summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/loop.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/loop.go')
-rw-r--r--vendor/github.com/golang/geo/s2/loop.go1833
1 files changed, 0 insertions, 1833 deletions
diff --git a/vendor/github.com/golang/geo/s2/loop.go b/vendor/github.com/golang/geo/s2/loop.go
deleted file mode 100644
index bfb55ec1d..000000000
--- a/vendor/github.com/golang/geo/s2/loop.go
+++ /dev/null
@@ -1,1833 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// Loop represents a simple spherical polygon. It consists of a sequence
-// of vertices where the first vertex is implicitly connected to the
-// last. All loops are defined to have a CCW orientation, i.e. the interior of
-// the loop is on the left side of the edges. This implies that a clockwise
-// loop enclosing a small area is interpreted to be a CCW loop enclosing a
-// very large area.
-//
-// Loops are not allowed to have any duplicate vertices (whether adjacent or
-// not). Non-adjacent edges are not allowed to intersect, and furthermore edges
-// of length 180 degrees are not allowed (i.e., adjacent vertices cannot be
-// antipodal). Loops must have at least 3 vertices (except for the "empty" and
-// "full" loops discussed below).
-//
-// There are two special loops: the "empty" loop contains no points and the
-// "full" loop contains all points. These loops do not have any edges, but to
-// preserve the invariant that every loop can be represented as a vertex
-// chain, they are defined as having exactly one vertex each (see EmptyLoop
-// and FullLoop).
-type Loop struct {
- vertices []Point
-
- // originInside keeps a precomputed value whether this loop contains the origin
- // versus computing from the set of vertices every time.
- originInside bool
-
- // depth is the nesting depth of this Loop if it is contained by a Polygon
- // or other shape and is used to determine if this loop represents a hole
- // or a filled in portion.
- depth int
-
- // bound is a conservative bound on all points contained by this loop.
- // If l.ContainsPoint(P), then l.bound.ContainsPoint(P).
- bound Rect
-
- // Since bound is not exact, it is possible that a loop A contains
- // another loop B whose bounds are slightly larger. subregionBound
- // has been expanded sufficiently to account for this error, i.e.
- // if A.Contains(B), then A.subregionBound.Contains(B.bound).
- subregionBound Rect
-
- // index is the spatial index for this Loop.
- index *ShapeIndex
-}
-
-// LoopFromPoints constructs a loop from the given points.
-func LoopFromPoints(pts []Point) *Loop {
- l := &Loop{
- vertices: pts,
- index: NewShapeIndex(),
- }
-
- l.initOriginAndBound()
- return l
-}
-
-// LoopFromCell constructs a loop corresponding to the given cell.
-//
-// Note that the loop and cell *do not* contain exactly the same set of
-// points, because Loop and Cell have slightly different definitions of
-// point containment. For example, a Cell vertex is contained by all
-// four neighboring Cells, but it is contained by exactly one of four
-// Loops constructed from those cells. As another example, the cell
-// coverings of cell and LoopFromCell(cell) will be different, because the
-// loop contains points on its boundary that actually belong to other cells
-// (i.e., the covering will include a layer of neighboring cells).
-func LoopFromCell(c Cell) *Loop {
- l := &Loop{
- vertices: []Point{
- c.Vertex(0),
- c.Vertex(1),
- c.Vertex(2),
- c.Vertex(3),
- },
- index: NewShapeIndex(),
- }
-
- l.initOriginAndBound()
- return l
-}
-
-// These two points are used for the special Empty and Full loops.
-var (
- emptyLoopPoint = Point{r3.Vector{X: 0, Y: 0, Z: 1}}
- fullLoopPoint = Point{r3.Vector{X: 0, Y: 0, Z: -1}}
-)
-
-// EmptyLoop returns a special "empty" loop.
-func EmptyLoop() *Loop {
- return LoopFromPoints([]Point{emptyLoopPoint})
-}
-
-// FullLoop returns a special "full" loop.
-func FullLoop() *Loop {
- return LoopFromPoints([]Point{fullLoopPoint})
-}
-
-// initOriginAndBound sets the origin containment for the given point and then calls
-// the initialization for the bounds objects and the internal index.
-func (l *Loop) initOriginAndBound() {
- if len(l.vertices) < 3 {
- // Check for the special "empty" and "full" loops (which have one vertex).
- if !l.isEmptyOrFull() {
- l.originInside = false
- return
- }
-
- // This is the special empty or full loop, so the origin depends on if
- // the vertex is in the southern hemisphere or not.
- l.originInside = l.vertices[0].Z < 0
- } else {
- // Point containment testing is done by counting edge crossings starting
- // at a fixed point on the sphere (OriginPoint). We need to know whether
- // the reference point (OriginPoint) is inside or outside the loop before
- // we can construct the ShapeIndex. We do this by first guessing that
- // it is outside, and then seeing whether we get the correct containment
- // result for vertex 1. If the result is incorrect, the origin must be
- // inside the loop.
- //
- // A loop with consecutive vertices A,B,C contains vertex B if and only if
- // the fixed vector R = B.Ortho is contained by the wedge ABC. The
- // wedge is closed at A and open at C, i.e. the point B is inside the loop
- // if A = R but not if C = R. This convention is required for compatibility
- // with VertexCrossing. (Note that we can't use OriginPoint
- // as the fixed vector because of the possibility that B == OriginPoint.)
- l.originInside = false
- v1Inside := OrderedCCW(Point{l.vertices[1].Ortho()}, l.vertices[0], l.vertices[2], l.vertices[1])
- if v1Inside != l.ContainsPoint(l.vertices[1]) {
- l.originInside = true
- }
- }
-
- // We *must* call initBound before initializing the index, because
- // initBound calls ContainsPoint which does a bounds check before using
- // the index.
- l.initBound()
-
- // Create a new index and add us to it.
- l.index = NewShapeIndex()
- l.index.Add(l)
-}
-
-// initBound sets up the approximate bounding Rects for this loop.
-func (l *Loop) initBound() {
- if len(l.vertices) == 0 {
- *l = *EmptyLoop()
- return
- }
- // Check for the special "empty" and "full" loops.
- if l.isEmptyOrFull() {
- if l.IsEmpty() {
- l.bound = EmptyRect()
- } else {
- l.bound = FullRect()
- }
- l.subregionBound = l.bound
- return
- }
-
- // The bounding rectangle of a loop is not necessarily the same as the
- // bounding rectangle of its vertices. First, the maximal latitude may be
- // attained along the interior of an edge. Second, the loop may wrap
- // entirely around the sphere (e.g. a loop that defines two revolutions of a
- // candy-cane stripe). Third, the loop may include one or both poles.
- // Note that a small clockwise loop near the equator contains both poles.
- bounder := NewRectBounder()
- for i := 0; i <= len(l.vertices); i++ { // add vertex 0 twice
- bounder.AddPoint(l.Vertex(i))
- }
- b := bounder.RectBound()
-
- if l.ContainsPoint(Point{r3.Vector{0, 0, 1}}) {
- b = Rect{r1.Interval{b.Lat.Lo, math.Pi / 2}, s1.FullInterval()}
- }
- // If a loop contains the south pole, then either it wraps entirely
- // around the sphere (full longitude range), or it also contains the
- // north pole in which case b.Lng.IsFull() due to the test above.
- // Either way, we only need to do the south pole containment test if
- // b.Lng.IsFull().
- if b.Lng.IsFull() && l.ContainsPoint(Point{r3.Vector{0, 0, -1}}) {
- b.Lat.Lo = -math.Pi / 2
- }
- l.bound = b
- l.subregionBound = ExpandForSubregions(l.bound)
-}
-
-// Validate checks whether this is a valid loop.
-func (l *Loop) Validate() error {
- if err := l.findValidationErrorNoIndex(); err != nil {
- return err
- }
-
- // Check for intersections between non-adjacent edges (including at vertices)
- // TODO(roberts): Once shapeutil gets findAnyCrossing uncomment this.
- // return findAnyCrossing(l.index)
-
- return nil
-}
-
-// findValidationErrorNoIndex reports whether this is not a valid loop, but
-// skips checks that would require a ShapeIndex to be built for the loop. This
-// is primarily used by Polygon to do validation so it doesn't trigger the
-// creation of unneeded ShapeIndices.
-func (l *Loop) findValidationErrorNoIndex() error {
- // All vertices must be unit length.
- for i, v := range l.vertices {
- if !v.IsUnit() {
- return fmt.Errorf("vertex %d is not unit length", i)
- }
- }
-
- // Loops must have at least 3 vertices (except for empty and full).
