diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s2/rect.go')
-rw-r--r-- | vendor/github.com/golang/geo/s2/rect.go | 710 |
1 files changed, 0 insertions, 710 deletions
diff --git a/vendor/github.com/golang/geo/s2/rect.go b/vendor/github.com/golang/geo/s2/rect.go deleted file mode 100644 index f6b52a59e..000000000 --- a/vendor/github.com/golang/geo/s2/rect.go +++ /dev/null @@ -1,710 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s2 - -import ( - "fmt" - "io" - "math" - - "github.com/golang/geo/r1" - "github.com/golang/geo/r3" - "github.com/golang/geo/s1" -) - -// Rect represents a closed latitude-longitude rectangle. -type Rect struct { - Lat r1.Interval - Lng s1.Interval -} - -var ( - validRectLatRange = r1.Interval{-math.Pi / 2, math.Pi / 2} - validRectLngRange = s1.FullInterval() -) - -// EmptyRect returns the empty rectangle. -func EmptyRect() Rect { return Rect{r1.EmptyInterval(), s1.EmptyInterval()} } - -// FullRect returns the full rectangle. -func FullRect() Rect { return Rect{validRectLatRange, validRectLngRange} } - -// RectFromLatLng constructs a rectangle containing a single point p. -func RectFromLatLng(p LatLng) Rect { - return Rect{ - Lat: r1.Interval{p.Lat.Radians(), p.Lat.Radians()}, - Lng: s1.Interval{p.Lng.Radians(), p.Lng.Radians()}, - } -} - -// RectFromCenterSize constructs a rectangle with the given size and center. -// center needs to be normalized, but size does not. The latitude -// interval of the result is clamped to [-90,90] degrees, and the longitude -// interval of the result is FullRect() if and only if the longitude size is -// 360 degrees or more. -// -// Examples of clamping (in degrees): -// center=(80,170), size=(40,60) -> lat=[60,90], lng=[140,-160] -// center=(10,40), size=(210,400) -> lat=[-90,90], lng=[-180,180] -// center=(-90,180), size=(20,50) -> lat=[-90,-80], lng=[155,-155] -func RectFromCenterSize(center, size LatLng) Rect { - half := LatLng{size.Lat / 2, size.Lng / 2} - return RectFromLatLng(center).expanded(half) -} - -// IsValid returns true iff the rectangle is valid. -// This requires Lat ⊆ [-π/2,π/2] and Lng ⊆ [-π,π], and Lat = ∅ iff Lng = ∅ -func (r Rect) IsValid() bool { - return math.Abs(r.Lat.Lo) <= math.Pi/2 && - math.Abs(r.Lat.Hi) <= math.Pi/2 && - r.Lng.IsValid() && - r.Lat.IsEmpty() == r.Lng.IsEmpty() -} - -// IsEmpty reports whether the rectangle is empty. -func (r Rect) IsEmpty() bool { return r.Lat.IsEmpty() } - -// IsFull reports whether the rectangle is full. -func (r Rect) IsFull() bool { return r.Lat.Equal(validRectLatRange) && r.Lng.IsFull() } - -// IsPoint reports whether the rectangle is a single point. -func (r Rect) IsPoint() bool { return r.Lat.Lo == r.Lat.Hi && r.Lng.Lo == r.Lng.Hi } - -// Vertex returns the i-th vertex of the rectangle (i = 0,1,2,3) in CCW order -// (lower left, lower right, upper right, upper left). -func (r Rect) Vertex(i int) LatLng { - var lat, lng float64 - - switch i { - case 0: - lat = r.Lat.Lo - lng = r.Lng.Lo - case 1: - lat = r.Lat.Lo - lng = r.Lng.Hi - case 2: - lat = r.Lat.Hi - lng = r.Lng.Hi - case 3: - lat = r.Lat.Hi - lng = r.Lng.Lo - } - return LatLng{s1.Angle(lat) * s1.Radian, s1.Angle(lng) * s1.Radian} -} - -// Lo returns one corner of the rectangle. -func (r Rect) Lo() LatLng { - return LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(r.Lng.Lo) * s1.Radian} -} - -// Hi returns the other corner of the rectangle. -func (r Rect) Hi() LatLng { - return LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(r.Lng.Hi) * s1.Radian} -} - -// Center returns the center of the rectangle. -func (r Rect) Center() LatLng { - return