diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s2/loop.go')
-rw-r--r-- | vendor/github.com/golang/geo/s2/loop.go | 1833 |
1 files changed, 0 insertions, 1833 deletions
diff --git a/vendor/github.com/golang/geo/s2/loop.go b/vendor/github.com/golang/geo/s2/loop.go deleted file mode 100644 index bfb55ec1d..000000000 --- a/vendor/github.com/golang/geo/s2/loop.go +++ /dev/null @@ -1,1833 +0,0 @@ -// Copyright 2015 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( - "fmt" - "io" - "math" - - "github.com/golang/geo/r1" - "github.com/golang/geo/r3" - "github.com/golang/geo/s1" -) - -// Loop represents a simple spherical polygon. It consists of a sequence -// of vertices where the first vertex is implicitly connected to the -// last. All loops are defined to have a CCW orientation, i.e. the interior of -// the loop is on the left side of the edges. This implies that a clockwise -// loop enclosing a small area is interpreted to be a CCW loop enclosing a -// very large area. -// -// Loops are not allowed to have any duplicate vertices (whether adjacent or -// not). Non-adjacent edges are not allowed to intersect, and furthermore edges -// of length 180 degrees are not allowed (i.e., adjacent vertices cannot be -// antipodal). Loops must have at least 3 vertices (except for the "empty" and -// "full" loops discussed below). -// -// There are two special loops: the "empty" loop contains no points and the -// "full" loop contains all points. These loops do not have any edges, but to -// preserve the invariant that every loop can be represented as a vertex -// chain, they are defined as having exactly one vertex each (see EmptyLoop -// and FullLoop). -type Loop struct { - vertices []Point - - // originInside keeps a precomputed value whether this loop contains the origin - // versus computing from the set of vertices every time. - originInside bool - - // depth is the nesting depth of this Loop if it is contained by a Polygon - // or other shape and is used to determine if this loop represents a hole - // or a filled in portion. - depth int - - // bound is a conservative bound on all points contained by this loop. - // If l.ContainsPoint(P), then l.bound.ContainsPoint(P). - bound Rect - - // Since bound is not exact, it is possible that a loop A contains - // another loop B whose bounds are slightly larger. subregionBound - // has been expanded sufficiently to account for this error, i.e. - // if A.Contains(B), then A.subregionBound.Contains(B.bound). - subregionBound Rect - - // index is the spatial index for this Loop. - index *ShapeIndex -} - -// LoopFromPoints constructs a loop from the given points. -func LoopFromPoints(pts []Point) *Loop { - l := &Loop{ - vertices: pts, - index: NewShapeIndex(), - } - - l.initOriginAndBound() - return l -} - -// LoopFromCell constructs a loop corresponding to the given cell. -// -// Note that the loop and cell *do not* contain exactly the same set of -// points, because Loop and Cell have slightly different definitions of -// point containment. For example, a Cell vertex is contained by all -// four neighboring Cells, but it is contained by exactly one of four -// Loops constructed from those cells. As another example, the cell -// coverings of cell and LoopFromCell(cell) will be different, because the -// loop contains points on its boundary that actually belong to other cells -// (i.e., the covering will include a layer of neighboring cells). -func LoopFromCell(c Cell) *Loop { - l := &Loop{ - vertices: []Point{ - c.Vertex(0), - c.Vertex(1), - c.Vertex(2), - c.Vertex(3), - }, - index: NewShapeIndex(), - } - - l.initOriginAndBound() - return l -} - -// These two points are used for the special Empty and Full loops. -var ( - emptyLoopPoint = Point{r3.Vector{X: 0, Y: 0, Z: 1}} - fullLoopPoint = Point{r3.Vector{X: 0, Y: 0, Z: -1}} -) - -// EmptyLoop returns a special "empty" loop. -func EmptyLoop() *Loop { - return LoopFromPoints([]Point{emptyLoopPoint}) -} - -// FullLoop returns a special "full" loop. -func FullLoop() *Loop { - return LoopFromPoints([]Point{fullLoopPoint}) -} - -// initOriginAndBound sets the origin containment for the given point and then calls -// the initialization for the bounds objects and the internal index. -func (l *Loop) initOriginAndBound() { - if len(l.vertices) < 3 { - // Check for the special "empty" and "full" loops (which have one vertex). - if !l.isEmptyOrFull() { - l.originInside = false - return - } - - // This is the special empty or full loop, so the origin depends on if - // the vertex is in the southern hemisphere or not. - l.originInside = l.vertices[0].Z < 0 - } else { - // Point containment testing is done by counting edge crossings starting - // at a fixed point on the sphere (OriginPoint). We need to know whether - // the reference point (OriginPoint) is inside or outside the loop before - // we can construct the ShapeIndex. We do this by first guessing that - // it is outside, and then seeing whether we get the correct containment - // result for vertex 1. If the result is incorrect, the origin must be - // inside the loop. - // - // A loop with consecutive vertices A,B,C contains vertex B if and only if - // the fixed vector R = B.Ortho is contained by the wedge ABC. The - // wedge is closed at A and open at C, i.e. the point B is inside the loop - // if A = R but not if C = R. This convention is required for compatibility - // with VertexCrossing. (Note that we can't use OriginPoint - // as the fixed vector because of the possibility that B == OriginPoint.) - l.originInside = false - v1Inside := OrderedCCW(Point{l.vertices[1].Ortho()}, l.vertices[0], l.vertices[2], l.vertices[1]) - if v1Inside != l.ContainsPoint(l.vertices[1]) { - l.originInside = true - } - } - - // We *must* call initBound before initializing the index, because - // initBound calls ContainsPoint which does a bounds check before using - // the index. - l.initBound() - - // Create a new index and add us to it. - l.index = NewShapeIndex() - l.index.Add(l) -} - -// initBound sets up the approximate bounding Rects for this loop. -func (l *Loop) initBound() { - if len(l.vertices) == 0 { - *l = *EmptyLoop() - return - } - // Check for the special "empty" and "full" loops. - if l.isEmptyOrFull() { - if l.IsEmpty() { - l.bound = EmptyRect() - } else { - l.bound = FullRect() - } - l.subregionBound = l.bound - return - } - - // The bounding rectangle of a loop is not necessarily the same as the - // bounding rectangle of its vertices. First, the maximal latitude may be - // attained along the interior of an edge. Second, the loop may wrap - // entirely around the sphere (e.g. a loop that defines two revolutions of a - // candy-cane stripe). Third, the loop may include one or both poles. - // Note that a small clockwise loop near the equator contains both poles. - bounder := NewRectBounder() - for i := 0; i <= len(l.vertices); i++ { // add vertex 0 twice - bounder.AddPoint(l.Vertex(i)) - } - b := bounder.RectBound() - - if l.ContainsPoint(Point{r3.Vector{0, 0, 1}}) { - b = Rect{r1.Interval{b.Lat.Lo, math.Pi / 2}, s1.FullInterval()} - } - // If a loop contains the south pole, then either it wraps entirely - // around the sphere (full longitude range), or it also contains the - // north pole in which case b.Lng.IsFull() due to the test above. - // Either way, we only need to do the south pole containment test if - // b.Lng.IsFull(). - if b.Lng.IsFull() && l.ContainsPoint(Point{r3.Vector{0, 0, -1}}) { - b.Lat.Lo = -math.Pi / 2 - } - l.bound = b - l.subregionBound = ExpandForSubregions(l.bound) -} - -// Validate checks whether this is a valid loop. -func (l *Loop) Validate() error { - if err := l.findValidationErrorNoIndex(); err != nil { - return err - } - - // Check for intersections between non-adjacent edges (including at vertices) - // TODO(roberts): Once shapeutil gets findAnyCrossing uncomment this. - // return findAnyCrossing(l.index) - - return nil -} - -// findValidationErrorNoIndex reports whether this is not a valid loop, but -// skips checks that would require a ShapeIndex to be built for the loop. This -// is primarily used by Polygon to do validation so it doesn't trigger the -// creation of unneeded ShapeIndices. -func (l *Loop) findValidationErrorNoIndex() error { - // All vertices must be unit length. - for i, v := range l.vertices { - if !v.IsUnit() { - return fmt.Errorf("vertex %d is not unit