summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/cellid.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/cellid.go')
-rw-r--r--vendor/github.com/golang/geo/s2/cellid.go944
1 files changed, 0 insertions, 944 deletions
diff --git a/vendor/github.com/golang/geo/s2/cellid.go b/vendor/github.com/golang/geo/s2/cellid.go
deleted file mode 100644
index c6cbaf2db..000000000
--- a/vendor/github.com/golang/geo/s2/cellid.go
+++ /dev/null
@@ -1,944 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "bytes"
- "fmt"
- "io"
- "math"
- "sort"
- "strconv"
- "strings"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r2"
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// CellID uniquely identifies a cell in the S2 cell decomposition.
-// The most significant 3 bits encode the face number (0-5). The
-// remaining 61 bits encode the position of the center of this cell
-// along the Hilbert curve on that face. The zero value and the value
-// (1<<64)-1 are invalid cell IDs. The first compares less than any
-// valid cell ID, the second as greater than any valid cell ID.
-//
-// Sequentially increasing cell IDs follow a continuous space-filling curve
-// over the entire sphere. They have the following properties:
-//
-// - The ID of a cell at level k consists of a 3-bit face number followed
-// by k bit pairs that recursively select one of the four children of
-// each cell. The next bit is always 1, and all other bits are 0.
-// Therefore, the level of a cell is determined by the position of its
-// lowest-numbered bit that is turned on (for a cell at level k, this
-// position is 2 * (maxLevel - k)).
-//
-// - The ID of a parent cell is at the midpoint of the range of IDs spanned
-// by its children (or by its descendants at any level).
-//
-// Leaf cells are often used to represent points on the unit sphere, and
-// this type provides methods for converting directly between these two
-// representations. For cells that represent 2D regions rather than
-// discrete point, it is better to use Cells.
-type CellID uint64
-
-// SentinelCellID is an invalid cell ID guaranteed to be larger than any
-// valid cell ID. It is used primarily by ShapeIndex. The value is also used
-// by some S2 types when encoding data.
-// Note that the sentinel's RangeMin == RangeMax == itself.
-const SentinelCellID = CellID(^uint64(0))
-
-// sortCellIDs sorts the slice of CellIDs in place.
-func sortCellIDs(ci []CellID) {
- sort.Sort(cellIDs(ci))
-}
-
-// cellIDs implements the Sort interface for slices of CellIDs.
-type cellIDs []CellID
-
-func (c cellIDs) Len() int { return len(c) }
-func (c cellIDs) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
-func (c cellIDs) Less(i, j int) bool { return c[i] < c[j] }
-
-// TODO(dsymonds): Some of these constants should probably be exported.
-const (
- faceBits = 3
- numFaces = 6
-
- // This is the number of levels needed to specify a leaf cell.
- maxLevel = 30
-
- // The extra position bit (61 rather than 60) lets us encode each cell as its
- // Hilbert curve position at the cell center (which is halfway along the
- // portion of the Hilbert curve that fills that cell).
- posBits = 2*maxLevel + 1
-
- // The maximum index of a valid leaf cell plus one. The range of valid leaf
- // cell indices is [0..maxSize-1].
- maxSize = 1 << maxLevel
-
- wrapOffset = uint64(numFaces) << posBits
-)
-
-// CellIDFromFacePosLevel returns a cell given its face in the range
-// [0,5], the 61-bit Hilbert curve position pos within that face, and
-// the level in the range [0,maxLevel]. The position in the cell ID
-// will be truncated to correspond to the Hilbert curve position at
-// the center of the returned cell.
-func CellIDFromFacePosLevel(face int, pos uint64, level int) CellID {
- return CellID(uint64(face)<<posBits + pos | 1).Parent(level)
-}
-
-// CellIDFromFace returns the cell corresponding to a given S2 cube face.
-func CellIDFromFace(face int) CellID {
- return CellID((uint64(face) << posBits) + lsbForLevel(0))
-}
-
-// CellIDFromLatLng returns the leaf cell containing ll.
-func CellIDFromLatLng(ll LatLng) CellID {
- return cellIDFromPoint(PointFromLatLng(ll))
-}
-
-// CellIDFromToken returns a cell given a hex-encoded string of its uint64 ID.