LatLng{s1.Angle(r.Lat.Center()) * s1.Radian, s1.Angle(r.Lng.Center()) * s1.Radian} -} - -// Size returns the size of the Rect. -func (r Rect) Size() LatLng { - return LatLng{s1.Angle(r.Lat.Length()) * s1.Radian, s1.Angle(r.Lng.Length()) * s1.Radian} -} - -// Area returns the surface area of the Rect. -func (r Rect) Area() float64 { - if r.IsEmpty() { - return 0 - } - capDiff := math.Abs(math.Sin(r.Lat.Hi) - math.Sin(r.Lat.Lo)) - return r.Lng.Length() * capDiff -} - -// AddPoint increases the size of the rectangle to include the given point. -func (r Rect) AddPoint(ll LatLng) Rect { - if !ll.IsValid() { - return r - } - return Rect{ - Lat: r.Lat.AddPoint(ll.Lat.Radians()), - Lng: r.Lng.AddPoint(ll.Lng.Radians()), - } -} - -// expanded returns a rectangle that has been expanded by margin.Lat on each side -// in the latitude direction, and by margin.Lng on each side in the longitude -// direction. If either margin is negative, then it shrinks the rectangle on -// the corresponding sides instead. The resulting rectangle may be empty. -// -// The latitude-longitude space has the topology of a cylinder. Longitudes -// "wrap around" at +/-180 degrees, while latitudes are clamped to range [-90, 90]. -// This means that any expansion (positive or negative) of the full longitude range -// remains full (since the "rectangle" is actually a continuous band around the -// cylinder), while expansion of the full latitude range remains full only if the -// margin is positive. -// -// If either the latitude or longitude interval becomes empty after -// expansion by a negative margin, the result is empty. -// -// Note that if an expanded rectangle contains a pole, it may not contain -// all possible lat/lng representations of that pole, e.g., both points [π/2,0] -// and [π/2,1] represent the same pole, but they might not be contained by the -// same Rect. -// -// If you are trying to grow a rectangle by a certain distance on the -// sphere (e.g. 5km), refer to the ExpandedByDistance() C++ method implementation -// instead. -func (r Rect) expanded(margin LatLng) Rect { - lat := r.Lat.Expanded(margin.Lat.Radians()) - lng := r.Lng.Expanded(margin.Lng.Radians()) - - if lat.IsEmpty() || lng.IsEmpty() { - return EmptyRect() - } - - return Rect{ - Lat: lat.Intersection(validRectLatRange), - Lng: lng, - } -} - -func (r Rect) String() string { return fmt.Sprintf("[Lo%v, Hi%v]", r.Lo(), r.Hi()) } - -// PolarClosure returns the rectangle unmodified if it does not include either pole. -// If it includes either pole, PolarClosure returns an expansion of the rectangle along -// the longitudinal range to include all possible representations of the contained poles. -func (r Rect) PolarClosure() Rect { - if r.Lat.Lo == -math.Pi/2 || r.Lat.Hi == math.Pi/2 { - return Rect{r.Lat, s1.FullInterval()} - } - return r -} - -// Union returns the smallest Rect containing the union of this rectangle and the given rectangle. -func (r Rect) Union(other Rect) Rect { - return Rect{ - Lat: r.Lat.Union(other.Lat), - Lng: r.Lng.Union(other.Lng), - } -} - -// Intersection returns the smallest rectangle containing the intersection of -// this rectangle and the given rectangle. Note that the region of intersection -// may consist of two disjoint rectangles, in which case a single rectangle -// spanning both of them is returned. -func (r Rect) Intersection(other Rect) Rect { - lat := r.Lat.Intersection(other.Lat) - lng := r.Lng.Intersection(other.Lng) - - if lat.IsEmpty() || lng.IsEmpty() { - return EmptyRect() - } - return Rect{lat, lng} -} - -// Intersects reports whether this rectangle and