summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/rect.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/rect.go')
-rw-r--r--vendor/github.com/golang/geo/s2/rect.go710
1 files changed, 0 insertions, 710 deletions
diff --git a/vendor/github.com/golang/geo/s2/rect.go b/vendor/github.com/golang/geo/s2/rect.go
deleted file mode 100644
index f6b52a59e..000000000
--- a/vendor/github.com/golang/geo/s2/rect.go
+++ /dev/null
@@ -1,710 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// Rect represents a closed latitude-longitude rectangle.
-type Rect struct {
- Lat r1.Interval
- Lng s1.Interval
-}
-
-var (
- validRectLatRange = r1.Interval{-math.Pi / 2, math.Pi / 2}
- validRectLngRange = s1.FullInterval()
-)
-
-// EmptyRect returns the empty rectangle.
-func EmptyRect() Rect { return Rect{r1.EmptyInterval(), s1.EmptyInterval()} }
-
-// FullRect returns the full rectangle.
-func FullRect() Rect { return Rect{validRectLatRange, validRectLngRange} }
-
-// RectFromLatLng constructs a rectangle containing a single point p.
-func RectFromLatLng(p LatLng) Rect {
- return Rect{
- Lat: r1.Interval{p.Lat.Radians(), p.Lat.Radians()},
- Lng: s1.Interval{p.Lng.Radians(), p.Lng.Radians()},
- }
-}
-
-// RectFromCenterSize constructs a rectangle with the given size and center.
-// center needs to be normalized, but size does not. The latitude
-// interval of the result is clamped to [-90,90] degrees, and the longitude
-// interval of the result is FullRect() if and only if the longitude size is
-// 360 degrees or more.
-//
-// Examples of clamping (in degrees):
-// center=(80,170), size=(40,60) -> lat=[60,90], lng=[140,-160]
-// center=(10,40), size=(210,400) -> lat=[-90,90], lng=[-180,180]
-// center=(-90,180), size=(20,50) -> lat=[-90,-80], lng=[155,-155]
-func RectFromCenterSize(center, size LatLng) Rect {
- half := LatLng{size.Lat / 2, size.Lng / 2}
- return RectFromLatLng(center).expanded(half)
-}
-
-// IsValid returns true iff the rectangle is valid.
-// This requires Lat ⊆ [-π/2,π/2] and Lng ⊆ [-π,π], and Lat = ∅ iff Lng = ∅
-func (r Rect) IsValid() bool {
- return math.Abs(r.Lat.Lo) <= math.Pi/2 &&
- math.Abs(r.Lat.Hi) <= math.Pi/2 &&
- r.Lng.IsValid() &&
- r.Lat.IsEmpty() == r.Lng.IsEmpty()
-}
-
-// IsEmpty reports whether the rectangle is empty.
-func (r Rect) IsEmpty() bool { return r.Lat.IsEmpty() }
-
-// IsFull reports whether the rectangle is full.
-func (r Rect) IsFull() bool { return r.Lat.Equal(validRectLatRange) && r.Lng.IsFull() }
-
-// IsPoint reports whether the rectangle is a single point.
-func (r Rect) IsPoint() bool { return r.Lat.Lo == r.Lat.Hi && r.Lng.Lo == r.Lng.Hi }
-
-// Vertex returns the i-th vertex of the rectangle (i = 0,1,2,3) in CCW order
-// (lower left, lower right, upper right, upper left).
-func (r Rect) Vertex(i int) LatLng {
- var lat, lng float64
-
- switch i {
- case 0:
- lat = r.Lat.Lo
- lng = r.Lng.Lo
- case 1:
- lat = r.Lat.Lo
- lng = r.Lng.Hi
- case 2:
- lat = r.Lat.Hi
- lng = r.Lng.Hi
- case 3:
- lat = r.Lat.Hi
- lng = r.Lng.Lo
- }
- return LatLng{s1.Angle(lat) * s1.Radian, s1.Angle(lng) * s1.Radian}
-}
-
-// Lo returns one corner of the rectangle.
-func (r Rect) Lo() LatLng {
- return LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(r.Lng.Lo) * s1.Radian}
-}
-
-// Hi returns the other corner of the rectangle.