-func CellIDFromToken(s string) CellID {
- if len(s) > 16 {
- return CellID(0)
- }
- n, err := strconv.ParseUint(s, 16, 64)
- if err != nil {
- return CellID(0)
- }
- // Equivalent to right-padding string with zeros to 16 characters.
- if len(s) < 16 {
- n = n << (4 * uint(16-len(s)))
- }
- return CellID(n)
-}
-
-// ToToken returns a hex-encoded string of the uint64 cell id, with leading
-// zeros included but trailing zeros stripped.
-func (ci CellID) ToToken() string {
- s := strings.TrimRight(fmt.Sprintf("%016x", uint64(ci)), "0")
- if len(s) == 0 {
- return "X"
- }
- return s
-}
-
-// IsValid reports whether ci represents a valid cell.
-func (ci CellID) IsValid() bool {
- return ci.Face() < numFaces && (ci.lsb()&0x1555555555555555 != 0)
-}
-
-// Face returns the cube face for this cell ID, in the range [0,5].
-func (ci CellID) Face() int { return int(uint64(ci) >> posBits) }
-
-// Pos returns the position along the Hilbert curve of this cell ID, in the range [0,2^posBits-1].
-func (ci CellID) Pos() uint64 { return uint64(ci) & (^uint64(0) >> faceBits) }
-
-// Level returns the subdivision level of this cell ID, in the range [0, maxLevel].
-func (ci CellID) Level() int {
- return maxLevel - findLSBSetNonZero64(uint64(ci))>>1
-}
-
-// IsLeaf returns whether this cell ID is at the deepest level;
-// that is, the level at which the cells are smallest.
-func (ci CellID) IsLeaf() bool { return uint64(ci)&1 != 0 }
-
-// ChildPosition returns the child position (0..3) of this cell's
-// ancestor at the given level, relative to its parent. The argument
-// should be in the range 1..kMaxLevel. For example,
-// ChildPosition(1) returns the position of this cell's level-1
-// ancestor within its top-level face cell.
-func (ci CellID) ChildPosition(level int) int {
- return int(uint64(ci)>>uint64(2*(maxLevel-level)+1)) & 3
-}
-
-// lsbForLevel returns the lowest-numbered bit that is on for cells at the given level.
-func lsbForLevel(level int) uint64 { return 1 << uint64(2*(maxLevel-level)) }
-
-// Parent returns the cell at the given level, which must be no greater than the current level.
-func (ci CellID) Parent(level int) CellID {
- lsb := lsbForLevel(level)
- return CellID((uint64(ci) & -lsb) | lsb)
-}
-
-// immediateParent is cheaper than Parent, but assumes !ci.isFace().
-func (ci CellID) immediateParent() CellID {
- nlsb := CellID(ci.lsb() << 2)
- return (ci & -nlsb) | nlsb
-}
-
-// isFace returns whether this is a top-level (face) cell.
-func (ci CellID) isFace() bool { return uint64(ci)&(lsbForLevel(0)-1) == 0 }
-
-// lsb returns the least significant bit that is set.
-func (ci CellID) lsb() uint64 { return uint64(ci) & -uint64(ci) }
-
-// Children returns the four immediate children of this cell.
-// If ci is a leaf cell, it returns four identical cells that are not the children.
-func (ci CellID) Children() [4]CellID {
- var ch [4]CellID
- lsb := CellID(ci.lsb())
- ch[0] = ci - lsb + lsb>>2
- lsb >>= 1
- ch[1] = ch[0] + lsb
- ch[2] = ch[1] + lsb
- ch[3] = ch[2] + lsb
- return ch
-}
-
-func sizeIJ(level int) int {
- return 1 << uint(maxLevel-level)
-}
-
-// EdgeNeighbors returns the four cells that are adjacent across the cell's four edges.
-// Edges 0, 1, 2, 3 are in the down, right, up, left directions in the face space.
-// All neighbors are guaranteed to be distinct.
