.e., the k closest edges up to a given maximum radius).
-// E.g. to find all the edges within 5 kilometers, set the DistanceLimit in
-// the options.
-//
-// By default *all* edges are returned, so you should always specify either
-// MaxResults or DistanceLimit options or both.
-//
-// Note that by default, distances are measured to the boundary and interior
-// of polygons. For example, if a point is inside a polygon then its distance
-// is zero. To change this behavior, set the IncludeInteriors option to false.
-//
-// If you only need to test whether the distance is above or below a given
-// threshold (e.g., 10 km), you can use the IsDistanceLess() method. This is
-// much faster than actually calculating the distance with FindEdge,
-// since the implementation can stop as soon as it can prove that the minimum
-// distance is either above or below the threshold.
-func NewClosestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery {
- if opts == nil {
- opts = NewClosestEdgeQueryOptions()
- }
- e := &EdgeQuery{
- testedEdges: make(map[ShapeEdgeID]uint32),
- index: index,
- opts: opts.common,
- queue: newQueryQueue(),
- }
-
- return e
-}
-
-// NewFurthestEdgeQuery returns an EdgeQuery that is used for finding the
-// furthest edge(s) to a given Point, Edge, Cell, or geometry collection.
-//
-// The furthest edge is defined as the one which maximizes the
-// distance from any point on that edge to any point on the target geometry.
-//
-// Similar to the example in NewClosestEdgeQuery, to find the 5 furthest edges
-// from a given Point:
-func NewFurthestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery {
- if opts == nil {
- opts = NewFurthestEdgeQueryOptions()
- }
- e := &EdgeQuery{
- testedEdges: make(map[ShapeEdgeID]uint32),
- index: index,
- opts: opts.common,
- queue: newQueryQueue(),
- }
-
- return e
-}
-
-// Reset resets the state of this EdgeQuery.
-func (e *EdgeQuery) Reset() {
- e.indexNumEdges = 0
- e.indexNumEdgesLimit = 0
- e.indexCovering = nil
- e.indexCells = nil
-}
-
-// FindEdges returns the edges for the given target that satisfy the current options.
-//
-// Note that if opts.IncludeInteriors is true, the results may include some
-// entries with edge_id == -1. This indicates that the target intersects
-// the indexed polygon with the given ShapeID.
-func (e *EdgeQuery) FindEdges(target distanceTarget) []EdgeQueryResult {
- return e.findEdges(target, e.opts)
-}
-
-// Distance reports the distance to the target. If the index or target is empty,
-// returns the EdgeQuery's maximal sentinel.
-//
-// Use IsDistanceLess()/IsDistanceGreater() if you only want to compare the
-// distance against a threshold value, since it is often much faster.
-func (e *EdgeQuery) Distance(target distanceTarget) s1.ChordAngle {
- return e.findEdge(target, e.opts).Distance()
-}
-
-// IsDistanceLess reports if the distance to target is less than the given limit.
-//
-// This method is usually much faster than Distance(), since it is much
-// less work to determine whether the minimum distance is above or below a
-// threshold than it is to calculate the actual minimum distance.
-//
-// If you wish to check if the distance is less than or equal to the limit, use:
-//
-// query.IsDistanceLess(target, limit.Successor())
-//
-func (e *EdgeQuery) IsDistanceLess(target distanceTarget, limit s1.ChordAngle) bool {
- opts := e.opts
- opts = opts.MaxResults(1).
- DistanceLimit(limit).
- MaxError(s1.StraightChordAngle)
- return !e.findEdge(target, opts).IsEmpty()
-}
-
-// IsDistanceGreater reports if the distance to target is greater than limit.
-//
-// This method is usually much faster than Distance, since it is much
-// less work to determine whether the maximum distance is above or below a
-// threshold than it is to calculate the actual maximum distance.
-// If you wish to check if the distance is less than or equal to the limit, use:
-//
-// query.IsDistanceGreater(target, limit.Predecessor())
-//
-func (e *EdgeQuery) IsDistanceGreater(target distanceTarget, limit s1.ChordAngle) bool {
- return e.IsDistanceLess(target, limit)
-}
-
-// IsConservativeDistanceLessOrEqual reports if the distance to target is less
-// or equal to the limit, where the limit has been expanded by the maximum error
-// for the distance calculation.
-//
-// For example, suppose that we want to test whether two geometries might
-// intersect each other after they are snapped together using Builder
-// (using the IdentitySnapFunction with a given "snap radius"). Since
-// Builder uses exact distance predicates (s2predicates), we need to
-// measure the distance between the two geometries conservatively. If the
-// distance is definitely greater than "snap radius", then the geometries
-// are guaranteed to not intersect after snapping.