-func (r Rect) Hi() LatLng {
- return LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(r.Lng.Hi) * s1.Radian}
-}
-
-// Center returns the center of the rectangle.
-func (r Rect) Center() LatLng {
- return LatLng{s1.Angle(r.Lat.Center()) * s1.Radian, s1.Angle(r.Lng.Center()) * s1.Radian}
-}
-
-// Size returns the size of the Rect.
-func (r Rect) Size() LatLng {
- return LatLng{s1.Angle(r.Lat.Length()) * s1.Radian, s1.Angle(r.Lng.Length()) * s1.Radian}
-}
-
-// Area returns the surface area of the Rect.
-func (r Rect) Area() float64 {
- if r.IsEmpty() {
- return 0
- }
- capDiff := math.Abs(math.Sin(r.Lat.Hi) - math.Sin(r.Lat.Lo))
- return r.Lng.Length() * capDiff
-}
-
-// AddPoint increases the size of the rectangle to include the given point.
-func (r Rect) AddPoint(ll LatLng) Rect {
- if !ll.IsValid() {
- return r
- }
- return Rect{
- Lat: r.Lat.AddPoint(ll.Lat.Radians()),
- Lng: r.Lng.AddPoint(ll.Lng.Radians()),
- }
-}
-
-// expanded returns a rectangle that has been expanded by margin.Lat on each side
-// in the latitude direction, and by margin.Lng on each side in the longitude
-// direction. If either margin is negative, then it shrinks the rectangle on
-// the corresponding sides instead. The resulting rectangle may be empty.
-//
-// The latitude-longitude space has the topology of a cylinder. Longitudes
-// "wrap around" at +/-180 degrees, while latitudes are clamped to range [-90, 90].
-// This means that any expansion (positive or negative) of the full longitude range
-// remains full (since the "rectangle" is actually a continuous band around the
-// cylinder), while expansion of the full latitude range remains full only if the
-// margin is positive.
-//
-// If either the latitude or longitude interval becomes empty after
-// expansion by a negative margin, the result is empty.
-//
-// Note that if an expanded rectangle contains a pole, it may not contain
-// all possible lat/lng representations of that pole, e.g., both points [π/2,0]
-// and [π/2,1] represent the same pole, but they might not be contained by the
-// same Rect.
-//
-// If you are trying to grow a rectangle by a certain distance on the
-// sphere (e.g. 5km), refer to the ExpandedByDistance() C++ method implementation
-// instead.
-func (r Rect) expanded(margin LatLng) Rect {
- lat := r.Lat.Expanded(margin.Lat.Radians())
- lng := r.Lng.Expanded(margin.Lng.Radians())
-
- if lat.IsEmpty() || lng.IsEmpty() {
- return EmptyRect()
- }
-
- return Rect{
- Lat: lat.Intersection(validRectLatRange),
- Lng: lng,
- }
-}
-
-func (r Rect) String() string { return fmt.Sprintf("[Lo%v, Hi%v]", r.Lo(), r.Hi()) }
-
-// PolarClosure returns the rectangle unmodified if it does not include either pole.
-// If it includes either pole, PolarClosure returns an expansion of the rectangle along
-// the longitudinal range to include all possible representations of the contained poles.
-func (r Rect) PolarClosure() Rect {
- if r.Lat.Lo == -math.Pi/2 || r.Lat.Hi == math.Pi/2 {
- return Rect{r.Lat, s1.FullInterval()}
- }
- return r
-}
-
-// Union returns the smallest Rect containing the union of this rectangle and the given rectangle.
-func (r Rect) Union(other Rect) Rect {
- return Rect{
- Lat: r.Lat.Union(other.Lat),
- Lng: r.Lng.Union(other.Lng),
- }
-}
-
-// Intersection returns the smallest rectangle containing the intersection of
-// this rectangle and the given rectangle. Note that the region of intersection
-// may consist of two disjoint rectangles, in which case a single rectangle
-// spanning both of them is returned.
-func (r Rect) Intersection(other Rect) Rect {
- lat := r.Lat.Intersection(other.Lat)
- lng := r.Lng.Intersection(other.Lng)
-
- if lat.IsEmpty() || lng.IsEmpty() {
- return EmptyRect()
- }
- return Rect{lat, lng}
-}
-
-// Intersects reports whether this rectangle and the other have any points in common.