the other have any points in common. -func (r Rect) Intersects(other Rect) bool { - return r.Lat.Intersects(other.Lat) && r.Lng.Intersects(other.Lng) -} - -// CapBound returns a cap that contains Rect. -func (r Rect) CapBound() Cap { - // We consider two possible bounding caps, one whose axis passes - // through the center of the lat-long rectangle and one whose axis - // is the north or south pole. We return the smaller of the two caps. - - if r.IsEmpty() { - return EmptyCap() - } - - var poleZ, poleAngle float64 - if r.Lat.Hi+r.Lat.Lo < 0 { - // South pole axis yields smaller cap. - poleZ = -1 - poleAngle = math.Pi/2 + r.Lat.Hi - } else { - poleZ = 1 - poleAngle = math.Pi/2 - r.Lat.Lo - } - poleCap := CapFromCenterAngle(Point{r3.Vector{0, 0, poleZ}}, s1.Angle(poleAngle)*s1.Radian) - - // For bounding rectangles that span 180 degrees or less in longitude, the - // maximum cap size is achieved at one of the rectangle vertices. For - // rectangles that are larger than 180 degrees, we punt and always return a - // bounding cap centered at one of the two poles. - if math.Remainder(r.Lng.Hi-r.Lng.Lo, 2*math.Pi) >= 0 && r.Lng.Hi-r.Lng.Lo < 2*math.Pi { - midCap := CapFromPoint(PointFromLatLng(r.Center())).AddPoint(PointFromLatLng(r.Lo())).AddPoint(PointFromLatLng(r.Hi())) - if midCap.Height() < poleCap.Height() { - return midCap - } - } - return poleCap -} - -// RectBound returns itself. -func (r Rect) RectBound() Rect { - return r -} - -// Contains reports whether this Rect contains the other Rect. -func (r Rect) Contains(other Rect) bool { - return r.Lat.ContainsInterval(other.Lat) && r.Lng.ContainsInterval(other.Lng) -} - -// ContainsCell reports whether the given Cell is contained by this Rect. -func (r Rect) ContainsCell(c Cell) bool { - // A latitude-longitude rectangle contains a cell if and only if it contains - // the cell's bounding rectangle. This test is exact from a mathematical - // point of view, assuming that the bounds returned by Cell.RectBound() - // are tight. However, note that there can be a loss of precision when - // converting between representations -- for example, if an s2.Cell is - // converted to a polygon, the polygon's bounding rectangle may not contain - // the cell's bounding rectangle. This has some slightly unexpected side - // effects; for instance, if one creates an s2.Polygon from an s2.Cell, the - // polygon will contain the cell, but the polygon's bounding box will not. - return r.Contains(c.RectBound()) -} - -// ContainsLatLng reports whether the given LatLng is within the Rect. -func (r Rect) ContainsLatLng(ll LatLng) bool { - if !ll.IsValid() { - return false - } - return r.Lat.Contains(ll.Lat.Radians()) && r.Lng.Contains(ll.Lng.Radians()) -} - -// ContainsPoint reports whether the given Point is within the Rect. -func (r Rect) ContainsPoint(p Point) bool { - return r.ContainsLatLng(LatLngFromPoint(p)) -} - -// CellUnionBound computes a covering of the Rect. -func (r Rect) CellUnionBound() []CellID { - return r.CapBound().CellUnionBound() -} - -// intersectsLatEdge reports whether the edge AB intersects the given edge of constant -// latitude. Requires the points to have unit length. -func intersectsLatEdge(a, b Point, lat s1.Angle, lng s1.Interval) bool { - // Unfortunately, lines of constant latitude are curves on - // the sphere. They can intersect a straight edge in 0, 1, or 2 points. - - // First, compute the normal to the plane AB that points vaguely north. - z := Point{a.PointCross(b).Normalize()} - if z.Z < 0 { - z = Point{z.Mul(-1)} - } - - // Extend this to an orthonormal frame (x,y,z) where