-func (e *EdgeQuery) IsConservativeDistanceLessOrEqual(target distanceTarget, limit s1.ChordAngle) bool {
- return e.IsDistanceLess(target, limit.Expanded(minUpdateDistanceMaxError(limit)))
-}
-
-// IsConservativeDistanceGreaterOrEqual reports if the distance to the target is greater
-// than or equal to the given limit with some small tolerance.
-func (e *EdgeQuery) IsConservativeDistanceGreaterOrEqual(target distanceTarget, limit s1.ChordAngle) bool {
- return e.IsDistanceGreater(target, limit.Expanded(-minUpdateDistanceMaxError(limit)))
-}
-
-// findEdges returns the closest edges to the given target that satisfy the given options.
-//
-// Note that if opts.includeInteriors is true, the results may include some
-// entries with edgeID == -1. This indicates that the target intersects the
-// indexed polygon with the given shapeID.
-func (e *EdgeQuery) findEdges(target distanceTarget, opts *queryOptions) []EdgeQueryResult {
- e.findEdgesInternal(target, opts)
- // TODO(roberts): Revisit this if there is a heap or other sorted and
- // uniquing datastructure we can use instead of just a slice.
- e.results = sortAndUniqueResults(e.results)
- if len(e.results) > e.opts.maxResults {
- e.results = e.results[:e.opts.maxResults]
- }
- return e.results
-}
-
-func sortAndUniqueResults(results []EdgeQueryResult) []EdgeQueryResult {
- if len(results) <= 1 {
- return results
- }
- sort.Slice(results, func(i, j int) bool { return results[i].Less(results[j]) })
- j := 0
- for i := 1; i < len(results); i++ {
- if results[j] == results[i] {
- continue
- }
- j++
- results[j] = results[i]
- }
- return results[:j+1]
-}
-
-// findEdge is a convenience method that returns exactly one edge, and if no
-// edges satisfy the given search criteria, then a default Result is returned.
-//
-// This is primarily to ease the usage of a number of the methods in the DistanceTargets
-// and in EdgeQuery.
-func (e *EdgeQuery) findEdge(target distanceTarget, opts *queryOptions) EdgeQueryResult {
- opts.MaxResults(1)
- e.findEdges(target, opts)
- if len(e.results) > 0 {
- return e.results[0]
- }
-
- return newEdgeQueryResult(target)
-}
-
-// findEdgesInternal does the actual work for find edges that match the given options.
-func (e *EdgeQuery) findEdgesInternal(target distanceTarget, opts *queryOptions) {
- e.target = target
- e.opts = opts
-
- e.testedEdges = make(map[ShapeEdgeID]uint32)
- e.distanceLimit = target.distance().fromChordAngle(opts.distanceLimit)
- e.results = make([]EdgeQueryResult, 0)
-
- if e.distanceLimit == target.distance().zero() {
- return
- }
-
- if opts.includeInteriors {
- shapeIDs := map[int32]struct{}{}
- e.target.visitContainingShapes(e.index, func(containingShape Shape, targetPoint Point) bool {
- shapeIDs[e.index.idForShape(containingShape)] = struct{}{}
- return len(shapeIDs) < opts.maxResults
- })
- for shapeID := range shapeIDs {
- e.addResult(EdgeQueryResult{target.distance().zero(), shapeID, -1})
- }
-
- if e.distanceLimit == target.distance().zero() {
- return
- }
- }
-
- // If maxError > 0 and the target takes advantage of this, then we may
- // need to adjust the distance estimates to ShapeIndex cells to ensure
- // that they are always a lower bound on the true distance. For example,
- // suppose max_distance == 100, maxError == 30, and we compute the distance
- // to the target from some cell C0 as d(C0) == 80. Then because the target
- // takes advantage of maxError, the true distance could be as low as 50.
- // In order not to miss edges contained by such cells, we need to subtract
- // maxError from the distance estimates. This behavior is controlled by
- // the useConservativeCellDistance flag.
- //
- // However there is one important case where this adjustment is not
- // necessary, namely when distanceLimit < maxError, This is because
- // maxError only affects the algorithm once at least maxEdges edges
- // have been found that satisfy the given distance limit. At that point,
- // maxError is subtracted from distanceLimit in order to ensure that
- // any further matches are closer by at least that amount. But when
- // distanceLimit < maxError, this reduces the distance limit to 0,
- // i.e. all remaining candidate cells and edges can safely be discarded.