-func (r Rect) Intersects(other Rect) bool {
- return r.Lat.Intersects(other.Lat) && r.Lng.Intersects(other.Lng)
-}
-
-// CapBound returns a cap that contains Rect.
-func (r Rect) CapBound() Cap {
- // We consider two possible bounding caps, one whose axis passes
- // through the center of the lat-long rectangle and one whose axis
- // is the north or south pole. We return the smaller of the two caps.
-
- if r.IsEmpty() {
- return EmptyCap()
- }
-
- var poleZ, poleAngle float64
- if r.Lat.Hi+r.Lat.Lo < 0 {
- // South pole axis yields smaller cap.
- poleZ = -1
- poleAngle = math.Pi/2 + r.Lat.Hi
- } else {
- poleZ = 1
- poleAngle = math.Pi/2 - r.Lat.Lo
- }
- poleCap := CapFromCenterAngle(Point{r3.Vector{0, 0, poleZ}}, s1.Angle(poleAngle)*s1.Radian)
-
- // For bounding rectangles that span 180 degrees or less in longitude, the
- // maximum cap size is achieved at one of the rectangle vertices. For
- // rectangles that are larger than 180 degrees, we punt and always return a
- // bounding cap centered at one of the two poles.
- if math.Remainder(r.Lng.Hi-r.Lng.Lo, 2*math.Pi) >= 0 && r.Lng.Hi-r.Lng.Lo < 2*math.Pi {
- midCap := CapFromPoint(PointFromLatLng(r.Center())).AddPoint(PointFromLatLng(r.Lo())).AddPoint(PointFromLatLng(r.Hi()))
- if midCap.Height() < poleCap.Height() {
- return midCap
- }
- }
- return poleCap
-}
-
-// RectBound returns itself.
-func (r Rect) RectBound() Rect {
- return r
-}
-
-// Contains reports whether this Rect contains the other Rect.
-func (r Rect) Contains(other Rect) bool {
- return r.Lat.ContainsInterval(other.Lat) && r.Lng.ContainsInterval(other.Lng)
-}
-
-// ContainsCell reports whether the given Cell is contained by this Rect.
-func (r Rect) ContainsCell(c Cell) bool {
- // A latitude-longitude rectangle contains a cell if and only if it contains
- // the cell's bounding rectangle. This test is exact from a mathematical
- // point of view, assuming that the bounds returned by Cell.RectBound()
- // are tight. However, note that there can be a loss of precision when
- // converting between representations -- for example, if an s2.Cell is
- // converted to a polygon, the polygon's bounding rectangle may not contain
- // the cell's bounding rectangle. This has some slightly unexpected side
- // effects; for instance, if one creates an s2.Polygon from an s2.Cell, the
- // polygon will contain the cell, but the polygon's bounding box will not.
- return r.Contains(c.RectBound())
-}
-
-// ContainsLatLng reports whether the given LatLng is within the Rect.
-func (r Rect) ContainsLatLng(ll LatLng) bool {
- if !ll.IsValid() {
- return false
- }
- return r.Lat.Contains(ll.Lat.Radians()) && r.Lng.Contains(ll.Lng.Radians())
-}
-
-// ContainsPoint reports whether the given Point is within the Rect.
-func (r Rect) ContainsPoint(p Point) bool {
- return r.ContainsLatLng(LatLngFromPoint(p))
-}
-
-// CellUnionBound computes a covering of the Rect.
-func (r Rect) CellUnionBound() []CellID {
- return r.CapBound().CellUnionBound()
-}
-
-// intersectsLatEdge reports whether the edge AB intersects the given edge of constant
-// latitude. Requires the points to have unit length.
-func intersectsLatEdge(a, b Point, lat s1.Angle, lng s1.Interval) bool {
- // Unfortunately, lines of constant latitude are curves on
- // the sphere. They can intersect a straight edge in 0, 1, or 2 points.
-
- // First, compute the normal to the plane AB that points vaguely north.
- z := Point{a.PointCross(b).Normalize()}
- if z.Z < 0 {
- z = Point{z.Mul(-1)}
- }
-
- // Extend this to an orthonormal frame (x,y,z) where x is the direction
- // where the great circle through AB achieves its maximium latitude.