length", i) - } - } - - // Loops must have at least 3 vertices (except for empty and full). - if len(l.vertices) < 3 { - if l.isEmptyOrFull() { - return nil // Skip remaining tests. - } - return fmt.Errorf("non-empty, non-full loops must have at least 3 vertices") - } - - // Loops are not allowed to have any duplicate vertices or edge crossings. - // We split this check into two parts. First we check that no edge is - // degenerate (identical endpoints). Then we check that there are no - // intersections between non-adjacent edges (including at vertices). The - // second check needs the ShapeIndex, so it does not fall within the scope - // of this method. - for i, v := range l.vertices { - if v == l.Vertex(i+1) { - return fmt.Errorf("edge %d is degenerate (duplicate vertex)", i) - } - - // Antipodal vertices are not allowed. - if other := (Point{l.Vertex(i + 1).Mul(-1)}); v == other { - return fmt.Errorf("vertices %d and %d are antipodal", i, - (i+1)%len(l.vertices)) - } - } - - return nil -} - -// Contains reports whether the region contained by this loop is a superset of the -// region contained by the given other loop. -func (l *Loop) Contains(o *Loop) bool { - // For a loop A to contain the loop B, all of the following must - // be true: - // - // (1) There are no edge crossings between A and B except at vertices. - // - // (2) At every vertex that is shared between A and B, the local edge - // ordering implies that A contains B. - // - // (3) If there are no shared vertices, then A must contain a vertex of B - // and B must not contain a vertex of A. (An arbitrary vertex may be - // chosen in each case.) - // - // The second part of (3) is necessary to detect the case of two loops whose - // union is the entire sphere, i.e. two loops that contains each other's - // boundaries but not each other's interiors. - if !l.subregionBound.Contains(o.bound) { - return false - } - - // Special cases to handle either loop being empty or full. - if l.isEmptyOrFull() || o.isEmptyOrFull() { - return l.IsFull() || o.IsEmpty() - } - - // Check whether there are any edge crossings, and also check the loop - // relationship at any shared vertices. - relation := &containsRelation{} - if hasCrossingRelation(l, o, relation) { - return false - } - - // There are no crossings, and if there are any shared vertices then A - // contains B locally at each shared vertex. - if relation.foundSharedVertex { - return true - } - - // Since there are no edge intersections or shared vertices, we just need to - // test condition (3) above. We can skip this test if we discovered that A - // contains at least one point of B while checking for edge crossings. - if !l.ContainsPoint(o.Vertex(0)) { - return false - } - - // We still need to check whether (A union B) is the entire sphere. - // Normally this check is very cheap due to the bounding box precondition. - if (o.subregionBound.Contains(l.bound) || o.bound.Union(l.bound).IsFull()) && - o.ContainsPoint(l.Vertex(0)) { - return false - } - return true -} - -// Intersects reports whether the region contained by this loop intersects the region -// contained by the other loop. -func (l *Loop) Intersects(o *Loop) bool { - // Given two loops, A and B, A.Intersects(B) if and only if !A.Complement().Contains(B). - // - // This code is similar to Contains, but is optimized for the case - // where both loops enclose less than half of the sphere. - if !l.bound.Intersects(o.bound) { - return false - } - - // Check whether there are any edge crossings, and also check the loop - // relationship at any shared vertices. - relation := &intersectsRelation{} - if hasCrossingRelation(l, o, relation) { - return true - } - if relation.foundSharedVertex { - return false - } - - // Since there are no edge intersections or shared vertices, the loops - // intersect only if A contains B, B contains A, or the two loops contain - // each other's boundaries. These checks are usually cheap because of the - // bounding box preconditions. Note that neither loop is empty (because of - // the bounding box check above), so it is safe to access vertex(0). - - // Check whether A contains B, or A and B contain each other's boundaries. - // (Note that A contains all the vertices of B in either case.) - if l.subregionBound.Contains(o.bound) || l.bound.Union(o.bound).IsFull() { - if l.ContainsPoint(o.Vertex(0)) { - return true - } - } - // Check whether B contains A. - if o.subregionBound.Contains(l.bound) { - if o.ContainsPoint(l.Vertex(0)) { - return true - } - } - return false -} - -// Equal reports whether two loops have the same vertices in the same linear order -// (i.e., cyclic rotations are not allowed). -func (l *Loop) Equal(other *Loop) bool { - if len(l.vertices) != len(other.vertices) { - return false - } - - for i, v := range l.vertices { - if v != other.Vertex(i) { - return false - } - } - return true -} - -// BoundaryEqual reports whether the two loops have the same boundary. This is -// true if and only if the loops have the same vertices in the same cyclic order -// (i.e., the vertices may be cyclically rotated). The empty and full loops are -// considered to have different boundaries. -func (l *Loop) BoundaryEqual(o *Loop) bool { - if len(l.vertices) != len(o.vertices) { - return false - } - - // Special case to handle empty or full loops. Since they have the same - // number of vertices, if one loop is empty/full then so is the other. - if l.isEmptyOrFull() { - return l.IsEmpty() == o.IsEmpty() - } - - // Loop through the vertices to find the first of ours that matches the - // starting vertex of the other loop. Use that offset to then 'align' the - // vertices for comparison. - for offset, vertex := range l.vertices { - if vertex == o.Vertex(0) { - // There is at most one starting offset since loop vertices are unique. - for i := 0; i < len(l.vertices); i++ { - if l.Vertex(i+offset) != o.Vertex(i) { - return false - } - } - return true - } - } - return false -} - -// compareBoundary returns +1 if this loop contains the boundary of the other loop, -// -1 if it excludes the boundary of the other, and 0 if the boundaries of the two -// loops cross. Shared edges are handled as follows: -// -// If XY is a shared edge, define Reversed(XY) to be true if XY -// appears in opposite directions in both loops. -// Then this loop contains XY if and only if Reversed(XY) == the other loop is a hole. -// (Intuitively, this checks whether this loop contains a vanishingly small region -// extending from the boundary of the other toward the interior of the polygon to -// which the other belongs.) -// -// This function is used for testing containment and intersection of -// multi-loop polygons. Note that this method is not symmetric, since the -// result depends on the direction of this loop but not on the direction of -// the other loop (in the absence of shared edges). -// -// This requires that neither loop is empty, and if other loop IsFull, then it must not -// be a hole. -func (l *Loop) compareBoundary(o *Loop) int { - // The bounds must intersect for containment or crossing. - if !l.bound.Intersects(o.bound) { - return -1 - } - - // Full loops are handled as though the loop surrounded the entire sphere. - if l.IsFull() { - return 1 - } - if o.IsFull() { - return -1 - } - - // Check whether there are any edge crossings, and also check the loop - // relationship at any shared vertices. - relation := newCompareBoundaryRelation(o.IsHole()) - if hasCrossingRelation(l, o, relation) { - return 0 - } - if relation.foundSharedVertex { - if relation.containsEdge { - return 1 - } - return -1 - } - - // There are no edge intersections or shared vertices, so we can check - // whether A contains an arbitrary vertex of B. - if l.ContainsPoint(o.Vertex(0)) { - return 1 - } - return -1 -} - -// ContainsOrigin reports true if this loop contains s2.OriginPoint(). -func (l *Loop) ContainsOrigin() bool { - return l.originInside -} - -// ReferencePoint returns the reference point for this loop. -func (l *Loop) ReferencePoint() ReferencePoint { - return OriginReferencePoint(l.originInside) -} - -// NumEdges returns the number of edges in this shape. -func (l *Loop) NumEdges() int { - if l.isEmptyOrFull() { - return 0 - } - return len(l.vertices) -} - -// Edge returns the endpoints for the given edge index. -func (l *Loop) Edge(i int) Edge { - return Edge{l.Vertex(i), l.Vertex(i + 1)} -} - -// NumChains