- // (This is how IsDistanceLess() and friends are implemented.)
- targetUsesMaxError := opts.maxError != target.distance().zero().chordAngle() &&
- e.target.setMaxError(opts.maxError)
-
- // Note that we can't compare maxError and distanceLimit directly
- // because one is a Delta and one is a Distance. Instead we subtract them.
- e.useConservativeCellDistance = targetUsesMaxError &&
- (e.distanceLimit == target.distance().infinity() ||
- target.distance().zero().less(e.distanceLimit.sub(target.distance().fromChordAngle(opts.maxError))))
-
- // Use the brute force algorithm if the index is small enough. To avoid
- // spending too much time counting edges when there are many shapes, we stop
- // counting once there are too many edges. We may need to recount the edges
- // if we later see a target with a larger brute force edge threshold.
- minOptimizedEdges := e.target.maxBruteForceIndexSize() + 1
- if minOptimizedEdges > e.indexNumEdgesLimit && e.indexNumEdges >= e.indexNumEdgesLimit {
- e.indexNumEdges = e.index.NumEdgesUpTo(minOptimizedEdges)
- e.indexNumEdgesLimit = minOptimizedEdges
- }
-
- if opts.useBruteForce || e.indexNumEdges < minOptimizedEdges {
- // The brute force algorithm already considers each edge exactly once.
- e.avoidDuplicates = false
- e.findEdgesBruteForce()
- } else {
- // If the target takes advantage of maxError then we need to avoid
- // duplicate edges explicitly. (Otherwise it happens automatically.)
- e.avoidDuplicates = targetUsesMaxError && opts.maxResults > 1
- e.findEdgesOptimized()
- }
-}
-
-func (e *EdgeQuery) addResult(r EdgeQueryResult) {
- e.results = append(e.results, r)
- if e.opts.maxResults == 1 {
- // Optimization for the common case where only the closest edge is wanted.
- e.distanceLimit = r.distance.sub(e.target.distance().fromChordAngle(e.opts.maxError))
- }
- // TODO(roberts): Add the other if/else cases when a different data structure
- // is used for the results.
-}
-
-func (e *EdgeQuery) maybeAddResult(shape Shape, edgeID int32) {
- if _, ok := e.testedEdges[ShapeEdgeID{e.index.idForShape(shape), edgeID}]; e.avoidDuplicates && !ok {
- return
- }
- edge := shape.Edge(int(edgeID))
- dist := e.distanceLimit
-
- if dist, ok := e.target.updateDistanceToEdge(edge, dist); ok {
- e.addResult(EdgeQueryResult{dist, e.index.idForShape(shape), edgeID})
- }
-}
-
-func (e *EdgeQuery) findEdgesBruteForce() {
- // Range over all shapes in the index. Does order matter here? if so
- // switch to for i = 0 .. n?
- for _, shape := range e.index.shapes {
- // TODO(roberts): can this happen if we are only ranging over current entries?
- if shape == nil {
- continue
- }
- for edgeID := int32(0); edgeID < int32(shape.NumEdges()); edgeID++ {
- e.maybeAddResult(shape, edgeID)
- }
- }
-}
-
-func (e *EdgeQuery) findEdgesOptimized() {
- e.initQueue()
- // Repeatedly find the closest Cell to "target" and either split it into
- // its four children or process all of its edges.
- for e.queue.size() > 0 {
- // We need to copy the top entry before removing it, and we need to
- // remove it before adding any new entries to the queue.
- entry := e.queue.pop()
-
- if !entry.distance.less(e.distanceLimit) {
- e.queue.reset() // Clear any remaining entries.
- break
- }
- // If this is already known to be an index cell, just process it.
- if entry.indexCell != nil {
- e.processEdges(entry)
- continue
- }
- // Otherwise split the cell into its four children. Before adding a
- // child back to the queue, we first check whether it is empty. We do
- // this in two seek operations rather than four by seeking to the key
- // between children 0 and 1 and to the key between children 2 and 3.