-func (ci CellID) EdgeNeighbors() [4]CellID {
- level := ci.Level()
- size := sizeIJ(level)
- f, i, j, _ := ci.faceIJOrientation()
- return [4]CellID{
- cellIDFromFaceIJWrap(f, i, j-size).Parent(level),
- cellIDFromFaceIJWrap(f, i+size, j).Parent(level),
- cellIDFromFaceIJWrap(f, i, j+size).Parent(level),
- cellIDFromFaceIJWrap(f, i-size, j).Parent(level),
- }
-}
-
-// VertexNeighbors returns the neighboring cellIDs with vertex closest to this cell at the given level.
-// (Normally there are four neighbors, but the closest vertex may only have three neighbors if it is one of
-// the 8 cube vertices.)
-func (ci CellID) VertexNeighbors(level int) []CellID {
- halfSize := sizeIJ(level + 1)
- size := halfSize << 1
- f, i, j, _ := ci.faceIJOrientation()
-
- var isame, jsame bool
- var ioffset, joffset int
- if i&halfSize != 0 {
- ioffset = size
- isame = (i + size) < maxSize
- } else {
- ioffset = -size
- isame = (i - size) >= 0
- }
- if j&halfSize != 0 {
- joffset = size
- jsame = (j + size) < maxSize
- } else {
- joffset = -size
- jsame = (j - size) >= 0
- }
-
- results := []CellID{
- ci.Parent(level),
- cellIDFromFaceIJSame(f, i+ioffset, j, isame).Parent(level),
- cellIDFromFaceIJSame(f, i, j+joffset, jsame).Parent(level),
- }
-
- if isame || jsame {
- results = append(results, cellIDFromFaceIJSame(f, i+ioffset, j+joffset, isame && jsame).Parent(level))
- }
-
- return results
-}
-
-// AllNeighbors returns all neighbors of this cell at the given level. Two
-// cells X and Y are neighbors if their boundaries intersect but their
-// interiors do not. In particular, two cells that intersect at a single
-// point are neighbors. Note that for cells adjacent to a face vertex, the
-// same neighbor may be returned more than once. There could be up to eight
-// neighbors including the diagonal ones that share the vertex.
-//
-// This requires level >= ci.Level().
-func (ci CellID) AllNeighbors(level int) []CellID {
- var neighbors []CellID
-
- face, i, j, _ := ci.faceIJOrientation()
-
- // Find the coordinates of the lower left-hand leaf cell. We need to
- // normalize (i,j) to a known position within the cell because level
- // may be larger than this cell's level.
- size := sizeIJ(ci.Level())
- i &= -size
- j &= -size
-
- nbrSize := sizeIJ(level)
-
- // We compute the top-bottom, left-right, and diagonal neighbors in one
- // pass. The loop test is at the end of the loop to avoid 32-bit overflow.
- for k := -nbrSize; ; k += nbrSize {
- var sameFace bool
- if k < 0 {
- sameFace = (j+k >= 0)
- } else if k >= size {
- sameFace = (j+k < maxSize)
- } else {
- sameFace = true
- // Top and bottom neighbors.
- neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j-nbrSize,
- j-size >= 0).Parent(level))
- neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j+size,
- j+size < maxSize).Parent(level))
- }
-
- // Left, right, and diagonal neighbors.
- neighbors = append(neighbors, cellIDFromFaceIJSame(face, i-nbrSize, j+k,
- sameFace && i-size >= 0).Parent(level))
- neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+size, j+k,
- sameFace && i+size < maxSize).Parent(level))
-
- if k >= size {
- break
- }
- }
-
- return neighbors
-}
-
-// RangeMin returns the minimum CellID that is contained within this cell.
-func (ci CellID) RangeMin() CellID { return CellID(uint64(ci) - (ci.lsb() - 1)) }
-
-// RangeMax returns the maximum CellID that is contained within this cell.
-func (ci CellID) RangeMax() CellID { return CellID(uint64(ci) + (ci.lsb() - 1)) }
-
-// Contains returns true iff the CellID contains oci.
-func (ci CellID) Contains(oci CellID) bool {
- return uint64(ci.RangeMin()) <= uint64(oci) && uint64(oci) <= uint64(ci.RangeMax())
-}
-
-// Intersects returns true iff the CellID intersects oci.