- if len(l.vertices) < 3 {
- if l.isEmptyOrFull() {
- return nil // Skip remaining tests.
- }
- return fmt.Errorf("non-empty, non-full loops must have at least 3 vertices")
- }
-
- // Loops are not allowed to have any duplicate vertices or edge crossings.
- // We split this check into two parts. First we check that no edge is
- // degenerate (identical endpoints). Then we check that there are no
- // intersections between non-adjacent edges (including at vertices). The
- // second check needs the ShapeIndex, so it does not fall within the scope
- // of this method.
- for i, v := range l.vertices {
- if v == l.Vertex(i+1) {
- return fmt.Errorf("edge %d is degenerate (duplicate vertex)", i)
- }
-
- // Antipodal vertices are not allowed.
- if other := (Point{l.Vertex(i + 1).Mul(-1)}); v == other {
- return fmt.Errorf("vertices %d and %d are antipodal", i,
- (i+1)%len(l.vertices))
- }
- }
-
- return nil
-}
-
-// Contains reports whether the region contained by this loop is a superset of the
-// region contained by the given other loop.
-func (l *Loop) Contains(o *Loop) bool {
- // For a loop A to contain the loop B, all of the following must
- // be true:
- //
- // (1) There are no edge crossings between A and B except at vertices.
- //
- // (2) At every vertex that is shared between A and B, the local edge
- // ordering implies that A contains B.
- //
- // (3) If there are no shared vertices, then A must contain a vertex of B
- // and B must not contain a vertex of A. (An arbitrary vertex may be
- // chosen in each case.)
- //
- // The second part of (3) is necessary to detect the case of two loops whose
- // union is the entire sphere, i.e. two loops that contains each other's
- // boundaries but not each other's interiors.
- if !l.subregionBound.Contains(o.bound) {
- return false
- }
-
- // Special cases to handle either loop being empty or full.
- if l.isEmptyOrFull() || o.isEmptyOrFull() {
- return l.IsFull() || o.IsEmpty()
- }
-
- // Check whether there are any edge crossings, and also check the loop
- // relationship at any shared vertices.
- relation := &containsRelation{}
- if hasCrossingRelation(l, o, relation) {
- return false
- }
-
- // There are no crossings, and if there are any shared vertices then A
- // contains B locally at each shared vertex.
- if relation.foundSharedVertex {
- return true
- }
-
- // Since there are no edge intersections or shared vertices, we just need to
- // test condition (3) above. We can skip this test if we discovered that A
- // contains at least one point of B while checking for edge crossings.
- if !l.ContainsPoint(o.Vertex(0)) {
- return false
- }
-
- // We still need to check whether (A union B) is the entire sphere.
- // Normally this check is very cheap due to the bounding box precondition.
- if (o.subregionBound.Contains(l.bound) || o.bound.Union(l.bound).IsFull()) &&
- o.ContainsPoint(l.Vertex(0)) {
- return false
- }
- return true
-}
-
-// Intersects reports whether the region contained by this loop intersects the region
-// contained by the other loop.
-func (l *Loop) Intersects(o *Loop) bool {
- // Given two loops, A and B, A.Intersects(B) if and only if !A.Complement().Contains(B).
- //
- // This code is similar to Contains, but is optimized for the case
- // where both loops enclose less than half of the sphere.
- if !l.bound.Intersects(o.bound) {
- return false
- }
-
- // Check whether there are any edge crossings, and also check the loop
- // relationship at any shared vertices.
- relation := &intersectsRelation{}
- if hasCrossingRelation(l, o, relation) {
- return true
- }
- if relation.foundSharedVertex {
- return false
- }
-
- // Since there are no edge intersections or shared vertices, the loops
- // intersect only if A contains B, B contains A, or the two loops contain
- // each other's boundaries. These checks are usually cheap because of the
- // bounding box preconditions. Note that neither loop is empty (because of
- // the bounding box check above), so it is safe to access vertex(0).
-
- // Check whether A contains B, or A and B contain each other's boundaries.
- // (Note that A contains all the vertices of B in either case.)
- if l.subregionBound.Contains(o.bound) || l.bound.Union(o.bound).IsFull() {
- if l.ContainsPoint(o.Vertex(0)) {
- return true
- }
- }
- // Check whether B contains A.
- if o.subregionBound.Contains(l.bound) {
- if o.ContainsPoint(l.Vertex(0)) {
- return true
- }
- }
- return false
-}
-
-// Equal reports whether two loops have the same vertices in the same linear order
-// (i.e., cyclic rotations are not allowed).
-func (l *Loop) Equal(other *Loop) bool {
- if len(l.vertices) != len(other.vertices) {
- return false
- }
-
- for i, v := range l.vertices {
- if v != other.Vertex(i) {
- return false
- }
- }
- return true
-}
-
-// BoundaryEqual reports whether the two loops have the same boundary. This is
-// true if and only if the loops have the same vertices in the same cyclic order
-// (i.e., the vertices may be cyclically rotated). The empty and full loops are
-// considered to have different boundaries.
-func (l *Loop) BoundaryEqual(o *Loop) bool {
- if len(l.vertices) != len(o.vertices) {
- return false
- }
-
- // Special case to handle empty or full loops. Since they have the same
- // number of vertices, if one loop is empty/full then so is the other.
- if l.isEmptyOrFull() {
- return l.IsEmpty() == o.IsEmpty()
- }
-
- // Loop through the vertices to find the first of ours that matches the
- // starting vertex of the other loop. Use that offset to then 'align' the
- // vertices for comparison.
- for offset, vertex := range l.vertices {
- if vertex == o.Vertex(0) {
- // There is at most one starting offset since loop vertices are unique.
- for i := 0; i < len(l.vertices); i++ {
- if l.Vertex(i+offset) != o.Vertex(i) {
- return false
- }
- }
- return true
- }
- }
- return false
-}
-
-// compareBoundary returns +1 if this loop contains the boundary of the other loop,
-// -1 if it excludes the boundary of the other, and 0 if the boundaries of the two
-// loops cross. Shared edges are handled as follows:
-//
-// If XY is a shared edge, define Reversed(XY) to be true if XY
-// appears in opposite directions in both loops.
-// Then this loop contains XY if and only if Reversed(XY) == the other loop is a hole.
-// (Intuitively, this checks whether this loop contains a vanishingly small region
-// extending from the boundary of the other toward the interior of the polygon to
-// which the other belongs.)
-//
-// This function is used for testing containment and intersection of
-// multi-loop polygons. Note that this method is not symmetric, since the
-// result depends on the direction of this loop but not on the direction of
-// the other loop (in the absence of shared edges).
-//
-// This requires that neither loop is empty, and if other loop IsFull, then it must not
-// be a hole.
-func (l *Loop) compareBoundary(o *Loop) int {
- // The bounds must intersect for containment or crossing.
- if !l.bound.Intersects(o.bound) {
- return -1
- }
-
- // Full loops are handled as though the loop surrounded the entire sphere.
- if l.IsFull() {
- return 1
- }
- if o.IsFull() {
- return -1
- }
-
- // Check whether there are any edge crossings, and also check the loop
- // relationship at any shared vertices.
- relation := newCompareBoundaryRelation(o.IsHole())
- if hasCrossingRelation(l, o, relation) {
- return 0
- }
- if relation.foundSharedVertex {
- if relation.containsEdge {
- return 1
- }
- return -1
- }
-
- // There are no edge intersections or shared vertices, so we can check
- // whether A contains an arbitrary vertex of B.
- if l.ContainsPoint(o.Vertex(0)) {
- return 1
- }
- return -1
-}
-
-// ContainsOrigin reports true if this loop contains s2.OriginPoint().
-func (l *Loop) ContainsOrigin() bool {
- return l.originInside
-}
-
-// ReferencePoint returns the reference point for this loop.
-func (l *Loop) ReferencePoint() ReferencePoint {
- return OriginReferencePoint(l.originInside)
-}
-
-// NumEdges returns the number of edges in this shape.
-func (l *Loop) NumEdges() int {
- if l.isEmptyOrFull() {
- return 0
- }
- return len(l.vertices)
-}
-
-// Edge returns the endpoints for the given edge index.
-func (l *Loop) Edge(i int) Edge {
- return Edge{l.Vertex(i), l.Vertex(i + 1)}
-}
-
-// NumChains reports the number of contiguous edge chains in the Loop.
-func (l *Loop) NumChains() int {
- if l.IsEmpty() {
- return 0
- }
- return 1
-}
-
-// Chain returns the i-th edge chain in the Shape.
-func (l *Loop) Chain(chainID int) Chain {
- return Chain{0, l.NumEdges()}
-}
-
-// ChainEdge returns the j-th edge of the i-th edge chain.