- id := entry.id
- ch := id.Children()
- e.iter.seek(ch[1].RangeMin())
-
- if !e.iter.Done() && e.iter.CellID() <= ch[1].RangeMax() {
- e.processOrEnqueueCell(ch[1])
- }
- if e.iter.Prev() && e.iter.CellID() >= id.RangeMin() {
- e.processOrEnqueueCell(ch[0])
- }
-
- e.iter.seek(ch[3].RangeMin())
- if !e.iter.Done() && e.iter.CellID() <= id.RangeMax() {
- e.processOrEnqueueCell(ch[3])
- }
- if e.iter.Prev() && e.iter.CellID() >= ch[2].RangeMin() {
- e.processOrEnqueueCell(ch[2])
- }
- }
-}
-
-func (e *EdgeQuery) processOrEnqueueCell(id CellID) {
- if e.iter.CellID() == id {
- e.processOrEnqueue(id, e.iter.IndexCell())
- } else {
- e.processOrEnqueue(id, nil)
- }
-}
-
-func (e *EdgeQuery) initQueue() {
- if len(e.indexCovering) == 0 {
- // We delay iterator initialization until now to make queries on very
- // small indexes a bit faster (i.e., where brute force is used).
- e.iter = NewShapeIndexIterator(e.index)
- }
-
- // Optimization: if the user is searching for just the closest edge, and the
- // center of the target's bounding cap happens to intersect an index cell,
- // then we try to limit the search region to a small disc by first
- // processing the edges in that cell. This sets distance_limit_ based on
- // the closest edge in that cell, which we can then use to limit the search
- // area. This means that the cell containing "target" will be processed
- // twice, but in general this is still faster.
- //
- // TODO(roberts): Even if the cap center is not contained, we could still
- // process one or both of the adjacent index cells in CellID order,
- // provided that those cells are closer than distanceLimit.
- cb := e.target.capBound()
- if cb.IsEmpty() {
- return // Empty target.
- }
-
- if e.opts.maxResults == 1 && e.iter.LocatePoint(cb.Center()) {
- e.processEdges(&queryQueueEntry{
- distance: e.target.distance().zero(),
- id: e.iter.CellID(),
- indexCell: e.iter.IndexCell(),
- })
- // Skip the rest of the algorithm if we found an intersecting edge.
- if e.distanceLimit == e.target.distance().zero() {
- return
- }
- }
- if len(e.indexCovering) == 0 {
- e.initCovering()
- }
- if e.distanceLimit == e.target.distance().infinity() {
- // Start with the precomputed index covering.
- for i := range e.indexCovering {
- e.processOrEnqueue(e.indexCovering[i], e.indexCells[i])
- }
- } else {
- // Compute a covering of the search disc and intersect it with the
- // precomputed index covering.
- coverer := &RegionCoverer{MaxCells: 4, LevelMod: 1, MaxLevel: maxLevel}
-
- radius := cb.Radius() + e.distanceLimit.chordAngleBound().Angle()
- searchCB := CapFromCenterAngle(cb.Center(), radius)
- maxDistCover := coverer.FastCovering(searchCB)
- e.initialCells = CellUnionFromIntersection(e.indexCovering, maxDistCover)
-
- // Now we need to clean up the initial cells to ensure that they all
- // contain at least one cell of the ShapeIndex. (Some may not intersect
- // the index at all, while other may be descendants of an index cell.)
- i, j := 0, 0
- for i < len(e.initialCells) {
- idI := e.initialCells[i]
- // Find the top-level cell that contains this initial cell.
- for e.indexCovering[j].RangeMax() < idI {
- j++
- }
-
- idJ := e.indexCovering[j]
- if idI == idJ {
- // This initial cell is one of the top-level cells. Use the
- // precomputed ShapeIndexCell pointer to avoid an index seek.
- e.processOrEnqueue(idJ, e.indexCells[j])
- i++
- j++
- } else {
- // This initial cell is a proper descendant of a top-level cell.
- // Check how it is related to the cells of the ShapeIndex.
- r := e.iter.LocateCellID(idI)
- if r == Indexed {
- // This cell is a descendant of an index cell.
- // Enqueue it and skip any other initial cells
- // that are also descendants of this cell.
- e.processOrEnqueue(e.iter.CellID(), e.iter.IndexCell())
- lastID := e.iter.CellID().RangeMax()
- for i < len(e.initialCells) && e.initialCells[i] <= lastID {
- i++
- }
- } else {
- // Enqueue the cell only if it contains at least one index cell.
- if r == Subdivided {
- e.processOrEnqueue(idI, nil)
- }
- i++
- }
- }
- }
- }
-}
-
-func (e *EdgeQuery) initCovering() {
- // Find the range of Cells spanned by the index and choose a level such
- // that the entire index can be covered with just a few cells. These are
- // the "top-level" cells. There are two cases:
- //
- // - If the index spans more than one face, then there is one top-level cell
- // per spanned face, just big enough to cover the index cells on that face.