x is the direction - // where the great circle through AB achieves its maximium latitude. - y := Point{z.PointCross(PointFromCoords(0, 0, 1)).Normalize()} - x := y.Cross(z.Vector) - - // Compute the angle "theta" from the x-axis (in the x-y plane defined - // above) where the great circle intersects the given line of latitude. - sinLat := math.Sin(float64(lat)) - if math.Abs(sinLat) >= x.Z { - // The great circle does not reach the given latitude. - return false - } - - cosTheta := sinLat / x.Z - sinTheta := math.Sqrt(1 - cosTheta*cosTheta) - theta := math.Atan2(sinTheta, cosTheta) - - // The candidate intersection points are located +/- theta in the x-y - // plane. For an intersection to be valid, we need to check that the - // intersection point is contained in the interior of the edge AB and - // also that it is contained within the given longitude interval "lng". - - // Compute the range of theta values spanned by the edge AB. - abTheta := s1.IntervalFromPointPair( - math.Atan2(a.Dot(y.Vector), a.Dot(x)), - math.Atan2(b.Dot(y.Vector), b.Dot(x))) - - if abTheta.Contains(theta) { - // Check if the intersection point is also in the given lng interval. - isect := x.Mul(cosTheta).Add(y.Mul(sinTheta)) - if lng.Contains(math.Atan2(isect.Y, isect.X)) { - return true - } - } - - if abTheta.Contains(-theta) { - // Check if the other intersection point is also in the given lng interval. - isect := x.Mul(cosTheta).Sub(y.Mul(sinTheta)) - if lng.Contains(math.Atan2(isect.Y, isect.X)) { - return true - } - } - return false -} - -// intersectsLngEdge reports whether the edge AB intersects the given edge of constant -// longitude. Requires the points to have unit length. -func intersectsLngEdge(a, b Point, lat r1.Interval, lng s1.Angle) bool { - // The nice thing about edges of constant longitude is that - // they are straight lines on the sphere (geodesics). - return CrossingSign(a, b, PointFromLatLng(LatLng{s1.Angle(lat.Lo), lng}), - PointFromLatLng(LatLng{s1.Angle(lat.Hi), lng})) == Cross -} - -// IntersectsCell reports whether this rectangle intersects the given cell. This is an -// exact test and may be fairly expensive. -func (r Rect) IntersectsCell(c Cell) bool { - // First we eliminate the cases where one region completely contains the - // other. Once these are disposed of, then the regions will intersect - // if and only if their boundaries intersect. - if r.IsEmpty() { - return false - } - if r.ContainsPoint(Point{c.id.rawPoint()}) { - return true - } - if c.ContainsPoint(PointFromLatLng(r.Center())) { - return true - } - - // Quick rejection test (not required for correctness). - if !r.Intersects(c.RectBound()) { - return false - } - - // Precompute the cell vertices as points and latitude-longitudes. We also - // check whether the Cell contains any corner of the rectangle, or - // vice-versa, since the edge-crossing tests only check the edge interiors. - vertices := [4]Point{} - latlngs := [4]LatLng{} - - for i := range vertices { - vertices[i] = c.Vertex(i) - latlngs[i] = LatLngFromPoint(vertices[i]) - if r.ContainsLatLng(latlngs[i]) { - return true - } - if c.ContainsPoint(PointFromLatLng(r.Vertex(i))) { - return true - } - } - - // Now check whether the boundaries intersect. Unfortunately, a - // latitude-longitude rectangle does not have straight edges: two edges - // are curved, and at least one of them is concave. - for i := range vertices { - edgeLng := s1.IntervalFromEndpoints(latlngs[i].Lng.Radians(), latlngs[(i+1)&3].Lng.Radians()) - if !r.Lng.Intersects(edgeLng) { - continue - } - - a := vertices[i] - b := vertices[(i+1)&3] - if