- y := Point{z.PointCross(PointFromCoords(0, 0, 1)).Normalize()}
- x := y.Cross(z.Vector)
-
- // Compute the angle "theta" from the x-axis (in the x-y plane defined
- // above) where the great circle intersects the given line of latitude.
- sinLat := math.Sin(float64(lat))
- if math.Abs(sinLat) >= x.Z {
- // The great circle does not reach the given latitude.
- return false
- }
-
- cosTheta := sinLat / x.Z
- sinTheta := math.Sqrt(1 - cosTheta*cosTheta)
- theta := math.Atan2(sinTheta, cosTheta)
-
- // The candidate intersection points are located +/- theta in the x-y
- // plane. For an intersection to be valid, we need to check that the
- // intersection point is contained in the interior of the edge AB and
- // also that it is contained within the given longitude interval "lng".
-
- // Compute the range of theta values spanned by the edge AB.
- abTheta := s1.IntervalFromPointPair(
- math.Atan2(a.Dot(y.Vector), a.Dot(x)),
- math.Atan2(b.Dot(y.Vector), b.Dot(x)))
-
- if abTheta.Contains(theta) {
- // Check if the intersection point is also in the given lng interval.
- isect := x.Mul(cosTheta).Add(y.Mul(sinTheta))
- if lng.Contains(math.Atan2(isect.Y, isect.X)) {
- return true
- }
- }
-
- if abTheta.Contains(-theta) {
- // Check if the other intersection point is also in the given lng interval.
- isect := x.Mul(cosTheta).Sub(y.Mul(sinTheta))
- if lng.Contains(math.Atan2(isect.Y, isect.X)) {
- return true
- }
- }
- return false
-}
-
-// intersectsLngEdge reports whether the edge AB intersects the given edge of constant
-// longitude. Requires the points to have unit length.
-func intersectsLngEdge(a, b Point, lat r1.Interval, lng s1.Angle) bool {
- // The nice thing about edges of constant longitude is that
- // they are straight lines on the sphere (geodesics).
- return CrossingSign(a, b, PointFromLatLng(LatLng{s1.Angle(lat.Lo), lng}),
- PointFromLatLng(LatLng{s1.Angle(lat.Hi), lng})) == Cross
-}
-
-// IntersectsCell reports whether this rectangle intersects the given cell. This is an
-// exact test and may be fairly expensive.
-func (r Rect) IntersectsCell(c Cell) bool {
- // First we eliminate the cases where one region completely contains the
- // other. Once these are disposed of, then the regions will intersect
- // if and only if their boundaries intersect.
- if r.IsEmpty() {
- return false
- }
- if r.ContainsPoint(Point{c.id.rawPoint()}) {
- return true
- }
- if c.ContainsPoint(PointFromLatLng(r.Center())) {
- return true
- }
-
- // Quick rejection test (not required for correctness).
- if !r.Intersects(c.RectBound()) {
- return false
- }
-
- // Precompute the cell vertices as points and latitude-longitudes. We also
- // check whether the Cell contains any corner of the rectangle, or
- // vice-versa, since the edge-crossing tests only check the edge interiors.
- vertices := [4]Point{}
- latlngs := [4]LatLng{}
-
- for i := range vertices {
- vertices[i] = c.Vertex(i)
- latlngs[i] = LatLngFromPoint(vertices[i])
- if r.ContainsLatLng(latlngs[i]) {
- return true
- }
- if c.ContainsPoint(PointFromLatLng(r.Vertex(i))) {
- return true
- }
- }
-
- // Now check whether the boundaries intersect. Unfortunately, a
- // latitude-longitude rectangle does not have straight edges: two edges
- // are curved, and at least one of them is concave.
- for i := range vertices {
- edgeLng := s1.IntervalFromEndpoints(latlngs[i].Lng.Radians(), latlngs[(i+1)&3].Lng.Radians())
- if !r.Lng.Intersects(edgeLng) {
- continue
- }
-
- a := vertices[i]
- b := vertices[(i+1)&3]
- if edgeLng.Contains(r.Lng.Lo) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Lo)) {
- return true
- }
- if edgeLng.Contains(r.Lng.Hi) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Hi)) {
- return true
- }
- if intersectsLatEdge(a, b, s1.Angle(r.Lat.Lo), r.Lng) {
- return true
- }
- if intersectsLatEdge(a, b, s1.Angle(r.Lat.Hi), r.Lng) {
- return true
- }
- }
- return false
-}
-
-// Encode encodes the Rect.