-func (l *Loop) ChainEdge(chainID, offset int) Edge {
- return Edge{l.Vertex(offset), l.Vertex(offset + 1)}
-}
-
-// ChainPosition returns a ChainPosition pair (i, j) such that edgeID is the
-// j-th edge of the Loop.
-func (l *Loop) ChainPosition(edgeID int) ChainPosition {
- return ChainPosition{0, edgeID}
-}
-
-// Dimension returns the dimension of the geometry represented by this Loop.
-func (l *Loop) Dimension() int { return 2 }
-
-func (l *Loop) typeTag() typeTag { return typeTagNone }
-
-func (l *Loop) privateInterface() {}
-
-// IsEmpty reports true if this is the special empty loop that contains no points.
-func (l *Loop) IsEmpty() bool {
- return l.isEmptyOrFull() && !l.ContainsOrigin()
-}
-
-// IsFull reports true if this is the special full loop that contains all points.
-func (l *Loop) IsFull() bool {
- return l.isEmptyOrFull() && l.ContainsOrigin()
-}
-
-// isEmptyOrFull reports true if this loop is either the "empty" or "full" special loops.
-func (l *Loop) isEmptyOrFull() bool {
- return len(l.vertices) == 1
-}
-
-// Vertices returns the vertices in the loop.
-func (l *Loop) Vertices() []Point {
- return l.vertices
-}
-
-// RectBound returns a tight bounding rectangle. If the loop contains the point,
-// the bound also contains it.
-func (l *Loop) RectBound() Rect {
- return l.bound
-}
-
-// CapBound returns a bounding cap that may have more padding than the corresponding
-// RectBound. The bound is conservative such that if the loop contains a point P,
-// the bound also contains it.
-func (l *Loop) CapBound() Cap {
- return l.bound.CapBound()
-}
-
-// Vertex returns the vertex for the given index. For convenience, the vertex indices
-// wrap automatically for methods that do index math such as Edge.
-// i.e., Vertex(NumEdges() + n) is the same as Vertex(n).
-func (l *Loop) Vertex(i int) Point {
- return l.vertices[i%len(l.vertices)]
-}
-
-// OrientedVertex returns the vertex in reverse order if the loop represents a polygon
-// hole. For example, arguments 0, 1, 2 are mapped to vertices n-1, n-2, n-3, where
-// n == len(vertices). This ensures that the interior of the polygon is always to
-// the left of the vertex chain.
-//
-// This requires: 0 <= i < 2 * len(vertices)
-func (l *Loop) OrientedVertex(i int) Point {
- j := i - len(l.vertices)
- if j < 0 {
- j = i
- }
- if l.IsHole() {
- j = len(l.vertices) - 1 - j
- }
- return l.Vertex(j)
-}
-
-// NumVertices returns the number of vertices in this loop.
-func (l *Loop) NumVertices() int {
- return len(l.vertices)
-}
-
-// bruteForceContainsPoint reports if the given point is contained by this loop.
-// This method does not use the ShapeIndex, so it is only preferable below a certain
-// size of loop.
-func (l *Loop) bruteForceContainsPoint(p Point) bool {
- origin := OriginPoint()
- inside := l.originInside
- crosser := NewChainEdgeCrosser(origin, p, l.Vertex(0))
- for i := 1; i <= len(l.vertices); i++ { // add vertex 0 twice
- inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(i))
- }
- return inside
-}
-
-// ContainsPoint returns true if the loop contains the point.
-func (l *Loop) ContainsPoint(p Point) bool {
- if !l.index.IsFresh() && !l.bound.ContainsPoint(p) {
- return false
- }
-
- // For small loops it is faster to just check all the crossings. We also
- // use this method during loop initialization because InitOriginAndBound()
- // calls Contains() before InitIndex(). Otherwise, we keep track of the
- // number of calls to Contains() and only build the index when enough calls
- // have been made so that we think it is worth the effort. Note that the
- // code below is structured so that if many calls are made in parallel only
- // one thread builds the index, while the rest continue using brute force
- // until the index is actually available.
-
- const maxBruteForceVertices = 32
- // TODO(roberts): add unindexed contains calls tracking
-
- if len(l.index.shapes) == 0 || // Index has not been initialized yet.
- len(l.vertices) <= maxBruteForceVertices {
- return l.bruteForceContainsPoint(p)
- }
-
- // Otherwise, look up the point in the index.
- it := l.index.Iterator()
- if !it.LocatePoint(p) {
- return false
- }
- return l.iteratorContainsPoint(it, p)
-}
-
-// ContainsCell reports whether the given Cell is contained by this Loop.
-func (l *Loop) ContainsCell(target Cell) bool {
- it := l.index.Iterator()
- relation := it.LocateCellID(target.ID())
-
- // If "target" is disjoint from all index cells, it is not contained.
- // Similarly, if "target" is subdivided into one or more index cells then it
- // is not contained, since index cells are subdivided only if they (nearly)
- // intersect a sufficient number of edges. (But note that if "target" itself
- // is an index cell then it may be contained, since it could be a cell with
- // no edges in the loop interior.)
- if relation != Indexed {
- return false
- }
-
- // Otherwise check if any edges intersect "target".
- if l.boundaryApproxIntersects(it, target) {
- return false
- }
-
- // Otherwise check if the loop contains the center of "target".
- return l.iteratorContainsPoint(it, target.Center())
-}
-
-// IntersectsCell reports whether this Loop intersects the given cell.
-func (l *Loop) IntersectsCell(target Cell) bool {
- it := l.index.Iterator()
- relation := it.LocateCellID(target.ID())
-
- // If target does not overlap any index cell, there is no intersection.
- if relation == Disjoint {
- return false
- }
- // If target is subdivided into one or more index cells, there is an
- // intersection to within the ShapeIndex error bound (see Contains).
- if relation == Subdivided {
- return true
- }
- // If target is an index cell, there is an intersection because index cells
- // are created only if they have at least one edge or they are entirely
- // contained by the loop.
- if it.CellID() == target.id {
- return true
- }
- // Otherwise check if any edges intersect target.
- if l.boundaryApproxIntersects(it, target) {
- return true
- }
- // Otherwise check if the loop contains the center of target.
- return l.iteratorContainsPoint(it, target.Center())
-}
-
-// CellUnionBound computes a covering of the Loop.
-func (l *Loop) CellUnionBound() []CellID {
- return l.CapBound().CellUnionBound()
-}
-
-// boundaryApproxIntersects reports if the loop's boundary intersects target.
-// It may also return true when the loop boundary does not intersect target but
-// some edge comes within the worst-case error tolerance.
-//
-// This requires that it.Locate(target) returned Indexed.
-func (l *Loop) boundaryApproxIntersects(it *ShapeIndexIterator, target Cell) bool {
- aClipped := it.IndexCell().findByShapeID(0)
-
- // If there are no edges, there is no intersection.
- if len(aClipped.edges) == 0 {
- return false
- }
-
- // We can save some work if target is the index cell itself.
- if it.CellID() == target.ID() {
- return true
- }
-
- // Otherwise check whether any of the edges intersect target.
- maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist)
- bound := target.BoundUV().ExpandedByMargin(maxError)
- for _, ai := range aClipped.edges {
- v0, v1, ok := ClipToPaddedFace(l.Vertex(ai), l.Vertex(ai+1), target.Face(), maxError)
- if ok && edgeIntersectsRect(v0, v1, bound) {
- return true
- }
- }
- return false
-}
-
-// iteratorContainsPoint reports if the iterator that is positioned at the ShapeIndexCell
-// that may contain p, contains the point p.
-func (l *Loop) iteratorContainsPoint(it *ShapeIndexIterator, p Point) bool {
- // Test containment by drawing a line segment from the cell center to the
- // given point and counting edge crossings.
- aClipped := it.IndexCell().findByShapeID(0)
- inside := aClipped.containsCenter
- if len(aClipped.edges) > 0 {
- center := it.Center()
- crosser := NewEdgeCrosser(center, p)
- aiPrev := -2
- for _, ai := range aClipped.edges {
- if ai != aiPrev+1 {
- crosser.RestartAt(l.Vertex(ai))
- }
- aiPrev = ai
- inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(ai+1))
- }
- }
- return inside
-}
-
-// RegularLoop creates a loop with the given number of vertices, all
-// located on a circle of the specified radius around the given center.
-func RegularLoop(center Point, radius s1.Angle, numVertices int) *Loop {
- return RegularLoopForFrame(getFrame(center), radius, numVertices)
-}
-
-// RegularLoopForFrame creates a loop centered around the z-axis of the given
-// coordinate frame, with the first vertex in the direction of the positive x-axis.