reports the number of contiguous edge chains in the Loop. -func (l *Loop) NumChains() int { - if l.IsEmpty() { - return 0 - } - return 1 -} - -// Chain returns the i-th edge chain in the Shape. -func (l *Loop) Chain(chainID int) Chain { - return Chain{0, l.NumEdges()} -} - -// ChainEdge returns the j-th edge of the i-th edge chain. -func (l *Loop) ChainEdge(chainID, offset int) Edge { - return Edge{l.Vertex(offset), l.Vertex(offset + 1)} -} - -// ChainPosition returns a ChainPosition pair (i, j) such that edgeID is the -// j-th edge of the Loop. -func (l *Loop) ChainPosition(edgeID int) ChainPosition { - return ChainPosition{0, edgeID} -} - -// Dimension returns the dimension of the geometry represented by this Loop. -func (l *Loop) Dimension() int { return 2 } - -func (l *Loop) typeTag() typeTag { return typeTagNone } - -func (l *Loop) privateInterface() {} - -// IsEmpty reports true if this is the special empty loop that contains no points. -func (l *Loop) IsEmpty() bool { - return l.isEmptyOrFull() && !l.ContainsOrigin() -} - -// IsFull reports true if this is the special full loop that contains all points. -func (l *Loop) IsFull() bool { - return l.isEmptyOrFull() && l.ContainsOrigin() -} - -// isEmptyOrFull reports true if this loop is either the "empty" or "full" special loops. -func (l *Loop) isEmptyOrFull() bool { - return len(l.vertices) == 1 -} - -// Vertices returns the vertices in the loop. -func (l *Loop) Vertices() []Point { - return l.vertices -} - -// RectBound returns a tight bounding rectangle. If the loop contains the point, -// the bound also contains it. -func (l *Loop) RectBound() Rect { - return l.bound -} - -// CapBound returns a bounding cap that may have more padding than the corresponding -// RectBound. The bound is conservative such that if the loop contains a point P, -// the bound also contains it. -func (l *Loop) CapBound() Cap { - return l.bound.CapBound() -} - -// Vertex returns the vertex for the given index. For convenience, the vertex indices -// wrap automatically for methods that do index math such as Edge. -// i.e., Vertex(NumEdges() + n) is the same as Vertex(n). -func (l *Loop) Vertex(i int) Point { - return l.vertices[i%len(l.vertices)] -} - -// OrientedVertex returns the vertex in reverse order if the loop represents a polygon -// hole. For example, arguments 0, 1, 2 are mapped to vertices n-1, n-2, n-3, where -// n == len(vertices). This ensures that the interior of the polygon is always to -// the left of the vertex chain. -// -// This requires: 0 <= i < 2 * len(vertices) -func (l *Loop) OrientedVertex(i int) Point { - j := i - len(l.vertices) - if j < 0 { - j = i - } - if l.IsHole() { - j = len(l.vertices) - 1 - j - } - return l.Vertex(j) -} - -// NumVertices returns the number of vertices in this loop. -func (l *Loop) NumVertices() int { - return len(l.vertices) -} - -// bruteForceContainsPoint reports if the given point is contained by this loop. -// This method does not use the ShapeIndex, so it is only preferable below a certain -// size of loop. -func (l *Loop) bruteForceContainsPoint(p Point) bool { - origin := OriginPoint() - inside := l.originInside - crosser := NewChainEdgeCrosser(origin, p, l.Vertex(0)) - for i := 1; i <= len(l.vertices); i++ { // add vertex 0 twice - inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(i)) - } - return inside -} - -// ContainsPoint returns true if the loop contains the point. -func (l *Loop) ContainsPoint(p Point) bool { - if !l.index.IsFresh() && !l.bound.ContainsPoint(p) { - return false - } - - // For small loops it is faster to just check all the crossings. We also - // use this method during loop initialization because InitOriginAndBound() - // calls Contains() before InitIndex(). Otherwise, we keep track of the - // number of calls to Contains() and only build the index when enough calls - // have been made so that we think it is worth the effort. Note that the - // code below is structured so that if many calls are made in parallel only - // one thread builds the index, while the rest continue using brute force - // until the index is actually available. - - const maxBruteForceVertices = 32 - // TODO(roberts): add unindexed contains calls tracking - - if len(l.index.shapes) == 0 || // Index has not been initialized yet. - len(l.vertices) <= maxBruteForceVertices { - return l.bruteForceContainsPoint(p) - } - - // Otherwise, look up the point in the index. - it := l.index.Iterator() - if !it.LocatePoint(p) { - return false - } - return l.iteratorContainsPoint(it, p) -} - -// ContainsCell reports whether the given Cell is contained by this Loop. -func (l *Loop) ContainsCell(target Cell) bool { - it := l.index.Iterator() - relation := it.LocateCellID(target.ID()) - - // If "target" is disjoint from all index cells, it is not contained. - // Similarly, if "target" is subdivided into one or more index cells then it - // is not contained, since index cells are subdivided only if they (nearly) - // intersect a sufficient number of edges. (But note that if "target" itself - // is an index cell then it may be contained, since it could be a cell with - // no edges in the loop interior.) - if relation != Indexed { - return false - } - - // Otherwise check if any edges intersect "target". - if l.boundaryApproxIntersects(it, target) { - return false - } - - // Otherwise check if the loop contains the center of "target". - return l.iteratorContainsPoint(it, target.Center()) -} - -// IntersectsCell reports whether this Loop intersects the given cell. -func (l *Loop) IntersectsCell(target Cell) bool { - it := l.index.Iterator() - relation := it.LocateCellID(target.ID()) - - // If target does not overlap any index cell, there is no intersection. - if relation == Disjoint { - return false - } - // If target is subdivided into one or more index cells, there is an - // intersection to within the ShapeIndex error bound (see Contains). - if relation == Subdivided { - return true - } - // If target is an index cell, there is an intersection because index cells - // are created only if they have at least one edge or they are entirely - // contained by the loop. - if it.CellID() == target.id { - return true - } - // Otherwise check if any edges intersect target. - if l.boundaryApproxIntersects(it, target) { - return true - } - // Otherwise check if the loop contains the center of target. - return l.iteratorContainsPoint(it, target.Center()) -} - -// CellUnionBound computes a covering of the Loop. -func (l *Loop) CellUnionBound() []CellID { - return l.CapBound().CellUnionBound() -} - -// boundaryApproxIntersects reports if the loop's boundary intersects target. -// It may also return true when the loop boundary does not intersect target but -// some edge comes within the worst-case error tolerance. -// -// This requires that it.Locate(target) returned Indexed. -func (l *Loop) boundaryApproxIntersects(it *ShapeIndexIterator, target Cell) bool { - aClipped := it.IndexCell().findByShapeID(0) - - // If there are no edges, there is no intersection. - if len(aClipped.edges) == 0 { - return false - } - - // We can save some work if target is the index cell itself. - if it.CellID() == target.ID() { - return true - } - - // Otherwise check whether any of the edges intersect target. - maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist) - bound := target.BoundUV().ExpandedByMargin(maxError) - for _, ai := range aClipped.edges { - v0, v1, ok := ClipToPaddedFace(l.Vertex(ai), l.Vertex(ai+1), target.Face(), maxError) - if ok && edgeIntersectsRect(v0, v1, bound) { - return true - } - } - return false -} - -// iteratorContainsPoint reports if the iterator that is positioned at the ShapeIndexCell -// that may contain p, contains the point p. -func (l *Loop) iteratorContainsPoint(it *ShapeIndexIterator, p Point) bool { - // Test containment by drawing a line segment from the cell center to the - // given point and counting edge crossings. - aClipped := it.IndexCell().findByShapeID(0) - inside := aClipped.containsCenter - if len(aClipped.edges) > 0 { - center := it.Center() - crosser := NewEdgeCrosser(center, p) - aiPrev := -2 - for _, ai := range aClipped.edges { - if ai != aiPrev+1 { - crosser.RestartAt(l.Vertex(ai)) - } - aiPrev = ai - inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(ai+1)) - } - } - return inside -} - -// RegularLoop creates a loop with the given number of