-func (r Rect) Encode(w io.Writer) error {
- e := &encoder{w: w}
- r.encode(e)
- return e.err
-}
-
-func (r Rect) encode(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeFloat64(r.Lat.Lo)
- e.writeFloat64(r.Lat.Hi)
- e.writeFloat64(r.Lng.Lo)
- e.writeFloat64(r.Lng.Hi)
-}
-
-// Decode decodes a rectangle.
-func (r *Rect) Decode(rd io.Reader) error {
- d := &decoder{r: asByteReader(rd)}
- r.decode(d)
- return d.err
-}
-
-func (r *Rect) decode(d *decoder) {
- if version := d.readUint8(); int8(version) != encodingVersion && d.err == nil {
- d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion)
- return
- }
- r.Lat.Lo = d.readFloat64()
- r.Lat.Hi = d.readFloat64()
- r.Lng.Lo = d.readFloat64()
- r.Lng.Hi = d.readFloat64()
- return
-}
-
-// DistanceToLatLng returns the minimum distance (measured along the surface of the sphere)
-// from a given point to the rectangle (both its boundary and its interior).
-// If r is empty, the result is meaningless.
-// The latlng must be valid.
-func (r Rect) DistanceToLatLng(ll LatLng) s1.Angle {
- if r.Lng.Contains(float64(ll.Lng)) {
- return maxAngle(0, ll.Lat-s1.Angle(r.Lat.Hi), s1.Angle(r.Lat.Lo)-ll.Lat)
- }
-
- i := s1.IntervalFromEndpoints(r.Lng.Hi, r.Lng.ComplementCenter())
- rectLng := r.Lng.Lo
- if i.Contains(float64(ll.Lng)) {
- rectLng = r.Lng.Hi
- }
-
- lo := LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(rectLng) * s1.Radian}
- hi := LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(rectLng) * s1.Radian}
- return DistanceFromSegment(PointFromLatLng(ll), PointFromLatLng(lo), PointFromLatLng(hi))
-}
-
-// DirectedHausdorffDistance returns the directed Hausdorff distance (measured along the
-// surface of the sphere) to the given Rect. The directed Hausdorff
-// distance from rectangle A to rectangle B is given by
-// h(A, B) = max_{p in A} min_{q in B} d(p, q).
-func (r Rect) DirectedHausdorffDistance(other Rect) s1.Angle {
- if r.IsEmpty() {
- return 0 * s1.Radian
- }
- if other.IsEmpty() {
- return math.Pi * s1.Radian
- }
-
- lng := r.Lng.DirectedHausdorffDistance(other.Lng)
- return directedHausdorffDistance(lng, r.Lat, other.Lat)
-}
-
-// HausdorffDistance returns the undirected Hausdorff distance (measured along the
-// surface of the sphere) to the given Rect.
-// The Hausdorff distance between rectangle A and rectangle B is given by
-// H(A, B) = max{h(A, B), h(B, A)}.
-func (r Rect) HausdorffDistance(other Rect) s1.Angle {
- return maxAngle(r.DirectedHausdorffDistance(other),
- other.DirectedHausdorffDistance(r))
-}
-
-// ApproxEqual reports whether the latitude and longitude intervals of the two rectangles
-// are the same up to a small tolerance.
-func (r Rect) ApproxEqual(other Rect) bool {
- return r.Lat.ApproxEqual(other.Lat) && r.Lng.ApproxEqual(other.Lng)
-}
-
-// directedHausdorffDistance returns the directed Hausdorff distance
-// from one longitudinal edge spanning latitude range 'a' to the other
-// longitudinal edge spanning latitude range 'b', with their longitudinal
-// difference given by 'lngDiff'.