-func RegularLoopForFrame(frame matrix3x3, radius s1.Angle, numVertices int) *Loop {
- return LoopFromPoints(regularPointsForFrame(frame, radius, numVertices))
-}
-
-// CanonicalFirstVertex returns a first index and a direction (either +1 or -1)
-// such that the vertex sequence (first, first+dir, ..., first+(n-1)*dir) does
-// not change when the loop vertex order is rotated or inverted. This allows the
-// loop vertices to be traversed in a canonical order. The return values are
-// chosen such that (first, ..., first+n*dir) are in the range [0, 2*n-1] as
-// expected by the Vertex method.
-func (l *Loop) CanonicalFirstVertex() (firstIdx, direction int) {
- firstIdx = 0
- n := len(l.vertices)
- for i := 1; i < n; i++ {
- if l.Vertex(i).Cmp(l.Vertex(firstIdx).Vector) == -1 {
- firstIdx = i
- }
- }
-
- // 0 <= firstIdx <= n-1, so (firstIdx+n*dir) <= 2*n-1.
- if l.Vertex(firstIdx+1).Cmp(l.Vertex(firstIdx+n-1).Vector) == -1 {
- return firstIdx, 1
- }
-
- // n <= firstIdx <= 2*n-1, so (firstIdx+n*dir) >= 0.
- firstIdx += n
- return firstIdx, -1
-}
-
-// TurningAngle returns the sum of the turning angles at each vertex. The return
-// value is positive if the loop is counter-clockwise, negative if the loop is
-// clockwise, and zero if the loop is a great circle. Degenerate and
-// nearly-degenerate loops are handled consistently with Sign. So for example,
-// if a loop has zero area (i.e., it is a very small CCW loop) then the turning
-// angle will always be negative.
-//
-// This quantity is also called the "geodesic curvature" of the loop.
-func (l *Loop) TurningAngle() float64 {
- // For empty and full loops, we return the limit value as the loop area
- // approaches 0 or 4*Pi respectively.
- if l.isEmptyOrFull() {
- if l.ContainsOrigin() {
- return -2 * math.Pi
- }
- return 2 * math.Pi
- }
-
- // Don't crash even if the loop is not well-defined.
- if len(l.vertices) < 3 {
- return 0
- }
-
- // To ensure that we get the same result when the vertex order is rotated,
- // and that the result is negated when the vertex order is reversed, we need
- // to add up the individual turn angles in a consistent order. (In general,
- // adding up a set of numbers in a different order can change the sum due to
- // rounding errors.)
- //
- // Furthermore, if we just accumulate an ordinary sum then the worst-case
- // error is quadratic in the number of vertices. (This can happen with
- // spiral shapes, where the partial sum of the turning angles can be linear
- // in the number of vertices.) To avoid this we use the Kahan summation
- // algorithm (http://en.wikipedia.org/wiki/Kahan_summation_algorithm).
- n := len(l.vertices)
- i, dir := l.CanonicalFirstVertex()
- sum := TurnAngle(l.Vertex((i+n-dir)%n), l.Vertex(i), l.Vertex((i+dir)%n))
-
- compensation := s1.Angle(0)
- for n-1 > 0 {
- i += dir
- angle := TurnAngle(l.Vertex(i-dir), l.Vertex(i), l.Vertex(i+dir))
- oldSum := sum
- angle += compensation
- sum += angle
- compensation = (oldSum - sum) + angle
- n--
- }
-
- const maxCurvature = 2*math.Pi - 4*dblEpsilon
-
- return math.Max(-maxCurvature, math.Min(maxCurvature, float64(dir)*float64(sum+compensation)))
-}
-
-// turningAngleMaxError return the maximum error in TurningAngle. The value is not
-// constant; it depends on the loop.
-func (l *Loop) turningAngleMaxError() float64 {
- // The maximum error can be bounded as follows:
- // 3.00 * dblEpsilon for RobustCrossProd(b, a)
- // 3.00 * dblEpsilon for RobustCrossProd(c, b)
- // 3.25 * dblEpsilon for Angle()
- // 2.00 * dblEpsilon for each addition in the Kahan summation
- // ------------------
- // 11.25 * dblEpsilon
- maxErrorPerVertex := 11.25 * dblEpsilon
- return maxErrorPerVertex * float64(len(l.vertices))
-}
-
-// IsHole reports whether this loop represents a hole in its containing polygon.
-func (l *Loop) IsHole() bool { return l.depth&1 != 0 }
-
-// Sign returns -1 if this Loop represents a hole in its containing polygon, and +1 otherwise.
-func (l *Loop) Sign() int {
- if l.IsHole() {
- return -1
- }
- return 1
-}
-
-// IsNormalized reports whether the loop area is at most 2*pi. Degenerate loops are
-// handled consistently with Sign, i.e., if a loop can be
-// expressed as the union of degenerate or nearly-degenerate CCW triangles,
-// then it will always be considered normalized.
-func (l *Loop) IsNormalized() bool {
- // Optimization: if the longitude span is less than 180 degrees, then the
- // loop covers less than half the sphere and is therefore normalized.
- if l.bound.Lng.Length() < math.Pi {
- return true
- }
-
- // We allow some error so that hemispheres are always considered normalized.
- // TODO(roberts): This is no longer required by the Polygon implementation,
- // so alternatively we could create the invariant that a loop is normalized
- // if and only if its complement is not normalized.
- return l.TurningAngle() >= -l.turningAngleMaxError()
-}
-
-// Normalize inverts the loop if necessary so that the area enclosed by the loop
-// is at most 2*pi.
-func (l *Loop) Normalize() {
- if !l.IsNormalized() {
- l.Invert()
- }
-}
-
-// Invert reverses the order of the loop vertices, effectively complementing the
-// region represented by the loop. For example, the loop ABCD (with edges
-// AB, BC, CD, DA) becomes the loop DCBA (with edges DC, CB, BA, AD).
-// Notice that the last edge is the same in both cases except that its
-// direction has been reversed.
-func (l *Loop) Invert() {
- l.index.Reset()
- if l.isEmptyOrFull() {
- if l.IsFull() {
- l.vertices[0] = emptyLoopPoint
- } else {
- l.vertices[0] = fullLoopPoint
- }
- } else {
- // For non-special loops, reverse the slice of vertices.
- for i := len(l.vertices)/2 - 1; i >= 0; i-- {
- opp := len(l.vertices) - 1 - i
- l.vertices[i], l.vertices[opp] = l.vertices[opp], l.vertices[i]
- }
- }
-
- // originInside must be set correctly before building the ShapeIndex.
- l.originInside = !l.originInside
- if l.bound.Lat.Lo > -math.Pi/2 && l.bound.Lat.Hi < math.Pi/2 {
- // The complement of this loop contains both poles.
- l.bound = FullRect()
- l.subregionBound = l.bound
- } else {
- l.initBound()
- }
- l.index.Add(l)
-}
-
-// findVertex returns the index of the vertex at the given Point in the range
-// 1..numVertices, and a boolean indicating if a vertex was found.
-func (l *Loop) findVertex(p Point) (index int, ok bool) {
- const notFound = 0
- if len(l.vertices) < 10 {
- // Exhaustive search for loops below a small threshold.
- for i := 1; i <= len(l.vertices); i++ {
- if l.Vertex(i) == p {
- return i, true
- }
- }
- return notFound, false
- }
-
- it := l.index.Iterator()
- if !it.LocatePoint(p) {
- return notFound, false
- }
-
- aClipped := it.IndexCell().findByShapeID(0)
- for i := aClipped.numEdges() - 1; i >= 0; i-- {
- ai := aClipped.edges[i]
- if l.Vertex(ai) == p {
- if ai == 0 {
- return len(l.vertices), true
- }
- return ai, true
- }
-
- if l.Vertex(ai+1) == p {
- return ai + 1, true
- }
- }
- return notFound, false
-}
-
-// ContainsNested reports whether the given loops is contained within this loop.
-// This function does not test for edge intersections. The two loops must meet
-// all of the Polygon requirements; for example this implies that their
-// boundaries may not cross or have any shared edges (although they may have
-// shared vertices).
-func (l *Loop) ContainsNested(other *Loop) bool {
- if !l.subregionBound.Contains(other.bound) {
- return false
- }
-
- // Special cases to handle either loop being empty or full. Also bail out
- // when B has no vertices to avoid heap overflow on the vertex(1) call
- // below. (This method is called during polygon initialization before the
- // client has an opportunity to call IsValid().)