vertices, all -// located on a circle of the specified radius around the given center. -func RegularLoop(center Point, radius s1.Angle, numVertices int) *Loop { - return RegularLoopForFrame(getFrame(center), radius, numVertices) -} - -// RegularLoopForFrame creates a loop centered around the z-axis of the given -// coordinate frame, with the first vertex in the direction of the positive x-axis. -func RegularLoopForFrame(frame matrix3x3, radius s1.Angle, numVertices int) *Loop { - return LoopFromPoints(regularPointsForFrame(frame, radius, numVertices)) -} - -// CanonicalFirstVertex returns a first index and a direction (either +1 or -1) -// such that the vertex sequence (first, first+dir, ..., first+(n-1)*dir) does -// not change when the loop vertex order is rotated or inverted. This allows the -// loop vertices to be traversed in a canonical order. The return values are -// chosen such that (first, ..., first+n*dir) are in the range [0, 2*n-1] as -// expected by the Vertex method. -func (l *Loop) CanonicalFirstVertex() (firstIdx, direction int) { - firstIdx = 0 - n := len(l.vertices) - for i := 1; i < n; i++ { - if l.Vertex(i).Cmp(l.Vertex(firstIdx).Vector) == -1 { - firstIdx = i - } - } - - // 0 <= firstIdx <= n-1, so (firstIdx+n*dir) <= 2*n-1. - if l.Vertex(firstIdx+1).Cmp(l.Vertex(firstIdx+n-1).Vector) == -1 { - return firstIdx, 1 - } - - // n <= firstIdx <= 2*n-1, so (firstIdx+n*dir) >= 0. - firstIdx += n - return firstIdx, -1 -} - -// TurningAngle returns the sum of the turning angles at each vertex. The return -// value is positive if the loop is counter-clockwise, negative if the loop is -// clockwise, and zero if the loop is a great circle. Degenerate and -// nearly-degenerate loops are handled consistently with Sign. So for example, -// if a loop has zero area (i.e., it is a very small CCW loop) then the turning -// angle will always be negative. -// -// This quantity is also called the "geodesic curvature" of the loop. -func (l *Loop) TurningAngle() float64 { - // For empty and full loops, we return the limit value as the loop area - // approaches 0 or 4*Pi respectively. - if l.isEmptyOrFull() { - if l.ContainsOrigin() { - return -2 * math.Pi - } - return 2 * math.Pi - } - - // Don't crash even if the loop is not well-defined. - if len(l.vertices) < 3 { - return 0 - } - - // To ensure that we get the same result when the vertex order is rotated, - // and that the result is negated when the vertex order is reversed, we need - // to add up the individual turn angles in a consistent order. (In general, - // adding up a set of numbers in a different order can change the sum due to - // rounding errors.) - // - // Furthermore, if we just accumulate an ordinary sum then the worst-case - // error is quadratic in the number of vertices. (This can happen with - // spiral shapes, where the partial sum of the turning angles can be linear - // in the number of vertices.) To avoid this we use the Kahan summation - // algorithm (http://en.wikipedia.org/wiki/Kahan_summation_algorithm). - n := len(l.vertices) - i, dir := l.CanonicalFirstVertex() - sum := TurnAngle(l.Vertex((i+n-dir)%n), l.Vertex(i), l.Vertex((i+dir)%n)) - - compensation := s1.Angle(0) - for n-1 > 0 { - i += dir - angle := TurnAngle(l.Vertex(i-dir), l.Vertex(i), l.Vertex(i+dir)) - oldSum := sum - angle += compensation - sum += angle - compensation = (oldSum - sum) + angle - n-- - } - - const maxCurvature = 2*math.Pi - 4*dblEpsilon - - return math.Max(-maxCurvature, math.Min(maxCurvature, float64(dir)*float64(sum+compensation))) -} - -// turningAngleMaxError return the maximum error in TurningAngle. The value is not -// constant; it depends on the loop. -func (l *Loop) turningAngleMaxError() float64 { - // The maximum error can be bounded as follows: - // 3.00 * dblEpsilon for RobustCrossProd(b, a) - // 3.00 * dblEpsilon for RobustCrossProd(c, b) - // 3.25 * dblEpsilon for Angle() - // 2.00 * dblEpsilon for each addition in the Kahan summation - // ------------------ - // 11.25 * dblEpsilon - maxErrorPerVertex := 11.25 * dblEpsilon - return maxErrorPerVertex * float64(len(l.vertices)) -} - -// IsHole reports whether this loop represents a hole in its containing polygon. -func (l *Loop) IsHole() bool { return l.depth&1 != 0 } - -// Sign returns -1 if this Loop represents a hole in its containing polygon, and +1 otherwise. -func (l *Loop) Sign() int { - if l.IsHole() { - return -1 - } - return 1 -} - -// IsNormalized reports whether the loop area is at most 2*pi. Degenerate loops are -// handled consistently with Sign, i.e., if a loop can be -// expressed as the union of degenerate or nearly-degenerate CCW triangles, -// then it will always be considered normalized. -func (l *Loop) IsNormalized() bool { - // Optimization: if the longitude span is less than 180 degrees, then the - // loop covers less than half the sphere and is therefore normalized. - if l.bound.Lng.Length() < math.Pi { - return true - } - - // We allow some error so that hemispheres are always considered normalized. - // TODO(roberts): This is no longer required by the Polygon implementation, - // so alternatively we could create the invariant that a loop is normalized - // if and only if its complement is not normalized. - return l.TurningAngle() >= -l.turningAngleMaxError() -} - -// Normalize inverts the loop if necessary so that the area enclosed by the loop -// is at most 2*pi. -func (l *Loop) Normalize() { - if !l.IsNormalized() { - l.Invert() - } -} - -// Invert reverses the order of the loop vertices, effectively complementing the -// region represented by the loop. For example, the loop ABCD (with edges -// AB, BC, CD, DA) becomes the loop DCBA (with edges DC, CB, BA, AD). -// Notice that the last edge is the same in both cases except that its -// direction has been reversed. -func (l *Loop) Invert() { - l.index.Reset() - if l.isEmptyOrFull() { - if l.IsFull() { - l.vertices[0] = emptyLoopPoint - } else { - l.vertices[0] = fullLoopPoint - } - } else { - // For non-special loops, reverse the slice of vertices. - for i := len(l.vertices)/2 - 1; i >= 0; i-- { - opp := len(l.vertices) - 1 - i - l.vertices[i], l.vertices[opp] = l.vertices[opp], l.vertices[i] - } - } - - // originInside must be set correctly before building the ShapeIndex. - l.originInside = !l.originInside - if l.bound.Lat.Lo > -math.Pi/2 && l.bound.Lat.Hi < math.Pi/2 { - // The complement of this loop contains both poles. - l.bound = FullRect() - l.subregionBound = l.bound - } else { - l.initBound() - } - l.index.Add(l) -} - -// findVertex returns the index of the vertex at the given Point in the range -// 1..numVertices, and a boolean indicating if a vertex was found. -func (l *Loop) findVertex(p Point) (index int, ok bool) { - const notFound = 0 - if len(l.vertices) < 10 { - // Exhaustive search for loops below a small threshold. - for i := 1; i <= len(l.vertices); i++ { - if l.Vertex(i) == p { - return i, true - } - } - return notFound, false - } - - it := l.index.Iterator() - if !it.LocatePoint(p) { - return notFound, false - } - - aClipped := it.IndexCell().findByShapeID(0) - for i := aClipped.numEdges() - 1; i >= 0; i-- { - ai := aClipped.edges[i] - if l.Vertex(ai) == p { - if ai == 0 { - return len(l.vertices), true - } - return ai, true - } - - if l.Vertex(ai+1) == p { - return ai + 1, true - } - } - return notFound, false -} - -// ContainsNested reports whether the given loops is contained within this loop. -// This function does not test for edge intersections. The two loops must meet -// all of the Polygon requirements; for example this implies that their -// boundaries may not cross or have any shared edges (although they may have -// shared vertices). -func (l *Loop) ContainsNested(other *Loop) bool { - if !l.subregionBound.Contains(other.bound) { - return false - } - - // Special cases to handle either loop being empty or full. Also bail out - // when B has no vertices to avoid heap overflow on the vertex(1) call - // below. (This method is called during polygon initialization before the - // client has an opportunity to call IsValid().) - if l.isEmptyOrFull() || other.NumVertices() < 2 { - return l.IsFull() || other.IsEmpty() - } - - // We are given that A and B do not share any edges, and that either one - // loop contains the other or they do not intersect. - m, ok := l.findVertex(other.Vertex(1)) - if !ok { - // Since other.vertex(1) is not