-func (ci CellID) Intersects(oci CellID) bool {
- return uint64(oci.RangeMin()) <= uint64(ci.RangeMax()) && uint64(oci.RangeMax()) >= uint64(ci.RangeMin())
-}
-
-// String returns the string representation of the cell ID in the form "1/3210".
-func (ci CellID) String() string {
- if !ci.IsValid() {
- return "Invalid: " + strconv.FormatInt(int64(ci), 16)
- }
- var b bytes.Buffer
- b.WriteByte("012345"[ci.Face()]) // values > 5 will have been picked off by !IsValid above
- b.WriteByte('/')
- for level := 1; level <= ci.Level(); level++ {
- b.WriteByte("0123"[ci.ChildPosition(level)])
- }
- return b.String()
-}
-
-// cellIDFromString returns a CellID from a string in the form "1/3210".
-func cellIDFromString(s string) CellID {
- level := len(s) - 2
- if level < 0 || level > maxLevel {
- return CellID(0)
- }
- face := int(s[0] - '0')
- if face < 0 || face > 5 || s[1] != '/' {
- return CellID(0)
- }
- id := CellIDFromFace(face)
- for i := 2; i < len(s); i++ {
- childPos := s[i] - '0'
- if childPos < 0 || childPos > 3 {
- return CellID(0)
- }
- id = id.Children()[childPos]
- }
- return id
-}
-
-// Point returns the center of the s2 cell on the sphere as a Point.
-// The maximum directional error in Point (compared to the exact
-// mathematical result) is 1.5 * dblEpsilon radians, and the maximum length
-// error is 2 * dblEpsilon (the same as Normalize).
-func (ci CellID) Point() Point { return Point{ci.rawPoint().Normalize()} }
-
-// LatLng returns the center of the s2 cell on the sphere as a LatLng.
-func (ci CellID) LatLng() LatLng { return LatLngFromPoint(Point{ci.rawPoint()}) }
-
-// ChildBegin returns the first child in a traversal of the children of this cell, in Hilbert curve order.
-//
-// for ci := c.ChildBegin(); ci != c.ChildEnd(); ci = ci.Next() {
-// ...
-// }
-func (ci CellID) ChildBegin() CellID {
- ol := ci.lsb()
- return CellID(uint64(ci) - ol + ol>>2)
-}
-
-// ChildBeginAtLevel returns the first cell in a traversal of children a given level deeper than this cell, in
-// Hilbert curve order. The given level must be no smaller than the cell's level.
-// See ChildBegin for example use.
-func (ci CellID) ChildBeginAtLevel(level int) CellID {
- return CellID(uint64(ci) - ci.lsb() + lsbForLevel(level))
-}
-
-// ChildEnd returns the first cell after a traversal of the children of this cell in Hilbert curve order.
-// The returned cell may be invalid.
-func (ci CellID) ChildEnd() CellID {
- ol := ci.lsb()
- return CellID(uint64(ci) + ol + ol>>2)
-}
-
-// ChildEndAtLevel returns the first cell after the last child in a traversal of children a given level deeper
-// than this cell, in Hilbert curve order.
-// The given level must be no smaller than the cell's level.
-// The returned cell may be invalid.
-func (ci CellID) ChildEndAtLevel(level int) CellID {
- return CellID(uint64(ci) + ci.lsb() + lsbForLevel(level))
-}
-
-// Next returns the next cell along the Hilbert curve.
-// This is expected to be used with ChildBegin and ChildEnd,
-// or ChildBeginAtLevel and ChildEndAtLevel.
-func (ci CellID) Next() CellID {
- return CellID(uint64(ci) + ci.lsb()<<1)
-}
-
-// Prev returns the previous cell along the Hilbert curve.
-func (ci CellID) Prev() CellID {
- return CellID(uint64(ci) - ci.lsb()<<1)
-}
-
-// NextWrap returns the next cell along the Hilbert curve, wrapping from last to
-// first as necessary. This should not be used with ChildBegin and ChildEnd.