- if l.isEmptyOrFull() || other.NumVertices() < 2 {
- return l.IsFull() || other.IsEmpty()
- }
-
- // We are given that A and B do not share any edges, and that either one
- // loop contains the other or they do not intersect.
- m, ok := l.findVertex(other.Vertex(1))
- if !ok {
- // Since other.vertex(1) is not shared, we can check whether A contains it.
- return l.ContainsPoint(other.Vertex(1))
- }
-
- // Check whether the edge order around other.Vertex(1) is compatible with
- // A containing B.
- return WedgeContains(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1), other.Vertex(0), other.Vertex(2))
-}
-
-// surfaceIntegralFloat64 computes the oriented surface integral of some quantity f(x)
-// over the loop interior, given a function f(A,B,C) that returns the
-// corresponding integral over the spherical triangle ABC. Here "oriented
-// surface integral" means:
-//
-// (1) f(A,B,C) must be the integral of f if ABC is counterclockwise,
-// and the integral of -f if ABC is clockwise.
-//
-// (2) The result of this function is *either* the integral of f over the
-// loop interior, or the integral of (-f) over the loop exterior.
-//
-// Note that there are at least two common situations where it easy to work
-// around property (2) above:
-//
-// - If the integral of f over the entire sphere is zero, then it doesn't
-// matter which case is returned because they are always equal.
-//
-// - If f is non-negative, then it is easy to detect when the integral over
-// the loop exterior has been returned, and the integral over the loop
-// interior can be obtained by adding the integral of f over the entire
-// unit sphere (a constant) to the result.
-//
-// Any changes to this method may need corresponding changes to surfaceIntegralPoint as well.
-func (l *Loop) surfaceIntegralFloat64(f func(a, b, c Point) float64) float64 {
- // We sum f over a collection T of oriented triangles, possibly
- // overlapping. Let the sign of a triangle be +1 if it is CCW and -1
- // otherwise, and let the sign of a point x be the sum of the signs of the
- // triangles containing x. Then the collection of triangles T is chosen
- // such that either:
- //
- // (1) Each point in the loop interior has sign +1, and sign 0 otherwise; or
- // (2) Each point in the loop exterior has sign -1, and sign 0 otherwise.
- //
- // The triangles basically consist of a fan from vertex 0 to every loop
- // edge that does not include vertex 0. These triangles will always satisfy
- // either (1) or (2). However, what makes this a bit tricky is that
- // spherical edges become numerically unstable as their length approaches
- // 180 degrees. Of course there is not much we can do if the loop itself
- // contains such edges, but we would like to make sure that all the triangle
- // edges under our control (i.e., the non-loop edges) are stable. For
- // example, consider a loop around the equator consisting of four equally
- // spaced points. This is a well-defined loop, but we cannot just split it
- // into two triangles by connecting vertex 0 to vertex 2.
- //
- // We handle this type of situation by moving the origin of the triangle fan
- // whenever we are about to create an unstable edge. We choose a new
- // location for the origin such that all relevant edges are stable. We also
- // create extra triangles with the appropriate orientation so that the sum
- // of the triangle signs is still correct at every point.
-
- // The maximum length of an edge for it to be considered numerically stable.
- // The exact value is fairly arbitrary since it depends on the stability of
- // the function f. The value below is quite conservative but could be
- // reduced further if desired.
- const maxLength = math.Pi - 1e-5
-
- var sum float64
- origin := l.Vertex(0)
- for i := 1; i+1 < len(l.vertices); i++ {
- // Let V_i be vertex(i), let O be the current origin, and let length(A,B)
- // be the length of edge (A,B). At the start of each loop iteration, the
- // "leading edge" of the triangle fan is (O,V_i), and we want to extend
- // the triangle fan so that the leading edge is (O,V_i+1).
- //
- // Invariants:
- // 1. length(O,V_i) < maxLength for all (i > 1).
- // 2. Either O == V_0, or O is approximately perpendicular to V_0.
- // 3. "sum" is the oriented integral of f over the area defined by
- // (O, V_0, V_1, ..., V_i).
- if l.Vertex(i+1).Angle(origin.Vector) > maxLength {
- // We are about to create an unstable edge, so choose a new origin O'
- // for the triangle fan.
- oldOrigin := origin
- if origin == l.Vertex(0) {
- // The following point is well-separated from V_i and V_0 (and
- // therefore V_i+1 as well).
- origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()}
- } else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength {
- // All edges of the triangle (O, V_0, V_i) are stable, so we can
- // revert to using V_0 as the origin.
- origin = l.Vertex(0)
- } else {
- // (O, V_i+1) and (V_0, V_i) are antipodal pairs, and O and V_0 are
- // perpendicular. Therefore V_0.CrossProd(O) is approximately
- // perpendicular to all of {O, V_0, V_i, V_i+1}, and we can choose
- // this point O' as the new origin.
- origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)}
-
- // Advance the edge (V_0,O) to (V_0,O').
- sum += f(l.Vertex(0), oldOrigin, origin)
- }
- // Advance the edge (O,V_i) to (O',V_i).
- sum += f(oldOrigin, l.Vertex(i), origin)
- }
- // Advance the edge (O,V_i) to (O,V_i+1).
- sum += f(origin, l.Vertex(i), l.Vertex(i+1))
- }
- // If the origin is not V_0, we need to sum one more triangle.
- if origin != l.Vertex(0) {
- // Advance the edge (O,V_n-1) to (O,V_0).
- sum += f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0))
- }
- return sum
-}
-
-// surfaceIntegralPoint mirrors the surfaceIntegralFloat64 method but over Points;
-// see that method for commentary. The C++ version uses a templated method.
-// Any changes to this method may need corresponding changes to surfaceIntegralFloat64 as well.
-func (l *Loop) surfaceIntegralPoint(f func(a, b, c Point) Point) Point {
- const maxLength = math.Pi - 1e-5
- var sum r3.Vector
-
- origin := l.Vertex(0)
- for i := 1; i+1 < len(l.vertices); i++ {
- if l.Vertex(i+1).Angle(origin.Vector) > maxLength {
- oldOrigin := origin
- if origin == l.Vertex(0) {
- origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()}
- } else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength {
- origin = l.Vertex(0)
- } else {
- origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)}
- sum = sum.Add(f(l.Vertex(0), oldOrigin, origin).Vector)
- }
- sum = sum.Add(f(oldOrigin, l.Vertex(i), origin).Vector)
- }
- sum = sum.Add(f(origin, l.Vertex(i), l.Vertex(i+1)).Vector)
- }
- if origin != l.Vertex(0) {
- sum = sum.Add(f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0)).Vector)
- }
- return Point{sum}
-}
-
-// Area returns the area of the loop interior, i.e. the region on the left side of
-// the loop. The return value is between 0 and 4*pi. (Note that the return
-// value is not affected by whether this loop is a "hole" or a "shell".)
-func (l *Loop) Area() float64 {
- // It is surprisingly difficult to compute the area of a loop robustly. The
- // main issues are (1) whether degenerate loops are considered to be CCW or
- // not (i.e., whether their area is close to 0 or 4*pi), and (2) computing
- // the areas of small loops with good relative accuracy.
- //
- // With respect to degeneracies, we would like Area to be consistent
- // with ContainsPoint in that loops that contain many points
- // should have large areas, and loops that contain few points should have
- // small areas. For example, if a degenerate triangle is considered CCW
- // according to s2predicates Sign, then it will contain very few points and
- // its area should be approximately zero. On the other hand if it is
- // considered clockwise, then it will contain virtually all points and so
- // its area should be approximately 4*pi.
- //
- // More precisely, let U be the set of Points for which IsUnitLength
- // is true, let P(U) be the projection of those points onto the mathematical
- // unit sphere, and let V(P(U)) be the Voronoi diagram of the projected
- // points. Then for every loop x, we would like Area to approximately
- // equal the sum of the areas of the Voronoi regions of the points p for
- // which x.ContainsPoint(p) is true.
- //
- // The second issue is that we want to compute the area of small loops
- // accurately. This requires having good relative precision rather than
- // good absolute precision. For example, if the area of a loop is 1e-12 and
- // the error is 1e-15, then the area only has 3 digits of accuracy. (For
- // reference, 1e-12 is about 40 square meters on the surface of the earth.)
- // We would like to have good relative accuracy even for small loops.