-func directedHausdorffDistance(lngDiff s1.Angle, a, b r1.Interval) s1.Angle {
- // By symmetry, we can assume a's longitude is 0 and b's longitude is
- // lngDiff. Call b's two endpoints bLo and bHi. Let H be the hemisphere
- // containing a and delimited by the longitude line of b. The Voronoi diagram
- // of b on H has three edges (portions of great circles) all orthogonal to b
- // and meeting at bLo cross bHi.
- // E1: (bLo, bLo cross bHi)
- // E2: (bHi, bLo cross bHi)
- // E3: (-bMid, bLo cross bHi), where bMid is the midpoint of b
- //
- // They subdivide H into three Voronoi regions. Depending on how longitude 0
- // (which contains edge a) intersects these regions, we distinguish two cases:
- // Case 1: it intersects three regions. This occurs when lngDiff <= π/2.
- // Case 2: it intersects only two regions. This occurs when lngDiff > π/2.
- //
- // In the first case, the directed Hausdorff distance to edge b can only be
- // realized by the following points on a:
- // A1: two endpoints of a.
- // A2: intersection of a with the equator, if b also intersects the equator.
- //
- // In the second case, the directed Hausdorff distance to edge b can only be
- // realized by the following points on a:
- // B1: two endpoints of a.
- // B2: intersection of a with E3
- // B3: farthest point from bLo to the interior of D, and farthest point from
- // bHi to the interior of U, if any, where D (resp. U) is the portion
- // of edge a below (resp. above) the intersection point from B2.
-
- if lngDiff < 0 {
- panic("impossible: negative lngDiff")
- }
- if lngDiff > math.Pi {
- panic("impossible: lngDiff > Pi")
- }
-
- if lngDiff == 0 {
- return s1.Angle(a.DirectedHausdorffDistance(b))
- }
-
- // Assumed longitude of b.
- bLng := lngDiff
- // Two endpoints of b.
- bLo := PointFromLatLng(LatLng{s1.Angle(b.Lo), bLng})
- bHi := PointFromLatLng(LatLng{s1.Angle(b.Hi), bLng})
-
- // Cases A1 and B1.
- aLo := PointFromLatLng(LatLng{s1.Angle(a.Lo), 0})
- aHi := PointFromLatLng(LatLng{s1.Angle(a.Hi), 0})
- maxDistance := maxAngle(
- DistanceFromSegment(aLo, bLo, bHi),
- DistanceFromSegment(aHi, bLo, bHi))
-
- if lngDiff <= math.Pi/2 {
- // Case A2.
- if a.Contains(0) && b.Contains(0) {
- maxDistance = maxAngle(maxDistance, lngDiff)
- }
- return maxDistance
- }
-
- // Case B2.
- p := bisectorIntersection(b, bLng)
- pLat := LatLngFromPoint(p).Lat
- if a.Contains(float64(pLat)) {
- maxDistance = maxAngle(maxDistance, p.Angle(bLo.Vector))
- }
-
- // Case B3.
- if pLat > s1.Angle(a.Lo) {
- intDist, ok := interiorMaxDistance(r1.Interval{a.Lo, math.Min(float64(pLat), a.Hi)}, bLo)
- if ok {
- maxDistance = maxAngle(maxDistance, intDist)
- }
- }
- if pLat < s1.Angle(a.Hi) {
- intDist, ok := interiorMaxDistance(r1.Interval{math.Max(float64(pLat), a.Lo), a.Hi}, bHi)
- if ok {
- maxDistance = maxAngle(maxDistance, intDist)
- }
- }
-
- return maxDistance
-}
-
-// interiorMaxDistance returns the max distance from a point b to the segment spanning latitude range
-// aLat on longitude 0 if the max occurs in the interior of aLat. Otherwise, returns (0, false).
-func interiorMaxDistance(aLat r1.Interval, b Point) (a s1.Angle, ok bool) {
- // Longitude 0 is in the y=0 plane. b.X >= 0 implies that the maximum
- // does not occur in the interior of aLat.
- if aLat.IsEmpty() || b.X >= 0 {
- return 0, false
- }
-
- // Project b to the y=0 plane. The antipodal of the normalized projection is
- // the point at which the maxium distance from b occurs, if it is contained
- // in aLat.