edgeLng.Contains(r.Lng.Lo) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Lo)) { - return true - } - if edgeLng.Contains(r.Lng.Hi) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Hi)) { - return true - } - if intersectsLatEdge(a, b, s1.Angle(r.Lat.Lo), r.Lng) { - return true - } - if intersectsLatEdge(a, b, s1.Angle(r.Lat.Hi), r.Lng) { - return true - } - } - return false -} - -// Encode encodes the Rect. -func (r Rect) Encode(w io.Writer) error { - e := &encoder{w: w} - r.encode(e) - return e.err -} - -func (r Rect) encode(e *encoder) { - e.writeInt8(encodingVersion) - e.writeFloat64(r.Lat.Lo) - e.writeFloat64(r.Lat.Hi) - e.writeFloat64(r.Lng.Lo) - e.writeFloat64(r.Lng.Hi) -} - -// Decode decodes a rectangle. -func (r *Rect) Decode(rd io.Reader) error { - d := &decoder{r: asByteReader(rd)} - r.decode(d) - return d.err -} - -func (r *Rect) decode(d *decoder) { - if version := d.readUint8(); int8(version) != encodingVersion && d.err == nil { - d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion) - return - } - r.Lat.Lo = d.readFloat64() - r.Lat.Hi = d.readFloat64() - r.Lng.Lo = d.readFloat64() - r.Lng.Hi = d.readFloat64() - return -} - -// DistanceToLatLng returns the minimum distance (measured along the surface of the sphere) -// from a given point to the rectangle (both its boundary and its interior). -// If r is empty, the result is meaningless. -// The latlng must be valid. -func (r Rect) DistanceToLatLng(ll LatLng) s1.Angle { - if r.Lng.Contains(float64(ll.Lng)) { - return maxAngle(0, ll.Lat-s1.Angle(r.Lat.Hi), s1.Angle(r.Lat.Lo)-ll.Lat) - } - - i := s1.IntervalFromEndpoints(r.Lng.Hi, r.Lng.ComplementCenter()) - rectLng := r.Lng.Lo - if i.Contains(float64(ll.Lng)) { - rectLng = r.Lng.Hi - } - - lo := LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(rectLng) * s1.Radian} - hi := LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(rectLng) * s1.Radian} - return DistanceFromSegment(PointFromLatLng(ll), PointFromLatLng(lo), PointFromLatLng(hi)) -} - -// DirectedHausdorffDistance returns the directed Hausdorff distance (measured along the -// surface of the sphere) to the given Rect. The directed Hausdorff -// distance from rectangle A to rectangle B is given by -// h(A, B) = max_{p in A} min_{q in B} d(p, q). -func (r Rect) DirectedHausdorffDistance(other Rect) s1.Angle { - if r.IsEmpty() { - return 0 * s1.Radian - } - if other.IsEmpty() { - return math.Pi * s1.Radian - } - - lng := r.Lng.DirectedHausdorffDistance(other.Lng) - return directedHausdorffDistance(lng, r.Lat, other.Lat) -} - -// HausdorffDistance returns the undirected Hausdorff distance (measured along the -// surface of the sphere) to the given Rect. -// The Hausdorff distance between rectangle A and rectangle B is given by -// H(A, B) = max{h(A, B), h(B, A)}. -func (r Rect) HausdorffDistance(other Rect) s1.Angle { - return maxAngle(r.DirectedHausdorffDistance(other), - other.DirectedHausdorffDistance(r)) -} - -// ApproxEqual reports whether the latitude and longitude intervals of the two rectangles -// are the same up to a small tolerance. -func (r Rect) ApproxEqual(other Rect) bool { - return r.Lat.ApproxEqual(other.Lat) && r.Lng.ApproxEqual(other.Lng) -} - -// directedHausdorffDistance returns the directed Hausdorff distance -// from one longitudinal edge spanning latitude range 'a' to the other -// longitudinal edge spanning latitude range 'b', with their longitudinal -// difference given by 'lngDiff'. -func directedHausdorffDistance(lngDiff s1.Angle, a, b r1.Interval) s1.Angle { - // By symmetry, we can assume a's longitude is 0 and b's longitude