- //
- // To achieve these goals, we combine two different methods of computing the
- // area. This first method is based on the Gauss-Bonnet theorem, which says
- // that the area enclosed by the loop equals 2*pi minus the total geodesic
- // curvature of the loop (i.e., the sum of the "turning angles" at all the
- // loop vertices). The big advantage of this method is that as long as we
- // use Sign to compute the turning angle at each vertex, then
- // degeneracies are always handled correctly. In other words, if a
- // degenerate loop is CCW according to the symbolic perturbations used by
- // Sign, then its turning angle will be approximately 2*pi.
- //
- // The disadvantage of the Gauss-Bonnet method is that its absolute error is
- // about 2e-15 times the number of vertices (see turningAngleMaxError).
- // So, it cannot compute the area of small loops accurately.
- //
- // The second method is based on splitting the loop into triangles and
- // summing the area of each triangle. To avoid the difficulty and expense
- // of decomposing the loop into a union of non-overlapping triangles,
- // instead we compute a signed sum over triangles that may overlap (see the
- // comments for surfaceIntegral). The advantage of this method
- // is that the area of each triangle can be computed with much better
- // relative accuracy (using l'Huilier's theorem). The disadvantage is that
- // the result is a signed area: CCW loops may yield a small positive value,
- // while CW loops may yield a small negative value (which is converted to a
- // positive area by adding 4*pi). This means that small errors in computing
- // the signed area may translate into a very large error in the result (if
- // the sign of the sum is incorrect).
- //
- // So, our strategy is to combine these two methods as follows. First we
- // compute the area using the "signed sum over triangles" approach (since it
- // is generally more accurate). We also estimate the maximum error in this
- // result. If the signed area is too close to zero (i.e., zero is within
- // the error bounds), then we double-check the sign of the result using the
- // Gauss-Bonnet method. (In fact we just call IsNormalized, which is
- // based on this method.) If the two methods disagree, we return either 0
- // or 4*pi based on the result of IsNormalized. Otherwise we return the
- // area that we computed originally.
- if l.isEmptyOrFull() {
- if l.ContainsOrigin() {
- return 4 * math.Pi
- }
- return 0
- }
- area := l.surfaceIntegralFloat64(SignedArea)
-
- // TODO(roberts): This error estimate is very approximate. There are two
- // issues: (1) SignedArea needs some improvements to ensure that its error
- // is actually never higher than GirardArea, and (2) although the number of
- // triangles in the sum is typically N-2, in theory it could be as high as
- // 2*N for pathological inputs. But in other respects this error bound is
- // very conservative since it assumes that the maximum error is achieved on
- // every triangle.
- maxError := l.turningAngleMaxError()
-
- // The signed area should be between approximately -4*pi and 4*pi.
- if area < 0 {
- // We have computed the negative of the area of the loop exterior.
- area += 4 * math.Pi
- }
-
- if area > 4*math.Pi {
- area = 4 * math.Pi
- }
- if area < 0 {
- area = 0
- }
-
- // If the area is close enough to zero or 4*pi so that the loop orientation
- // is ambiguous, then we compute the loop orientation explicitly.
- if area < maxError && !l.IsNormalized() {
- return 4 * math.Pi
- } else if area > (4*math.Pi-maxError) && l.IsNormalized() {
- return 0
- }
-
- return area
-}
-
-// Centroid returns the true centroid of the loop multiplied by the area of the
-// loop. The result is not unit length, so you may want to normalize it. Also
-// note that in general, the centroid may not be contained by the loop.
-//
-// We prescale by the loop area for two reasons: (1) it is cheaper to
-// compute this way, and (2) it makes it easier to compute the centroid of
-// more complicated shapes (by splitting them into disjoint regions and
-// adding their centroids).
-//
-// Note that the return value is not affected by whether this loop is a
-// "hole" or a "shell".
-func (l *Loop) Centroid() Point {
- // surfaceIntegralPoint() returns either the integral of position over loop
- // interior, or the negative of the integral of position over the loop
- // exterior. But these two values are the same (!), because the integral of
- // position over the entire sphere is (0, 0, 0).
- return l.surfaceIntegralPoint(TrueCentroid)
-}
-
-// Encode encodes the Loop.
-func (l Loop) Encode(w io.Writer) error {
- e := &encoder{w: w}
- l.encode(e)
- return e.err
-}
-
-func (l Loop) encode(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeUint32(uint32(len(l.vertices)))
- for _, v := range l.vertices {
- e.writeFloat64(v.X)
- e.writeFloat64(v.Y)
- e.writeFloat64(v.Z)
- }
-
- e.writeBool(l.originInside)
- e.writeInt32(int32(l.depth))
-
- // Encode the bound.
- l.bound.encode(e)
-}
-
-// Decode decodes a loop.
-func (l *Loop) Decode(r io.Reader) error {
- *l = Loop{}
- d := &decoder{r: asByteReader(r)}
- l.decode(d)
- return d.err
-}
-
-func (l *Loop) decode(d *decoder) {
- version := int8(d.readUint8())
- if d.err != nil {
- return
- }
- if version != encodingVersion {
- d.err = fmt.Errorf("cannot decode version %d", version)
- return
- }
-
- // Empty loops are explicitly allowed here: a newly created loop has zero vertices
- // and such loops encode and decode properly.
- nvertices := d.readUint32()
- if nvertices > maxEncodedVertices {
- if d.err == nil {
- d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices)
-
- }
- return
- }
- l.vertices = make([]Point, nvertices)
- for i := range l.vertices {
- l.vertices[i].X = d.readFloat64()
- l.vertices[i].Y = d.readFloat64()
- l.vertices[i].Z = d.readFloat64()
- }
- l.index = NewShapeIndex()
- l.originInside = d.readBool()
- l.depth = int(d.readUint32())
- l.bound.decode(d)
- l.subregionBound = ExpandForSubregions(l.bound)
-
- l.index.Add(l)
-}
-
-// Bitmasks to read from properties.
-const (
- originInside = 1 << iota
- boundEncoded
-)
-
-func (l *Loop) xyzFaceSiTiVertices() []xyzFaceSiTi {
- ret := make([]xyzFaceSiTi, len(l.vertices))
- for i, v := range l.vertices {
- ret[i].xyz = v
- ret[i].face, ret[i].si, ret[i].ti, ret[i].level = xyzToFaceSiTi(v)
- }
- return ret
-}
-
-func (l *Loop) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) {
- if len(l.vertices) != len(vertices) {
- panic("encodeCompressed: vertices must be the same length as l.vertices")
- }
- if len(vertices) > maxEncodedVertices {
- if e.err == nil {
- e.err = fmt.Errorf("too many vertices (%d; max is %d)", len(vertices), maxEncodedVertices)
- }
- return
- }
- e.writeUvarint(uint64(len(vertices)))
- encodePointsCompressed(e, vertices, snapLevel)
-
- props := l.compressedEncodingProperties()
- e.writeUvarint(props)
- e.writeUvarint(uint64(l.depth))
- if props&boundEncoded != 0 {
- l.bound.encode(e)
- }
-}
-
-func (l *Loop) compressedEncodingProperties() uint64 {
- var properties uint64
- if l.originInside {
- properties |= originInside
- }
-
- // Write whether there is a bound so we can change the threshold later.
- // Recomputing the bound multiplies the decode time taken per vertex
- // by a factor of about 3.5. Without recomputing the bound, decode
- // takes approximately 125 ns / vertex. A loop with 63 vertices
- // encoded without the bound will take ~30us to decode, which is
- // acceptable. At ~3.5 bytes / vertex without the bound, adding
- // the bound will increase the size by <15%, which is also acceptable.
- const minVerticesForBound = 64
- if len(l.vertices) >= minVerticesForBound {
- properties |= boundEncoded
- }
-
- return properties
-}
-
-func (l *Loop) decodeCompressed(d *decoder, snapLevel int) {
- nvertices := d.readUvarint()
- if d.err != nil {
- return
- }
- if nvertices > maxEncodedVertices {
- d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices)
- return
- }
- l.vertices = make([]Point, nvertices)
- decodePointsCompressed(d, snapLevel, l.vertices)
- properties := d.readUvarint()
-
- // Make sure values are valid before using.
- if d.err != nil {
- return
- }
-
- l.index = NewShapeIndex()
- l.originInside = (properties & originInside) != 0
-
- l.depth = int(d.readUvarint())
-
- if (properties & boundEncoded) != 0 {
- l.bound.decode(d)
- if d.err != nil {
- return
- }
- l.subregionBound = ExpandForSubregions(l.bound)
- } else {
- l.initBound()
- }
-
- l.index.Add(l)
-}
-
-// crossingTarget is an enum representing the possible crossing target cases for relations.
-type crossingTarget int
-
-const (
- crossingTargetDontCare crossingTarget = iota
- crossingTargetDontCross
- crossingTargetCross
-)
-
-// loopRelation defines the interface for checking a type of relationship between two loops.