- intersectionPoint := PointFromCoords(-b.X, 0, -b.Z)
- if !aLat.InteriorContains(float64(LatLngFromPoint(intersectionPoint).Lat)) {
- return 0, false
- }
- return b.Angle(intersectionPoint.Vector), true
-}
-
-// bisectorIntersection return the intersection of longitude 0 with the bisector of an edge
-// on longitude 'lng' and spanning latitude range 'lat'.
-func bisectorIntersection(lat r1.Interval, lng s1.Angle) Point {
- lng = s1.Angle(math.Abs(float64(lng)))
- latCenter := s1.Angle(lat.Center())
-
- // A vector orthogonal to the bisector of the given longitudinal edge.
- orthoBisector := LatLng{latCenter - math.Pi/2, lng}
- if latCenter < 0 {
- orthoBisector = LatLng{-latCenter - math.Pi/2, lng - math.Pi}
- }
-
- // A vector orthogonal to longitude 0.
- orthoLng := Point{r3.Vector{0, -1, 0}}
-
- return orthoLng.PointCross(PointFromLatLng(orthoBisector))
-}
-
-// Centroid returns the true centroid of the given Rect multiplied by its
-// surface area. The result is not unit length, so you may want to normalize it.
-// Note that in general the centroid is *not* at the center of the rectangle, and
-// in fact it may not even be contained by the rectangle. (It is the "center of
-// mass" of the rectangle viewed as subset of the unit sphere, i.e. it is the
-// point in space about which this curved shape would rotate.)
-//
-// The reason for multiplying the result by the rectangle area is to make it
-// easier to compute the centroid of more complicated shapes. The centroid
-// of a union of disjoint regions can be computed simply by adding their
-// Centroid results.
-func (r Rect) Centroid() Point {
- // When a sphere is divided into slices of constant thickness by a set
- // of parallel planes, all slices have the same surface area. This
- // implies that the z-component of the centroid is simply the midpoint
- // of the z-interval spanned by the Rect.
- //
- // Similarly, it is easy to see that the (x,y) of the centroid lies in
- // the plane through the midpoint of the rectangle's longitude interval.
- // We only need to determine the distance "d" of this point from the
- // z-axis.
- //
- // Let's restrict our attention to a particular z-value. In this
- // z-plane, the Rect is a circular arc. The centroid of this arc
- // lies on a radial line through the midpoint of the arc, and at a
- // distance from the z-axis of
- //
- // r * (sin(alpha) / alpha)
- //
- // where r = sqrt(1-z^2) is the radius of the arc, and "alpha" is half
- // of the arc length (i.e., the arc covers longitudes [-alpha, alpha]).
- //
- // To find the centroid distance from the z-axis for the entire
- // rectangle, we just need to integrate over the z-interval. This gives
- //
- // d = Integrate[sqrt(1-z^2)*sin(alpha)/alpha, z1..z2] / (z2 - z1)
- //
- // where [z1, z2] is the range of z-values covered by the rectangle.
- // This simplifies to
- //
- // d = sin(alpha)/(2*alpha*(z2-z1))*(z2*r2 - z1*r1 + theta2 - theta1)
- //
- // where [theta1, theta2] is the latitude interval, z1=sin(theta1),
- // z2=sin(theta2), r1=cos(theta1), and r2=cos(theta2).
- //
- // Finally, we want to return not the centroid itself, but the centroid
- // scaled by the area of the rectangle. The area of the rectangle is
- //
- // A = 2 * alpha * (z2 - z1)
- //
- // which fortunately appears in the denominator of "d".
-
- if r.IsEmpty() {
- return Point{}
- }
-
- z1 := math.Sin(r.Lat.Lo)
- z2 := math.Sin(r.Lat.Hi)
- r1 := math.Cos(r.Lat.Lo)
- r2 := math.Cos(r.Lat.Hi)
-
- alpha := 0.5 * r.Lng.Length()
- r0 := math.Sin(alpha) * (r2*z2 - r1*z1 + r.Lat.Length())
- lng := r.Lng.Center()
- z := alpha * (z2 + z1) * (z2 - z1) // scaled by the area
-
- return Point{r3.Vector{r0 * math.Cos(lng), r0 * math.Sin(lng), z}}
-}
-
-// BUG: The major differences from the C++ version are:
-// - Get*Distance, Vertex, InteriorContains(LatLng|Rect|Point)