is - // lngDiff. Call b's two endpoints bLo and bHi. Let H be the hemisphere - // containing a and delimited by the longitude line of b. The Voronoi diagram - // of b on H has three edges (portions of great circles) all orthogonal to b - // and meeting at bLo cross bHi. - // E1: (bLo, bLo cross bHi) - // E2: (bHi, bLo cross bHi) - // E3: (-bMid, bLo cross bHi), where bMid is the midpoint of b - // - // They subdivide H into three Voronoi regions. Depending on how longitude 0 - // (which contains edge a) intersects these regions, we distinguish two cases: - // Case 1: it intersects three regions. This occurs when lngDiff <= π/2. - // Case 2: it intersects only two regions. This occurs when lngDiff > π/2. - // - // In the first case, the directed Hausdorff distance to edge b can only be - // realized by the following points on a: - // A1: two endpoints of a. - // A2: intersection of a with the equator, if b also intersects the equator. - // - // In the second case, the directed Hausdorff distance to edge b can only be - // realized by the following points on a: - // B1: two endpoints of a. - // B2: intersection of a with E3 - // B3: farthest point from bLo to the interior of D, and farthest point from - // bHi to the interior of U, if any, where D (resp. U) is the portion - // of edge a below (resp. above) the intersection point from B2. - - if lngDiff < 0 { - panic("impossible: negative lngDiff") - } - if lngDiff > math.Pi { - panic("impossible: lngDiff > Pi") - } - - if lngDiff == 0 { - return s1.Angle(a.DirectedHausdorffDistance(b)) - } - - // Assumed longitude of b. - bLng := lngDiff - // Two endpoints of b. - bLo := PointFromLatLng(LatLng{s1.Angle(b.Lo), bLng}) - bHi := PointFromLatLng(LatLng{s1.Angle(b.Hi), bLng}) - - // Cases A1 and B1. - aLo := PointFromLatLng(LatLng{s1.Angle(a.Lo), 0}) - aHi := PointFromLatLng(LatLng{s1.Angle(a.Hi), 0}) - maxDistance := maxAngle( - DistanceFromSegment(aLo, bLo, bHi), - DistanceFromSegment(aHi, bLo, bHi)) - - if lngDiff <= math.Pi/2 { - // Case A2. - if a.Contains(0) && b.Contains(0) { - maxDistance = maxAngle(maxDistance, lngDiff) - } - return maxDistance - } - - // Case B2. - p := bisectorIntersection(b, bLng) - pLat := LatLngFromPoint(p).Lat - if a.Contains(float64(pLat)) { - maxDistance = maxAngle(maxDistance, p.Angle(bLo.Vector)) - } - - // Case B3. - if pLat > s1.Angle(a.Lo) { - intDist, ok := interiorMaxDistance(r1.Interval{a.Lo, math.Min(float64(pLat), a.Hi)}, bLo) - if ok { - maxDistance = maxAngle(maxDistance, intDist) - } - } - if pLat < s1.Angle(a.Hi) { - intDist, ok := interiorMaxDistance(r1.Interval{math.Max(float64(pLat), a.Lo), a.Hi}, bHi) - if ok { - maxDistance = maxAngle(maxDistance, intDist) - } - } - - return maxDistance -} - -// interiorMaxDistance returns the max distance from a point b to the segment spanning latitude range -// aLat on longitude 0 if the max occurs in the interior of aLat. Otherwise, returns (0, false). -func interiorMaxDistance(aLat r1.Interval, b Point) (a s1.Angle, ok bool) { - // Longitude 0 is in the y=0 plane. b.X >= 0 implies that the maximum - // does not occur in the interior of aLat. - if aLat.IsEmpty() || b.X >= 0 { - return 0, false - } - - // Project b to the y=0 plane. The antipodal of the normalized projection is - // the point at which the maxium distance from b occurs, if it is contained - // in aLat. - intersectionPoint := PointFromCoords(-b.X, 0, -b.Z) - if !aLat.InteriorContains(float64(LatLngFromPoint(intersectionPoint).Lat)) { - return 0, false - } - return b.Angle(intersectionPoint.Vector), true -} - -// bisectorIntersection return the