-// Some examples of relations are Contains, Intersects, or CompareBoundary.
-type loopRelation interface {
- // Optionally, aCrossingTarget and bCrossingTarget can specify an early-exit
- // condition for the loop relation. If any point P is found such that
- //
- // A.ContainsPoint(P) == aCrossingTarget() &&
- // B.ContainsPoint(P) == bCrossingTarget()
- //
- // then the loop relation is assumed to be the same as if a pair of crossing
- // edges were found. For example, the ContainsPoint relation has
- //
- // aCrossingTarget() == crossingTargetDontCross
- // bCrossingTarget() == crossingTargetCross
- //
- // because if A.ContainsPoint(P) == false and B.ContainsPoint(P) == true
- // for any point P, then it is equivalent to finding an edge crossing (i.e.,
- // since Contains returns false in both cases).
- //
- // Loop relations that do not have an early-exit condition of this form
- // should return crossingTargetDontCare for both crossing targets.
-
- // aCrossingTarget reports whether loop A crosses the target point with
- // the given relation type.
- aCrossingTarget() crossingTarget
- // bCrossingTarget reports whether loop B crosses the target point with
- // the given relation type.
- bCrossingTarget() crossingTarget
-
- // wedgesCross reports if a shared vertex ab1 and the two associated wedges
- // (a0, ab1, b2) and (b0, ab1, b2) are equivalent to an edge crossing.
- // The loop relation is also allowed to maintain its own internal state, and
- // can return true if it observes any sequence of wedges that are equivalent
- // to an edge crossing.
- wedgesCross(a0, ab1, a2, b0, b2 Point) bool
-}
-
-// loopCrosser is a helper type for determining whether two loops cross.
-// It is instantiated twice for each pair of loops to be tested, once for the
-// pair (A,B) and once for the pair (B,A), in order to be able to process
-// edges in either loop nesting order.
-type loopCrosser struct {
- a, b *Loop
- relation loopRelation
- swapped bool
- aCrossingTarget crossingTarget
- bCrossingTarget crossingTarget
-
- // state maintained by startEdge and edgeCrossesCell.
- crosser *EdgeCrosser
- aj, bjPrev int
-
- // temporary data declared here to avoid repeated memory allocations.
- bQuery *CrossingEdgeQuery
- bCells []*ShapeIndexCell
-}
-
-// newLoopCrosser creates a loopCrosser from the given values. If swapped is true,
-// the loops A and B have been swapped. This affects how arguments are passed to
-// the given loop relation, since for example A.Contains(B) is not the same as
-// B.Contains(A).
-func newLoopCrosser(a, b *Loop, relation loopRelation, swapped bool) *loopCrosser {
- l := &loopCrosser{
- a: a,
- b: b,
- relation: relation,
- swapped: swapped,
- aCrossingTarget: relation.aCrossingTarget(),
- bCrossingTarget: relation.bCrossingTarget(),
- bQuery: NewCrossingEdgeQuery(b.index),
- }
- if swapped {
- l.aCrossingTarget, l.bCrossingTarget = l.bCrossingTarget, l.aCrossingTarget
- }
-
- return l
-}
-
-// startEdge sets the crossers state for checking the given edge of loop A.
-func (l *loopCrosser) startEdge(aj int) {
- l.crosser = NewEdgeCrosser(l.a.Vertex(aj), l.a.Vertex(aj+1))
- l.aj = aj
- l.bjPrev = -2
-}
-
-// edgeCrossesCell reports whether the current edge of loop A has any crossings with
-// edges of the index cell of loop B.
-func (l *loopCrosser) edgeCrossesCell(bClipped *clippedShape) bool {
- // Test the current edge of A against all edges of bClipped
- bNumEdges := bClipped.numEdges()
- for j := 0; j < bNumEdges; j++ {
- bj := bClipped.edges[j]
- if bj != l.bjPrev+1 {
- l.crosser.RestartAt(l.b.Vertex(bj))
- }
- l.bjPrev = bj
- if crossing := l.crosser.ChainCrossingSign(l.b.Vertex(bj + 1)); crossing == DoNotCross {
- continue
- } else if crossing == Cross {
- return true
- }
-
- // We only need to check each shared vertex once, so we only
- // consider the case where l.aVertex(l.aj+1) == l.b.Vertex(bj+1).
- if l.a.Vertex(l.aj+1) == l.b.Vertex(bj+1) {
- if l.swapped {
- if l.relation.wedgesCross(l.b.Vertex(bj), l.b.Vertex(bj+1), l.b.Vertex(bj+2), l.a.Vertex(l.aj), l.a.Vertex(l.aj+2)) {
- return true
- }
- } else {
- if l.relation.wedgesCross(l.a.Vertex(l.aj), l.a.Vertex(l.aj+1), l.a.Vertex(l.aj+2), l.b.Vertex(bj), l.b.Vertex(bj+2)) {
- return true
- }
- }
- }
- }
-
- return false
-}
-
-// cellCrossesCell reports whether there are any edge crossings or wedge crossings
-// within the two given cells.
-func (l *loopCrosser) cellCrossesCell(aClipped, bClipped *clippedShape) bool {
- // Test all edges of aClipped against all edges of bClipped.
- for _, edge := range aClipped.edges {
- l.startEdge(edge)
- if l.edgeCrossesCell(bClipped) {
- return true
- }
- }
-
- return false
-}
-
-// cellCrossesAnySubcell reports whether given an index cell of A, if there are any
-// edge or wedge crossings with any index cell of B contained within bID.
-func (l *loopCrosser) cellCrossesAnySubcell(aClipped *clippedShape, bID CellID) bool {
- // Test all edges of aClipped against all edges of B. The relevant B
- // edges are guaranteed to be children of bID, which lets us find the
- // correct index cells more efficiently.
- bRoot := PaddedCellFromCellID(bID, 0)
- for _, aj := range aClipped.edges {
- // Use an CrossingEdgeQuery starting at bRoot to find the index cells
- // of B that might contain crossing edges.
- l.bCells = l.bQuery.getCells(l.a.Vertex(aj), l.a.Vertex(aj+1), bRoot)
- if len(l.bCells) == 0 {
- continue
- }
- l.startEdge(aj)
- for c := 0; c < len(l.bCells); c++ {
- if l.edgeCrossesCell(l.bCells[c].shapes[0]) {
- return true
- }
- }
- }
-
- return false
-}
-
-// hasCrossing reports whether given two iterators positioned such that
-// ai.cellID().ContainsCellID(bi.cellID()), there is an edge or wedge crossing
-// anywhere within ai.cellID(). This function advances bi only past ai.cellID().
-func (l *loopCrosser) hasCrossing(ai, bi *rangeIterator) bool {
- // If ai.CellID() intersects many edges of B, then it is faster to use
- // CrossingEdgeQuery to narrow down the candidates. But if it intersects
- // only a few edges, it is faster to check all the crossings directly.
- // We handle this by advancing bi and keeping track of how many edges we
- // would need to test.
- const edgeQueryMinEdges = 20 // Tuned from benchmarks.
- var totalEdges int
- l.bCells = nil
-
- for {
- if n := bi.it.IndexCell().shapes[0].numEdges(); n > 0 {
- totalEdges += n
- if totalEdges >= edgeQueryMinEdges {
- // There are too many edges to test them directly, so use CrossingEdgeQuery.
- if l.cellCrossesAnySubcell(ai.it.IndexCell().shapes[0], ai.cellID()) {
- return true
- }
- bi.seekBeyond(ai)
- return false
- }
- l.bCells = append(l.bCells, bi.indexCell())
- }
- bi.next()
- if bi.cellID() > ai.rangeMax {
- break
- }
- }
-
- // Test all the edge crossings directly.
- for _, c := range l.bCells {
- if l.cellCrossesCell(ai.it.IndexCell().shapes[0], c.shapes[0]) {
- return true
- }
- }
-
- return false
-}
-
-// containsCenterMatches reports if the clippedShapes containsCenter boolean corresponds
-// to the crossing target type given. (This is to work around C++ allowing false == 0,
-// true == 1 type implicit conversions and comparisons)
-func containsCenterMatches(a *clippedShape, target crossingTarget) bool {
- return (!a.containsCenter && target == crossingTargetDontCross) ||
- (a.containsCenter && target == crossingTargetCross)
-}
-
-// hasCrossingRelation reports whether given two iterators positioned such that
-// ai.cellID().ContainsCellID(bi.cellID()), there is a crossing relationship
-// anywhere within ai.cellID(). Specifically, this method returns true if there
-// is an edge crossing, a wedge crossing, or a point P that matches both relations
-// crossing targets. This function advances both iterators past ai.cellID.