-func (ci CellID) NextWrap() CellID {
- n := ci.Next()
- if uint64(n) < wrapOffset {
- return n
- }
- return CellID(uint64(n) - wrapOffset)
-}
-
-// PrevWrap returns the previous cell along the Hilbert curve, wrapping around from
-// first to last as necessary. This should not be used with ChildBegin and ChildEnd.
-func (ci CellID) PrevWrap() CellID {
- p := ci.Prev()
- if uint64(p) < wrapOffset {
- return p
- }
- return CellID(uint64(p) + wrapOffset)
-}
-
-// AdvanceWrap advances or retreats the indicated number of steps along the
-// Hilbert curve at the current level and returns the new position. The
-// position wraps between the first and last faces as necessary.
-func (ci CellID) AdvanceWrap(steps int64) CellID {
- if steps == 0 {
- return ci
- }
-
- // We clamp the number of steps if necessary to ensure that we do not
- // advance past the End() or before the Begin() of this level.
- shift := uint(2*(maxLevel-ci.Level()) + 1)
- if steps < 0 {
- if min := -int64(uint64(ci) >> shift); steps < min {
- wrap := int64(wrapOffset >> shift)
- steps %= wrap
- if steps < min {
- steps += wrap
- }
- }
- } else {
- // Unlike Advance(), we don't want to return End(level).
- if max := int64((wrapOffset - uint64(ci)) >> shift); steps > max {
- wrap := int64(wrapOffset >> shift)
- steps %= wrap
- if steps > max {
- steps -= wrap
- }
- }
- }
-
- // If steps is negative, then shifting it left has undefined behavior.
- // Cast to uint64 for a 2's complement answer.
- return CellID(uint64(ci) + (uint64(steps) << shift))
-}
-
-// Encode encodes the CellID.
-func (ci CellID) Encode(w io.Writer) error {
- e := &encoder{w: w}
- ci.encode(e)
- return e.err
-}
-
-func (ci CellID) encode(e *encoder) {
- e.writeUint64(uint64(ci))
-}
-
-// Decode decodes the CellID.
-func (ci *CellID) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- ci.decode(d)
- return d.err
-}
-
-func (ci *CellID) decode(d *decoder) {
- *ci = CellID(d.readUint64())
-}
-
-// TODO: the methods below are not exported yet. Settle on the entire API design
-// before doing this. Do we want to mirror the C++ one as closely as possible?
-
-// distanceFromBegin returns the number of steps along the Hilbert curve that
-// this cell is from the first node in the S2 hierarchy at our level. (i.e.,
-// FromFace(0).ChildBeginAtLevel(ci.Level())). This is analogous to Pos(), but
-// for this cell's level.
-// The return value is always non-negative.
-func (ci CellID) distanceFromBegin() int64 {
- return int64(ci >> uint64(2*(maxLevel-ci.Level())+1))
-}
-
-// rawPoint returns an unnormalized r3 vector from the origin through the center
-// of the s2 cell on the sphere.
-func (ci CellID) rawPoint() r3.Vector {
- face, si, ti := ci.faceSiTi()
- return faceUVToXYZ(face, stToUV((0.5/maxSize)*float64(si)), stToUV((0.5/maxSize)*float64(ti)))
-}
-
-// faceSiTi returns the Face/Si/Ti coordinates of the center of the cell.
-func (ci CellID) faceSiTi() (face int, si, ti uint32) {
- face, i, j, _ := ci.faceIJOrientation()
- delta := 0
- if ci.IsLeaf() {
- delta = 1
- } else {
- if (i^(int(ci)>>2))&1 != 0 {
- delta = 2
- }
- }
- return face, uint32(2*i + delta), uint32(2*j + delta)
-}
-
-// faceIJOrientation uses the global lookupIJ table to unfiddle the bits of ci.
-func (ci CellID) faceIJOrientation() (f, i, j, orientation int) {
- f = ci.Face()
- orientation = f & swapMask
- nbits := maxLevel - 7*lookupBits // first iteration
-
- // Each iteration maps 8 bits of the Hilbert curve position into
- // 4 bits of "i" and "j". The lookup table transforms a key of the
- // form "ppppppppoo" to a value of the form "iiiijjjjoo", where the
- // letters [ijpo] represents bits of "i", "j", the Hilbert curve
- // position, and the Hilbert curve orientation respectively.