shared, we can check whether A contains it. - return l.ContainsPoint(other.Vertex(1)) - } - - // Check whether the edge order around other.Vertex(1) is compatible with - // A containing B. - return WedgeContains(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1), other.Vertex(0), other.Vertex(2)) -} - -// surfaceIntegralFloat64 computes the oriented surface integral of some quantity f(x) -// over the loop interior, given a function f(A,B,C) that returns the -// corresponding integral over the spherical triangle ABC. Here "oriented -// surface integral" means: -// -// (1) f(A,B,C) must be the integral of f if ABC is counterclockwise, -// and the integral of -f if ABC is clockwise. -// -// (2) The result of this function is *either* the integral of f over the -// loop interior, or the integral of (-f) over the loop exterior. -// -// Note that there are at least two common situations where it easy to work -// around property (2) above: -// -// - If the integral of f over the entire sphere is zero, then it doesn't -// matter which case is returned because they are always equal. -// -// - If f is non-negative, then it is easy to detect when the integral over -// the loop exterior has been returned, and the integral over the loop -// interior can be obtained by adding the integral of f over the entire -// unit sphere (a constant) to the result. -// -// Any changes to this method may need corresponding changes to surfaceIntegralPoint as well. -func (l *Loop) surfaceIntegralFloat64(f func(a, b, c Point) float64) float64 { - // We sum f over a collection T of oriented triangles, possibly - // overlapping. Let the sign of a triangle be +1 if it is CCW and -1 - // otherwise, and let the sign of a point x be the sum of the signs of the - // triangles containing x. Then the collection of triangles T is chosen - // such that either: - // - // (1) Each point in the loop interior has sign +1, and sign 0 otherwise; or - // (2) Each point in the loop exterior has sign -1, and sign 0 otherwise. - // - // The triangles basically consist of a fan from vertex 0 to every loop - // edge that does not include vertex 0. These triangles will always satisfy - // either (1) or (2). However, what makes this a bit tricky is that - // spherical edges become numerically unstable as their length approaches - // 180 degrees. Of course there is not much we can do if the loop itself - // contains such edges, but we would like to make sure that all the triangle - // edges under our control (i.e., the non-loop edges) are stable. For - // example, consider a loop around the equator consisting of four equally - // spaced points. This is a well-defined loop, but we cannot just split it - // into two triangles by connecting vertex 0 to vertex 2. - // - // We handle this type of situation by moving the origin of the triangle fan - // whenever we are about to create an unstable edge. We choose a new - // location for the origin such that all relevant edges are stable. We also - // create extra triangles with the appropriate orientation so that the sum - // of the triangle signs is still correct at every point. - - // The maximum length of an edge for it to be considered numerically stable. - // The exact value is fairly arbitrary since it depends on the stability of - // the function f. The value below is quite conservative but could be - // reduced further if desired. - const maxLength = math.Pi - 1e-5 - - var sum float64 - origin := l.Vertex(0) - for i := 1; i+1 < len(l.vertices); i++ { - // Let V_i be vertex(i), let O be the current origin, and let length(A,B) - // be the length of edge (A,B). At the start of each loop iteration, the - // "leading edge" of the triangle fan is (O,V_i), and we want to extend - // the triangle fan so that the leading edge is (O,V_i+1). - // - // Invariants: - // 1. length(O,V_i) < maxLength for all (i > 1). - // 2. Either O == V_0, or O is approximately perpendicular to V_0. - // 3. "sum" is the oriented integral of f over the area defined by - // (O, V_0, V_1, ..., V_i). - if l.Vertex(i+1).Angle(origin.Vector) > maxLength { - // We are about to create an unstable edge, so choose a new origin O' - // for the triangle fan. - oldOrigin := origin - if origin == l.Vertex(0) { - // The following point is well-separated from V_i and V_0 (and - // therefore V_i+1 as well). - origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()} - } else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength { - // All edges of the triangle (O, V_0, V_i) are stable, so we can - // revert to using V_0 as the origin. - origin = l.Vertex(0) - } else { - // (O, V_i+1) and (V_0, V_i) are antipodal pairs, and O and V_0 are - // perpendicular. Therefore V_0.CrossProd(O) is approximately - // perpendicular to all of {O, V_0, V_i, V_i+1}, and we can choose - // this point O' as the new origin. - origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)} - - // Advance the edge (V_0,O) to (V_0,O'). - sum += f(l.Vertex(0), oldOrigin, origin) - } - // Advance the edge (O,V_i) to (O',V_i). - sum += f(oldOrigin, l.Vertex(i), origin) - } - // Advance the edge (O,V_i) to (O,V_i+1). - sum += f(origin, l.Vertex(i), l.Vertex(i+1)) - } - // If the origin is not V_0, we need to sum one more triangle. - if origin != l.Vertex(0) { - // Advance the edge (O,V_n-1) to (O,V_0). - sum += f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0)) - } - return sum -} - -// surfaceIntegralPoint mirrors the surfaceIntegralFloat64 method but over Points; -// see that method for commentary. The C++ version uses a templated method. -// Any changes to this method may need corresponding changes to surfaceIntegralFloat64 as well. -func (l *Loop) surfaceIntegralPoint(f func(a, b, c Point) Point) Point { - const maxLength = math.Pi - 1e-5 - var sum r3.Vector - - origin := l.Vertex(0) - for i := 1; i+1 < len(l.vertices); i++ { - if l.Vertex(i+1).Angle(origin.Vector) > maxLength { - oldOrigin := origin - if origin == l.Vertex(0) { - origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()} - } else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength { - origin = l.Vertex(0) - } else { - origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)} - sum = sum.Add(f(l.Vertex(0), oldOrigin, origin).Vector) - } - sum = sum.Add(f(oldOrigin, l.Vertex(i), origin).Vector) - } - sum = sum.Add(f(origin, l.Vertex(i), l.Vertex(i+1)).Vector) - } - if origin != l.Vertex(0) { - sum = sum.Add(f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0)).Vector) - } - return Point{sum} -} - -// Area returns the area of the loop interior, i.e. the region on the left side of -// the loop. The return value is between 0 and 4*pi. (Note that the return -// value is not affected by whether this loop is a "hole" or a "shell".) -func (l *Loop) Area() float64 { - // It is surprisingly difficult to compute the area of a loop robustly. The - // main issues are (1) whether degenerate loops are considered to be CCW or - // not (i.e., whether their area is close to 0 or 4*pi), and (2) computing - // the areas of small loops with good relative accuracy. - // - // With respect to degeneracies, we would like Area to be consistent - // with ContainsPoint in that loops that contain many points - // should have large areas, and loops that contain few points should have - // small areas. For example, if a degenerate triangle is considered CCW - // according to s2predicates Sign, then it will contain very few points and - // its area should be approximately zero. On the other hand if it is - // considered clockwise, then it will contain virtually all points and so - // its area should be approximately 4*pi. - // - // More precisely, let U be the set of Points for which IsUnitLength - // is true, let P(U) be the projection of those points onto the mathematical - // unit sphere, and let V(P(U)) be the Voronoi diagram of the projected - // points. Then for every loop x, we would like Area to approximately - // equal the sum of the areas of the Voronoi regions of the points p for - // which x.ContainsPoint(p) is true. - // - // The second issue is that we want to compute the area of small loops - // accurately. This requires having good relative precision rather than - // good absolute precision. For example, if the area of a loop is 1e-12 and - // the error is 1e-15, then the area only has 3 digits of accuracy. (For - // reference, 1e-12 is about 40 