- //
- // - If the index spans only one face, then we find the smallest cell "C"
- // that covers the index cells on that face (just like the case above).
- // Then for each of the 4 children of "C", if the child contains any index
- // cells then we create a top-level cell that is big enough to just fit
- // those index cells (i.e., shrinking the child as much as possible to fit
- // its contents). This essentially replicates what would happen if we
- // started with "C" as the top-level cell, since "C" would immediately be
- // split, except that we take the time to prune the children further since
- // this will save work on every subsequent query.
- e.indexCovering = make([]CellID, 0, 6)
-
- // TODO(roberts): Use a single iterator below and save position
- // information using pair {CellID, ShapeIndexCell}.
- next := NewShapeIndexIterator(e.index, IteratorBegin)
- last := NewShapeIndexIterator(e.index, IteratorEnd)
- last.Prev()
- if next.CellID() != last.CellID() {
- // The index has at least two cells. Choose a level such that the entire
- // index can be spanned with at most 6 cells (if the index spans multiple
- // faces) or 4 cells (it the index spans a single face).
- level, ok := next.CellID().CommonAncestorLevel(last.CellID())
- if !ok {
- level = 0
- } else {
- level++
- }
-
- // Visit each potential top-level cell except the last (handled below).
- lastID := last.CellID().Parent(level)
- for id := next.CellID().Parent(level); id != lastID; id = id.Next() {
- // Skip any top-level cells that don't contain any index cells.
- if id.RangeMax() < next.CellID() {
- continue
- }
-
- // Find the range of index cells contained by this top-level cell and
- // then shrink the cell if necessary so that it just covers them.
- cellFirst := next.clone()
- next.seek(id.RangeMax().Next())
- cellLast := next.clone()
- cellLast.Prev()
- e.addInitialRange(cellFirst, cellLast)
- break
- }
-
- }
- e.addInitialRange(next, last)
-}
-
-// addInitialRange adds an entry to the indexCovering and indexCells that covers the given
-// inclusive range of cells.
-//
-// This requires that first and last cells have a common ancestor.
-func (e *EdgeQuery) addInitialRange(first, last *ShapeIndexIterator) {
- if first.CellID() == last.CellID() {
- // The range consists of a single index cell.
- e.indexCovering = append(e.indexCovering, first.CellID())
- e.indexCells = append(e.indexCells, first.IndexCell())
- } else {
- // Add the lowest common ancestor of the given range.
- level, _ := first.CellID().CommonAncestorLevel(last.CellID())
- e.indexCovering = append(e.indexCovering, first.CellID().Parent(level))
- e.indexCells = append(e.indexCells, nil)
- }
-}
-
-// processEdges processes all the edges of the given index cell.
-func (e *EdgeQuery) processEdges(entry *queryQueueEntry) {
- for _, clipped := range entry.indexCell.shapes {
- shape := e.index.Shape(clipped.shapeID)
- for j := 0; j < clipped.numEdges(); j++ {
- e.maybeAddResult(shape, int32(clipped.edges[j]))
- }
- }
-}
-
-// processOrEnqueue the given cell id and indexCell.
-func (e *EdgeQuery) processOrEnqueue(id CellID, indexCell *ShapeIndexCell) {
- if indexCell != nil {
- // If this index cell has only a few edges, then it is faster to check
- // them directly rather than computing the minimum distance to the Cell
- // and inserting it into the queue.
- const minEdgesToEnqueue = 10
- numEdges := indexCell.numEdges()
- if numEdges == 0 {
- return
- }
- if numEdges < minEdgesToEnqueue {
- // Set "distance" to zero to avoid the expense of computing it.
- e.processEdges(&queryQueueEntry{
- distance: e.target.distance().zero(),
- id: id,
- indexCell: indexCell,
- })
- return
- }
- }
-
- // Otherwise compute the minimum distance to any point in the cell and add
- // it to the priority queue.
- cell := CellFromCellID(id)
- dist := e.distanceLimit
- var ok bool
- if dist, ok = e.target.updateDistanceToCell(cell, dist); !ok {
- return
- }
- if e.useConservativeCellDistance {
- // Ensure that "distance" is a lower bound on the true distance to the cell.
- dist = dist.sub(e.target.distance().fromChordAngle(e.opts.maxError))
- }
-
- e.queue.push(&queryQueueEntry{
- distance: dist,
- id: id,
- indexCell: indexCell,
- })
-}
-
-// TODO(roberts): Remaining pieces
-// GetEdge
-// Project