- //
- // On the first iteration we need to be careful to clear out the bits
- // representing the cube face.
- for k := 7; k >= 0; k-- {
- orientation += (int(uint64(ci)>>uint64(k*2*lookupBits+1)) & ((1 << uint(2*nbits)) - 1)) << 2
- orientation = lookupIJ[orientation]
- i += (orientation >> (lookupBits + 2)) << uint(k*lookupBits)
- j += ((orientation >> 2) & ((1 << lookupBits) - 1)) << uint(k*lookupBits)
- orientation &= (swapMask | invertMask)
- nbits = lookupBits // following iterations
- }
-
- // The position of a non-leaf cell at level "n" consists of a prefix of
- // 2*n bits that identifies the cell, followed by a suffix of
- // 2*(maxLevel-n)+1 bits of the form 10*. If n==maxLevel, the suffix is
- // just "1" and has no effect. Otherwise, it consists of "10", followed
- // by (maxLevel-n-1) repetitions of "00", followed by "0". The "10" has
- // no effect, while each occurrence of "00" has the effect of reversing
- // the swapMask bit.
- if ci.lsb()&0x1111111111111110 != 0 {
- orientation ^= swapMask
- }
-
- return
-}
-
-// cellIDFromFaceIJ returns a leaf cell given its cube face (range 0..5) and IJ coordinates.
-func cellIDFromFaceIJ(f, i, j int) CellID {
- // Note that this value gets shifted one bit to the left at the end
- // of the function.
- n := uint64(f) << (posBits - 1)
- // Alternating faces have opposite Hilbert curve orientations; this
- // is necessary in order for all faces to have a right-handed
- // coordinate system.
- bits := f & swapMask
- // Each iteration maps 4 bits of "i" and "j" into 8 bits of the Hilbert
- // curve position. The lookup table transforms a 10-bit key of the form
- // "iiiijjjjoo" to a 10-bit value of the form "ppppppppoo", where the
- // letters [ijpo] denote bits of "i", "j", Hilbert curve position, and
- // Hilbert curve orientation respectively.
- for k := 7; k >= 0; k-- {
- mask := (1 << lookupBits) - 1
- bits += ((i >> uint(k*lookupBits)) & mask) << (lookupBits + 2)
- bits += ((j >> uint(k*lookupBits)) & mask) << 2
- bits = lookupPos[bits]
- n |= uint64(bits>>2) << (uint(k) * 2 * lookupBits)
- bits &= (swapMask | invertMask)
- }
- return CellID(n*2 + 1)
-}
-
-func cellIDFromFaceIJWrap(f, i, j int) CellID {
- // Convert i and j to the coordinates of a leaf cell just beyond the
- // boundary of this face. This prevents 32-bit overflow in the case
- // of finding the neighbors of a face cell.
- i = clampInt(i, -1, maxSize)
- j = clampInt(j, -1, maxSize)
-
- // We want to wrap these coordinates onto the appropriate adjacent face.
- // The easiest way to do this is to convert the (i,j) coordinates to (x,y,z)
- // (which yields a point outside the normal face boundary), and then call
- // xyzToFaceUV to project back onto the correct face.
- //
- // The code below converts (i,j) to (si,ti), and then (si,ti) to (u,v) using
- // the linear projection (u=2*s-1 and v=2*t-1). (The code further below
- // converts back using the inverse projection, s=0.5*(u+1) and t=0.5*(v+1).
- // Any projection would work here, so we use the simplest.) We also clamp
- // the (u,v) coordinates so that the point is barely outside the
- // [-1,1]x[-1,1] face rectangle, since otherwise the reprojection step
- // (which divides by the new z coordinate) might change the other
- // coordinates enough so that we end up in the wrong leaf cell.
- const scale = 1.0 / maxSize
- limit := math.Nextafter(1, 2)
- u := math.Max(-limit, math.Min(limit, scale*float64((i<<1)+1-maxSize)))
- v := math.Max(-limit, math.Min(limit, scale*float64((j<<1)+1-maxSize)))
-
- // Find the leaf cell coordinates on the adjacent face, and convert
- // them to a cell id at the appropriate level.