-func (l *loopCrosser) hasCrossingRelation(ai, bi *rangeIterator) bool {
- aClipped := ai.it.IndexCell().shapes[0]
- if aClipped.numEdges() != 0 {
- // The current cell of A has at least one edge, so check for crossings.
- if l.hasCrossing(ai, bi) {
- return true
- }
- ai.next()
- return false
- }
-
- if containsCenterMatches(aClipped, l.aCrossingTarget) {
- // The crossing target for A is not satisfied, so we skip over these cells of B.
- bi.seekBeyond(ai)
- ai.next()
- return false
- }
-
- // All points within ai.cellID() satisfy the crossing target for A, so it's
- // worth iterating through the cells of B to see whether any cell
- // centers also satisfy the crossing target for B.
- for bi.cellID() <= ai.rangeMax {
- bClipped := bi.it.IndexCell().shapes[0]
- if containsCenterMatches(bClipped, l.bCrossingTarget) {
- return true
- }
- bi.next()
- }
- ai.next()
- return false
-}
-
-// hasCrossingRelation checks all edges of loop A for intersection against all edges
-// of loop B and reports if there are any that satisfy the given relation. If there
-// is any shared vertex, the wedges centered at this vertex are sent to the given
-// relation to be tested.
-//
-// If the two loop boundaries cross, this method is guaranteed to return
-// true. It also returns true in certain cases if the loop relationship is
-// equivalent to crossing. For example, if the relation is Contains and a
-// point P is found such that B contains P but A does not contain P, this
-// method will return true to indicate that the result is the same as though
-// a pair of crossing edges were found (since Contains returns false in
-// both cases).
-//
-// See Contains, Intersects and CompareBoundary for the three uses of this function.
-func hasCrossingRelation(a, b *Loop, relation loopRelation) bool {
- // We look for CellID ranges where the indexes of A and B overlap, and
- // then test those edges for crossings.
- ai := newRangeIterator(a.index)
- bi := newRangeIterator(b.index)
-
- ab := newLoopCrosser(a, b, relation, false) // Tests edges of A against B
- ba := newLoopCrosser(b, a, relation, true) // Tests edges of B against A
-
- for !ai.done() || !bi.done() {
- if ai.rangeMax < bi.rangeMin {
- // The A and B cells don't overlap, and A precedes B.
- ai.seekTo(bi)
- } else if bi.rangeMax < ai.rangeMin {
- // The A and B cells don't overlap, and B precedes A.
- bi.seekTo(ai)
- } else {
- // One cell contains the other. Determine which cell is larger.
- abRelation := int64(ai.it.CellID().lsb() - bi.it.CellID().lsb())
- if abRelation > 0 {
- // A's index cell is larger.
- if ab.hasCrossingRelation(ai, bi) {
- return true
- }
- } else if abRelation < 0 {
- // B's index cell is larger.
- if ba.hasCrossingRelation(bi, ai) {
- return true
- }
- } else {
- // The A and B cells are the same. Since the two cells
- // have the same center point P, check whether P satisfies
- // the crossing targets.
- aClipped := ai.it.IndexCell().shapes[0]
- bClipped := bi.it.IndexCell().shapes[0]
- if containsCenterMatches(aClipped, ab.aCrossingTarget) &&
- containsCenterMatches(bClipped, ab.bCrossingTarget) {
- return true
- }
- // Otherwise test all the edge crossings directly.
- if aClipped.numEdges() > 0 && bClipped.numEdges() > 0 && ab.cellCrossesCell(aClipped, bClipped) {
- return true
- }
- ai.next()
- bi.next()
- }
- }
- }
- return false
-}
-
-// containsRelation implements loopRelation for a contains operation. If
-// A.ContainsPoint(P) == false && B.ContainsPoint(P) == true, it is equivalent
-// to having an edge crossing (i.e., Contains returns false).
-type containsRelation struct {
- foundSharedVertex bool
-}
-
-func (c *containsRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCross }
-func (c *containsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross }
-func (c *containsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool {
- c.foundSharedVertex = true
- return !WedgeContains(a0, ab1, a2, b0, b2)
-}
-
-// intersectsRelation implements loopRelation for an intersects operation. Given
-// two loops, A and B, if A.ContainsPoint(P) == true && B.ContainsPoint(P) == true,
-// it is equivalent to having an edge crossing (i.e., Intersects returns true).
-type intersectsRelation struct {
- foundSharedVertex bool
-}
-
-func (i *intersectsRelation) aCrossingTarget() crossingTarget { return crossingTargetCross }
-func (i *intersectsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross }
-func (i *intersectsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool {
- i.foundSharedVertex = true
- return WedgeIntersects(a0, ab1, a2, b0, b2)
-}
-
-// compareBoundaryRelation implements loopRelation for comparing boundaries.
-//
-// The compare boundary relation does not have a useful early-exit condition,
-// so we return crossingTargetDontCare for both crossing targets.
-//
-// Aside: A possible early exit condition could be based on the following.
-// If A contains a point of both B and ~B, then A intersects Boundary(B).
-// If ~A contains a point of both B and ~B, then ~A intersects Boundary(B).
-// So if the intersections of {A, ~A} with {B, ~B} are all non-empty,
-// the return value is 0, i.e., Boundary(A) intersects Boundary(B).
-// Unfortunately it isn't worth detecting this situation because by the
-// time we have seen a point in all four intersection regions, we are also
-// guaranteed to have seen at least one pair of crossing edges.
-type compareBoundaryRelation struct {
- reverse bool // True if the other loop should be reversed.
- foundSharedVertex bool // True if any wedge was processed.
- containsEdge bool // True if any edge of the other loop is contained by this loop.
- excludesEdge bool // True if any edge of the other loop is excluded by this loop.
-}
-
-func newCompareBoundaryRelation(reverse bool) *compareBoundaryRelation {
- return &compareBoundaryRelation{reverse: reverse}
-}
-
-func (c *compareBoundaryRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCare }
-func (c *compareBoundaryRelation) bCrossingTarget() crossingTarget { return crossingTargetDontCare }
-func (c *compareBoundaryRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool {
- // Because we don't care about the interior of the other, only its boundary,
- // it is sufficient to check whether this one contains the semiwedge (ab1, b2).
- c.foundSharedVertex = true
- if wedgeContainsSemiwedge(a0, ab1, a2, b2, c.reverse) {
- c.containsEdge = true
- } else {
- c.excludesEdge = true
- }
- return c.containsEdge && c.excludesEdge
-}
-
-// wedgeContainsSemiwedge reports whether the wedge (a0, ab1, a2) contains the
-// "semiwedge" defined as any non-empty open set of rays immediately CCW from
-// the edge (ab1, b2). If reverse is true, then substitute clockwise for CCW;
-// this simulates what would happen if the direction of the other loop was reversed.
-func wedgeContainsSemiwedge(a0, ab1, a2, b2 Point, reverse bool) bool {
- if b2 == a0 || b2 == a2 {
- // We have a shared or reversed edge.
- return (b2 == a0) == reverse
- }
- return OrderedCCW(a0, a2, b2, ab1)
-}
-
-// containsNonCrossingBoundary reports whether given two loops whose boundaries
-// do not cross (see compareBoundary), if this loop contains the boundary of the
-// other loop. If reverse is true, the boundary of the other loop is reversed
-// first (which only affects the result when there are shared edges). This method
-// is cheaper than compareBoundary because it does not test for edge intersections.
-//
-// This function requires that neither loop is empty, and that if the other is full,
-// then reverse == false.
-func (l *Loop) containsNonCrossingBoundary(other *Loop, reverseOther bool) bool {
- // The bounds must intersect for containment.
- if !l.bound.Intersects(other.bound) {
- return false
- }
-
- // Full loops are handled as though the loop surrounded the entire sphere.
- if l.IsFull() {
- return true
- }
- if other.IsFull() {
- return false
- }
-
- m, ok := l.findVertex(other.Vertex(0))
- if !ok {
- // Since the other loops vertex 0 is not shared, we can check if this contains it.
- return l.ContainsPoint(other.Vertex(0))
- }
- // Otherwise check whether the edge (b0, b1) is contained by this loop.
- return wedgeContainsSemiwedge(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1),
- other.Vertex(1), reverseOther)
-}
-
-// TODO(roberts): Differences from the C++ version:
-// DistanceToPoint
-// DistanceToBoundary
-// Project
-// ProjectToBoundary
-// BoundaryApproxEqual
-// BoundaryNear