square meters on the surface of the earth.) - // We would like to have good relative accuracy even for small loops. - // - // To achieve these goals, we combine two different methods of computing the - // area. This first method is based on the Gauss-Bonnet theorem, which says - // that the area enclosed by the loop equals 2*pi minus the total geodesic - // curvature of the loop (i.e., the sum of the "turning angles" at all the - // loop vertices). The big advantage of this method is that as long as we - // use Sign to compute the turning angle at each vertex, then - // degeneracies are always handled correctly. In other words, if a - // degenerate loop is CCW according to the symbolic perturbations used by - // Sign, then its turning angle will be approximately 2*pi. - // - // The disadvantage of the Gauss-Bonnet method is that its absolute error is - // about 2e-15 times the number of vertices (see turningAngleMaxError). - // So, it cannot compute the area of small loops accurately. - // - // The second method is based on splitting the loop into triangles and - // summing the area of each triangle. To avoid the difficulty and expense - // of decomposing the loop into a union of non-overlapping triangles, - // instead we compute a signed sum over triangles that may overlap (see the - // comments for surfaceIntegral). The advantage of this method - // is that the area of each triangle can be computed with much better - // relative accuracy (using l'Huilier's theorem). The disadvantage is that - // the result is a signed area: CCW loops may yield a small positive value, - // while CW loops may yield a small negative value (which is converted to a - // positive area by adding 4*pi). This means that small errors in computing - // the signed area may translate into a very large error in the result (if - // the sign of the sum is incorrect). - // - // So, our strategy is to combine these two methods as follows. First we - // compute the area using the "signed sum over triangles" approach (since it - // is generally more accurate). We also estimate the maximum error in this - // result. If the signed area is too close to zero (i.e., zero is within - // the error bounds), then we double-check the sign of the result using the - // Gauss-Bonnet method. (In fact we just call IsNormalized, which is - // based on this method.) If the two methods disagree, we return either 0 - // or 4*pi based on the result of IsNormalized. Otherwise we return the - // area that we computed originally. - if l.isEmptyOrFull() { - if l.ContainsOrigin() { - return 4 * math.Pi - } - return 0 - } - area := l.surfaceIntegralFloat64(SignedArea) - - // TODO(roberts): This error estimate is very approximate. There are two - // issues: (1) SignedArea needs some improvements to ensure that its error - // is actually never higher than GirardArea, and (2) although the number of - // triangles in the sum is typically N-2, in theory it could be as high as - // 2*N for pathological inputs. But in other respects this error bound is - // very conservative since it assumes that the maximum error is achieved on - // every triangle. - maxError := l.turningAngleMaxError() - - // The signed area should be between approximately -4*pi and 4*pi. - if area < 0 { - // We have computed the negative of the area of the loop exterior. - area += 4 * math.Pi - } - - if area > 4*math.Pi { - area = 4 * math.Pi - } - if area < 0 { - area = 0 - } - - // If the area is close enough to zero or 4*pi so that the loop orientation - // is ambiguous, then we compute the loop orientation explicitly. - if area < maxError && !l.IsNormalized() { - return 4 * math.Pi - } else if area > (4*math.Pi-maxError) && l.IsNormalized() { - return 0 - } - - return area -} - -// Centroid returns the true centroid of the loop multiplied by the area of the -// loop. The result is not unit length, so you may want to normalize it. Also -// note that in general, the centroid may not be contained by the loop. -// -// We prescale by the loop area for two reasons: (1) it is cheaper to -// compute this way, and (2) it makes it easier to compute the centroid of -// more complicated shapes (by splitting them into disjoint regions and -// adding their centroids). -// -// Note that the return value is not affected by whether this loop is a -// "hole" or a "shell". -func (l *Loop) Centroid() Point { - // surfaceIntegralPoint() returns either the integral of position over loop - // interior, or the negative of the integral of position over the loop - // exterior. But these two values are the same (!), because the integral of - // position over the entire sphere is (0, 0, 0). - return l.surfaceIntegralPoint(TrueCentroid) -} - -// Encode encodes the Loop. -func (l Loop) Encode(w io.Writer) error { - e := &encoder{w: w} - l.encode(e) - return e.err -} - -func (l Loop) encode(e *encoder) { - e.writeInt8(encodingVersion) - e.writeUint32(uint32(len(l.vertices))) - for _, v := range l.vertices { - e.writeFloat64(v.X) - e.writeFloat64(v.Y) - e.writeFloat64(v.Z) - } - - e.writeBool(l.originInside) - e.writeInt32(int32(l.depth)) - - // Encode the bound. - l.bound.encode(e) -} - -// Decode decodes a loop. -func (l *Loop) Decode(r io.Reader) error { - *l = Loop{} - d := &decoder{r: asByteReader(r)} - l.decode(d) - return d.err -} - -func (l *Loop) decode(d *decoder) { - version := int8(d.readUint8()) - if d.err != nil { - return - } - if version != encodingVersion { - d.err = fmt.Errorf("cannot decode version %d", version) - return - } - - // Empty loops are explicitly allowed here: a newly created loop has zero vertices - // and such loops encode and decode properly. - nvertices := d.readUint32() - if nvertices > maxEncodedVertices { - if d.err == nil { - d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices) - - } - return - } - l.vertices = make([]Point, nvertices) - for i := range l.vertices { - l.vertices[i].X = d.readFloat64() - l.vertices[i].Y = d.readFloat64() - l.vertices[i].Z = d.readFloat64() - } - l.index = NewShapeIndex() - l.originInside = d.readBool() - l.depth = int(d.readUint32()) - l.bound.decode(d) - l.subregionBound = ExpandForSubregions(l.bound) - - l.index.Add(l) -} - -// Bitmasks to read from properties. -const ( - originInside = 1 << iota - boundEncoded -) - -func (l *Loop) xyzFaceSiTiVertices() []xyzFaceSiTi { - ret := make([]xyzFaceSiTi, len(l.vertices)) - for i, v := range l.vertices { - ret[i].xyz = v - ret[i].face, ret[i].si, ret[i].ti, ret[i].level = xyzToFaceSiTi(v) - } - return ret -} - -func (l *Loop) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) { - if len(l.vertices) != len(vertices) { - panic("encodeCompressed: vertices must be the same length as l.vertices") - } - if len(vertices) > maxEncodedVertices { - if e.err == nil { - e.err = fmt.Errorf("too many vertices (%d; max is %d)", len(vertices), maxEncodedVertices) - } - return - } - e.writeUvarint(uint64(len(vertices))) - encodePointsCompressed(e, vertices, snapLevel) - - props := l.compressedEncodingProperties() - e.writeUvarint(props) - e.writeUvarint(uint64(l.depth)) - if props&boundEncoded != 0 { - l.bound.encode(e) - } -} - -func (l *Loop) compressedEncodingProperties() uint64 { - var properties uint64 - if l.originInside { - properties |= originInside - } - - // Write whether there is a bound so we can change the threshold later. - // Recomputing the bound multiplies the decode time taken per vertex - // by a factor of about 3.5. Without recomputing the bound, decode - // takes approximately 125 ns / vertex. A loop with 63 vertices - // encoded without the bound will take ~30us to decode, which is - // acceptable. At ~3.5 bytes / vertex without the bound, adding - // the bound will increase the size by <15%, which is also acceptable. - const minVerticesForBound = 64 - if len(l.vertices) >= minVerticesForBound { - properties |= boundEncoded - } - - return properties -} - -func (l *Loop) decodeCompressed(d *decoder, snapLevel int) { - nvertices := d.readUvarint() - if d.err != nil { - return - } - if nvertices > maxEncodedVertices { - d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices) - return - } - l.vertices = make([]Point, nvertices) - decodePointsCompressed(d, snapLevel, l.vertices) - properties := d.readUvarint() - - // Make sure values are valid before using. - if d.err != nil { - return - } - - l.index = NewShapeIndex() - l.originInside = (properties & originInside) != 0 - - l.depth = int(d.readUvarint()) - - if (properties & boundEncoded) != 0 { - l.bound.decode(d) - if d.err != nil { - return - } - l.subregionBound = ExpandForSubregions(l.bound) - } else { - l.initBound() - } - - l.index.Add(l) -} - -// crossingTarget is an enum representing the possible crossing target cases for relations. -type crossingTarget int - -const ( - crossingTargetDontCare crossingTarget = iota - crossingTargetDontCross - crossingTargetCross -) - -// loopRelation defines the interface for checking a type of relationship between two loops. -// Some examples of relations are Contains, Intersects, or CompareBoundary. -type loopRelation interface { - // Optionally, aCrossingTarget and bCrossingTarget can specify an early-exit - // condition for the loop relation. If any point P is found such that - // - // A.ContainsPoint(P) == aCrossingTarget() && - // B.ContainsPoint(P) == bCrossingTarget() - // - // then the loop relation is assumed to be the same as if a pair of crossing - // edges were found. For example, the ContainsPoint relation has - // - // aCrossingTarget() == crossingTargetDontCross - // bCrossingTarget() == crossingTargetCross - // - // because if A.ContainsPoint(P) == false and B.ContainsPoint(P) == true - // for any point P, then it is equivalent to finding an edge crossing (i.e., - // since Contains returns false in both cases). - // - // Loop relations that do not have an early-exit condition of this form - // should return crossingTargetDontCare for both crossing targets. - - // aCrossingTarget reports whether loop A crosses the target point with - // the given relation type. - aCrossingTarget() crossingTarget - // bCrossingTarget reports whether loop B crosses the target point with - // the given relation type. - bCrossingTarget() crossingTarget - - // wedgesCross reports if a shared vertex ab1 and the two associated wedges - // (a0, ab1, b2) and (b0, ab1, b2) are equivalent to an edge crossing. - // The loop relation is also allowed to maintain its own internal state, and - // can return true if it observes any sequence of wedges that are equivalent - // to an edge crossing. - wedgesCross(a0, ab1, a2, b0, b2 Point) bool -} - -// loopCrosser is a helper type for determining whether two loops cross. -// It is instantiated twice for each pair of loops to be tested, once for the -// pair (A,B) and once for the pair (B,A), in order to be able to process -// edges in either loop nesting order. -type loopCrosser struct { - a, b *Loop - relation loopRelation - swapped bool - aCrossingTarget crossingTarget - bCrossingTarget crossingTarget - - // state maintained by startEdge and edgeCrossesCell. - crosser *EdgeCrosser - aj, bjPrev int - - // temporary data declared here to avoid repeated memory allocations. - bQuery *CrossingEdgeQuery - bCells []*ShapeIndexCell -} - -// newLoopCrosser creates a loopCrosser from the given values. If swapped is true, -// the loops A and B have been swapped. This affects how arguments are passed to -// the given loop relation, since for example A.Contains(B) is not the same as -// B.Contains(A). -func newLoopCrosser(a, b *Loop, relation loopRelation, swapped bool) *loopCrosser { - l := &loopCrosser{ - a: a, - b: b, - relation: relation, - swapped: swapped, - aCrossingTarget: relation.aCrossingTarget(), - bCrossingTarget: relation.bCrossingTarget(), - bQuery: NewCrossingEdgeQuery(b.index), - } - if swapped { - l.aCrossingTarget, l.bCrossingTarget = l.bCrossingTarget, l.aCrossingTarget - } - - return l -} - -// startEdge sets the crossers state for checking the given edge of loop A. -func (l *loopCrosser) startEdge(aj int) { - l.crosser = NewEdgeCrosser(l.a.Vertex(aj), l.a.Vertex(aj+1)) - l.aj = aj - l.bjPrev = -2 -} - -// edgeCrossesCell reports whether the current edge of loop A has any crossings with -// edges of the index cell of loop B. -func (l *loopCrosser) edgeCrossesCell(bClipped *clippedShape) bool { - // Test the current edge of A against all edges of bClipped - bNumEdges := bClipped.numEdges() - for j := 0; j < bNumEdges; j++ { - bj := bClipped.edges[j] - if bj != l.bjPrev+1 { - l.crosser.RestartAt(l.b.Vertex(bj)) - } - l.bjPrev = bj - if crossing := l.crosser.ChainCrossingSign(l.b.Vertex(bj + 1)); crossing == DoNotCross { - continue - } else if crossing == Cross { - return true - } - - // We only need to check each shared vertex once, so we only - // consider the case where l.aVertex(l.aj+1) == l.b.Vertex(bj+1). - if l.a.Vertex(l.aj+1) == l.b.Vertex(bj+1) { - if l.swapped { - if l.relation.wedgesCross(l.b.Vertex(bj), l.b.Vertex(bj+1), l.b.Vertex(bj+2), l.a.Vertex(l.aj), l.a.Vertex(l.aj+2)) { - return true - } - } else { - if l.relation.wedgesCross(l.a.Vertex(l.aj), l.a.Vertex(l.aj+1), l.a.Vertex(l.aj+2), l.b.Vertex(bj), l.b.Vertex(bj+2)) { - return true - } - } - } - } - - return false -} - -// cellCrossesCell reports whether there are any edge crossings or wedge crossings -// within the two given cells. -func (l *loopCrosser) cellCrossesCell(aClipped, bClipped *clippedShape) bool { - // Test all edges of aClipped against all edges of bClipped. - for _, edge := range aClipped.edges { - l.startEdge(edge) - if l.edgeCrossesCell(bClipped) { - return true - } - } - - return false -} - -// cellCrossesAnySubcell reports whether given an index cell of A, if there are any -// edge or wedge crossings with any index cell of B contained within bID. -func (l *loopCrosser) cellCrossesAnySubcell(aClipped *clippedShape, bID CellID) bool { - // Test all edges of aClipped against all edges of B. The relevant B - // edges are guaranteed to be children of bID, which lets us find the - // correct index cells more efficiently. - bRoot := PaddedCellFromCellID(bID, 0) - for _, aj := range aClipped.edges { - // Use an CrossingEdgeQuery starting at bRoot to find the index cells - // of B that might contain crossing edges. - l.bCells = l.bQuery.getCells(l.a.Vertex(aj), l.a.Vertex(aj+1), bRoot) - if len(l.bCells) == 0 { - continue - } - l.startEdge(aj) - for c := 0; c < len(l.bCells); c++ { - if l.edgeCrossesCell(l.bCells[c].shapes[0]) { - return true - } - } - } - - return false -} - -// hasCrossing reports whether given two iterators positioned such that -// ai.cellID().ContainsCellID(bi.cellID()), there is an edge or wedge crossing -// anywhere within ai.cellID(). This function advances bi only past ai.cellID(). -func (l *loopCrosser) hasCrossing(ai, bi *rangeIterator) bool { - // If ai.CellID() intersects many edges of B, then it is faster to use - // CrossingEdgeQuery to narrow down the candidates. But if it intersects - // only a few edges, it is faster to check all the crossings directly. - // We handle this by advancing bi and keeping track of how many edges we - // would need to test. - const edgeQueryMinEdges = 20 // Tuned from benchmarks. - var totalEdges int - l.bCells = nil - - for { - if n := bi.it.IndexCell().shapes[0].numEdges(); n > 0 { - totalEdges += n - if totalEdges >= edgeQueryMinEdges { - // There are too many edges to test them directly, so use CrossingEdgeQuery. - if l.cellCrossesAnySubcell(ai.it.IndexCell().shapes[0], ai.cellID()) { - return true - } - bi.seekBeyond(ai) - return false - } - l.bCells = append(l.bCells, bi.indexCell()) - } - bi.next() - if bi.cellID() > ai.rangeMax { - break - } - } - - // Test all the edge crossings directly. - for _, c := range l.bCells { - if l.cellCrossesCell(ai.it.IndexCell().shapes[0], c.shapes[0]) { - return true - } - } - - return false -} - -// containsCenterMatches reports if the clippedShapes containsCenter boolean corresponds -// to the crossing target type given. (This is to work around C++ allowing false == 0, -// true == 1 type implicit conversions and comparisons) -func containsCenterMatches(a *clippedShape, target crossingTarget) bool { - return (!a.containsCenter && target == crossingTargetDontCross) || - (a.containsCenter && target == crossingTargetCross) -} - -// hasCrossingRelation reports whether given two iterators positioned such that -// ai.cellID().ContainsCellID(bi.cellID()), there is a crossing relationship -// anywhere within ai.cellID(). Specifically, this method returns true if there -// is an edge crossing, a wedge crossing, or a point P that matches both relations -// crossing targets. This function advances both iterators past ai.cellID. -func (l *loopCrosser) hasCrossingRelation(ai, bi *rangeIterator) bool { - aClipped := ai.it.IndexCell().shapes[0] - if aClipped.numEdges() != 0 { - // The current cell of A has at least one edge, so check for crossings. - if l.hasCrossing(ai, bi) { - return true - } - ai.next() - return false - } - - if containsCenterMatches(aClipped, l.aCrossingTarget) { - // The crossing target for A is not satisfied, so we skip over these cells of B. - bi.seekBeyond(ai) - ai.next() - return false - } - - // All points within ai.cellID() satisfy the crossing target for A, so it's - // worth iterating through the cells of B to see whether any cell - // centers also satisfy the crossing target for B. - for bi.cellID() <= ai.rangeMax { - bClipped := bi.it.IndexCell().shapes[0] - if containsCenterMatches(bClipped, l.bCrossingTarget) { - return true - } - bi.next() - } - ai.next() - return false -} - -// hasCrossingRelation checks all edges of loop A for intersection against all edges -// of loop B and reports if there are any that satisfy the given relation. If there -// is any shared vertex, the wedges centered at this vertex are sent to the given -// relation to be tested. -// -// If the two loop boundaries cross, this method is guaranteed to return -// true. It also returns true in certain cases if the loop relationship is -// equivalent to crossing. For example, if the relation is Contains and a -// point P is found such that B contains P but A does not contain P, this -// method will return true to indicate that the result is the same as though -// a pair of crossing edges were found (since Contains returns false in -// both cases). -// -// See Contains, Intersects and CompareBoundary for the three uses of this function. -func hasCrossingRelation(a, b *Loop, relation loopRelation) bool { - // We look for CellID ranges where the indexes of A and B overlap, and - // then test those edges for crossings. - ai := newRangeIterator(a.index) - bi := newRangeIterator(b.index) - - ab := newLoopCrosser(a, b, relation, false) // Tests edges of A against B - ba := newLoopCrosser(b, a, relation, true) // Tests edges of B against A - - for !ai.done() || !bi.done() { - if ai.rangeMax < bi.rangeMin { - // The A and B cells don't overlap, and A precedes B. - ai.seekTo(bi) - } else if bi.rangeMax < ai.rangeMin { - // The A and B cells don't overlap, and B precedes A. - bi.seekTo(ai) - } else { - // One cell contains the other. Determine which cell is larger. - abRelation := int64(ai.it.CellID().lsb() - bi.it.CellID().lsb()) - if abRelation > 0 { - // A's index cell is larger. - if ab.hasCrossingRelation(ai, bi) { - return true - } - } else if abRelation < 0 { - // B's index cell is larger. - if ba.hasCrossingRelation(bi, ai) { - return true - } - } else { - // The A and B cells are the same. Since the two cells - // have the same center point P, check whether P satisfies - // the crossing targets. - aClipped := ai.it.IndexCell().shapes[0] - bClipped := bi.it.IndexCell().shapes[0] - if containsCenterMatches(aClipped, ab.aCrossingTarget) && - containsCenterMatches(bClipped, ab.bCrossingTarget) { - return true - } - // Otherwise test all the edge crossings directly. - if aClipped.numEdges() > 0 && bClipped.numEdges() > 0 && ab.cellCrossesCell(aClipped, bClipped) { - return true - } - ai.next() - bi.next() - } - } - } - return false -} - -// containsRelation implements loopRelation for a contains operation. If -// A.ContainsPoint(P) == false && B.ContainsPoint(P) == true, it is equivalent -// to having an edge crossing (i.e., Contains returns false). -type containsRelation struct { - foundSharedVertex bool -} - -func (c *containsRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCross } -func (c *containsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross } -func (c *containsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool { - c.foundSharedVertex = true - return !WedgeContains(a0, ab1, a2, b0, b2) -} - -// intersectsRelation implements loopRelation for an intersects operation. Given -// two loops, A and B, if A.ContainsPoint(P) == true && B.ContainsPoint(P) == true, -// it is equivalent to having an edge crossing (i.e., Intersects returns true). -type intersectsRelation struct { - foundSharedVertex bool -} - -func (i *intersectsRelation) aCrossingTarget() crossingTarget { return crossingTargetCross } -func (i *intersectsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross } -func (i *intersectsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool { - i.foundSharedVertex = true - return WedgeIntersects(a0, ab1, a2, b0, b2) -} - -// compareBoundaryRelation implements loopRelation for comparing boundaries. -// -// The compare boundary relation does not have a useful early-exit condition, -// so we return crossingTargetDontCare for both crossing targets. -// -// Aside: A possible early exit condition could be based on the following. -// If A contains a point of both B and ~B, then A intersects Boundary(B). -// If ~A contains a point of both B and ~B, then ~A intersects Boundary(B). -// So if the intersections of {A, ~A} with {B, ~B} are all non-empty, -// the return value is 0, i.e., Boundary(A) intersects Boundary(B). -// Unfortunately it isn't worth detecting this situation because by the -// time we have seen a point in all four intersection regions, we are also -// guaranteed to have seen at least one pair of crossing edges. -type compareBoundaryRelation struct { - reverse bool // True if the other loop should be reversed. - foundSharedVertex bool // True if any wedge was processed. - containsEdge bool // True if any edge of the other loop is contained by this loop. - excludesEdge bool // True if any edge of the other loop is excluded by this loop. -} - -func newCompareBoundaryRelation(reverse bool) *compareBoundaryRelation { - return &compareBoundaryRelation{reverse: reverse} -} - -func (c *compareBoundaryRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCare } -func (c *compareBoundaryRelation) bCrossingTarget() crossingTarget { return crossingTargetDontCare } -func (c *compareBoundaryRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool { - // Because we don't care about the interior of the other, only its boundary, - // it is sufficient to check whether this one contains the semiwedge (ab1, b2). - c.foundSharedVertex = true - if wedgeContainsSemiwedge(a0, ab1, a2, b2, c.reverse) { - c.containsEdge = true - } else { - c.excludesEdge = true - } - return c.containsEdge && c.excludesEdge -} - -// wedgeContainsSemiwedge reports whether the wedge (a0, ab1, a2) contains the -// "semiwedge" defined as any non-empty open set of rays immediately CCW from -// the edge (ab1, b2). If reverse is true, then substitute clockwise for CCW; -// this simulates what would happen if the direction of the other loop was reversed. -func wedgeContainsSemiwedge(a0, ab1, a2, b2 Point, reverse bool) bool { - if b2 == a0 || b2 == a2 { - // We have a shared or reversed edge. - return (b2 == a0) == reverse - } - return OrderedCCW(a0, a2, b2, ab1) -} - -// containsNonCrossingBoundary reports whether given two loops whose boundaries -// do not cross (see compareBoundary), if this loop contains the boundary of the -// other loop. If reverse is true, the boundary of the other loop is reversed -// first (which only affects the result when there are shared edges). This method -// is cheaper than compareBoundary because it does not test for edge intersections. -// -// This function requires that neither loop is empty, and that if the other is full, -// then reverse == false. -func (l *Loop) containsNonCrossingBoundary(other *Loop, reverseOther bool) bool { - // The bounds must intersect for containment. - if !l.bound.Intersects(other.bound) { - return false - } - - // Full loops are handled as though the loop surrounded the entire sphere. - if l.IsFull() { - return true - } - if other.IsFull() { - return false - } - - m, ok := l.findVertex(other.Vertex(0)) - if !ok { - // Since the other loops vertex 0 is not shared, we can check if this contains it. - return l.ContainsPoint(other.Vertex(0)) - } - // Otherwise check whether the edge (b0, b1) is contained by this loop. - return wedgeContainsSemiwedge(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1), - other.Vertex(1), reverseOther) -} - -// TODO(roberts): Differences from the C++ version: -// DistanceToPoint -// DistanceToBoundary -// Project -// ProjectToBoundary -// BoundaryApproxEqual -// BoundaryNear |