intersection of longitude 0 with the bisector of an edge -// on longitude 'lng' and spanning latitude range 'lat'. -func bisectorIntersection(lat r1.Interval, lng s1.Angle) Point { - lng = s1.Angle(math.Abs(float64(lng))) - latCenter := s1.Angle(lat.Center()) - - // A vector orthogonal to the bisector of the given longitudinal edge. - orthoBisector := LatLng{latCenter - math.Pi/2, lng} - if latCenter < 0 { - orthoBisector = LatLng{-latCenter - math.Pi/2, lng - math.Pi} - } - - // A vector orthogonal to longitude 0. - orthoLng := Point{r3.Vector{0, -1, 0}} - - return orthoLng.PointCross(PointFromLatLng(orthoBisector)) -} - -// Centroid returns the true centroid of the given Rect multiplied by its -// surface area. The result is not unit length, so you may want to normalize it. -// Note that in general the centroid is *not* at the center of the rectangle, and -// in fact it may not even be contained by the rectangle. (It is the "center of -// mass" of the rectangle viewed as subset of the unit sphere, i.e. it is the -// point in space about which this curved shape would rotate.) -// -// The reason for multiplying the result by the rectangle area is to make it -// easier to compute the centroid of more complicated shapes. The centroid -// of a union of disjoint regions can be computed simply by adding their -// Centroid results. -func (r Rect) Centroid() Point { - // When a sphere is divided into slices of constant thickness by a set - // of parallel planes, all slices have the same surface area. This - // implies that the z-component of the centroid is simply the midpoint - // of the z-interval spanned by the Rect. - // - // Similarly, it is easy to see that the (x,y) of the centroid lies in - // the plane through the midpoint of the rectangle's longitude interval. - // We only need to determine the distance "d" of this point from the - // z-axis. - // - // Let's restrict our attention to a particular z-value. In this - // z-plane, the Rect is a circular arc. The centroid of this arc - // lies on a radial line through the midpoint of the arc, and at a - // distance from the z-axis of - // - // r * (sin(alpha) / alpha) - // - // where r = sqrt(1-z^2) is the radius of the arc, and "alpha" is half - // of the arc length (i.e., the arc covers longitudes [-alpha, alpha]). - // - // To find the centroid distance from the z-axis for the entire - // rectangle, we just need to integrate over the z-interval. This gives - // - // d = Integrate[sqrt(1-z^2)*sin(alpha)/alpha, z1..z2] / (z2 - z1) - // - // where [z1, z2] is the range of z-values covered by the rectangle. - // This simplifies to - // - // d = sin(alpha)/(2*alpha*(z2-z1))*(z2*r2 - z1*r1 + theta2 - theta1) - // - // where [theta1, theta2] is the latitude interval, z1=sin(theta1), - // z2=sin(theta2), r1=cos(theta1), and r2=cos(theta2). - // - // Finally, we want to return not the centroid itself, but the centroid - // scaled by the area of the rectangle. The area of the rectangle is - // - // A = 2 * alpha * (z2 - z1) - // - // which fortunately appears in the denominator of "d". - - if r.IsEmpty() { - return Point{} - } - - z1 := math.Sin(r.Lat.Lo) - z2 := math.Sin(r.Lat.Hi) - r1 := math.Cos(r.Lat.Lo) - r2 := math.Cos(r.Lat.Hi) - - alpha := 0.5 * r.Lng.Length() - r0 := math.Sin(alpha) * (r2*z2 - r1*z1 + r.Lat.Length()) - lng := r.Lng.Center() - z := alpha * (z2 + z1) * (z2 - z1) // scaled by the area - - return Point{r3.Vector{r0 * math.Cos(lng), r0 * math.Sin(lng), z}} -} - -// BUG: The major differences from the C++ version are: -// - Get*Distance, Vertex, InteriorContains(LatLng|Rect|Point) |