- f, u, v = xyzToFaceUV(faceUVToXYZ(f, u, v))
- return cellIDFromFaceIJ(f, stToIJ(0.5*(u+1)), stToIJ(0.5*(v+1)))
-}
-
-func cellIDFromFaceIJSame(f, i, j int, sameFace bool) CellID {
- if sameFace {
- return cellIDFromFaceIJ(f, i, j)
- }
- return cellIDFromFaceIJWrap(f, i, j)
-}
-
-// ijToSTMin converts the i- or j-index of a leaf cell to the minimum corresponding
-// s- or t-value contained by that cell. The argument must be in the range
-// [0..2**30], i.e. up to one position beyond the normal range of valid leaf
-// cell indices.
-func ijToSTMin(i int) float64 {
- return float64(i) / float64(maxSize)
-}
-
-// stToIJ converts value in ST coordinates to a value in IJ coordinates.
-func stToIJ(s float64) int {
- return clampInt(int(math.Floor(maxSize*s)), 0, maxSize-1)
-}
-
-// cellIDFromPoint returns a leaf cell containing point p. Usually there is
-// exactly one such cell, but for points along the edge of a cell, any
-// adjacent cell may be (deterministically) chosen. This is because
-// s2.CellIDs are considered to be closed sets. The returned cell will
-// always contain the given point, i.e.
-//
-// CellFromPoint(p).ContainsPoint(p)
-//
-// is always true.
-func cellIDFromPoint(p Point) CellID {
- f, u, v := xyzToFaceUV(r3.Vector{p.X, p.Y, p.Z})
- i := stToIJ(uvToST(u))
- j := stToIJ(uvToST(v))
- return cellIDFromFaceIJ(f, i, j)
-}
-
-// ijLevelToBoundUV returns the bounds in (u,v)-space for the cell at the given
-// level containing the leaf cell with the given (i,j)-coordinates.
-func ijLevelToBoundUV(i, j, level int) r2.Rect {
- cellSize := sizeIJ(level)
- xLo := i & -cellSize
- yLo := j & -cellSize
-
- return r2.Rect{
- X: r1.Interval{
- Lo: stToUV(ijToSTMin(xLo)),
- Hi: stToUV(ijToSTMin(xLo + cellSize)),
- },
- Y: r1.Interval{
- Lo: stToUV(ijToSTMin(yLo)),
- Hi: stToUV(ijToSTMin(yLo + cellSize)),
- },
- }
-}
-
-// Constants related to the bit mangling in the Cell ID.
-const (
- lookupBits = 4
- swapMask = 0x01
- invertMask = 0x02
-)
-
-// The following lookup tables are used to convert efficiently between an
-// (i,j) cell index and the corresponding position along the Hilbert curve.
-//
-// lookupPos maps 4 bits of "i", 4 bits of "j", and 2 bits representing the
-// orientation of the current cell into 8 bits representing the order in which
-// that subcell is visited by the Hilbert curve, plus 2 bits indicating the
-// new orientation of the Hilbert curve within that subcell. (Cell
-// orientations are represented as combination of swapMask and invertMask.)
-//
-// lookupIJ is an inverted table used for mapping in the opposite
-// direction.
-//
-// We also experimented with looking up 16 bits at a time (14 bits of position
-// plus 2 of orientation) but found that smaller lookup tables gave better
-// performance. (2KB fits easily in the primary cache.)
-var (
- ijToPos = [4][4]int{
- {0, 1, 3, 2}, // canonical order
- {0, 3, 1, 2}, // axes swapped
- {2, 3, 1, 0}, // bits inverted
- {2, 1, 3, 0}, // swapped & inverted
- }
- posToIJ = [4][4]int{
- {0, 1, 3, 2}, // canonical order: (0,0), (0,1), (1,1), (1,0)
- {0, 2, 3, 1}, // axes swapped: (0,0), (1,0), (1,1), (0,1)
- {3, 2, 0, 1}, // bits inverted: (1,1), (1,0), (0,0), (0,1)
- {3, 1, 0, 2}, // swapped & inverted: (1,1), (0,1), (0,0), (1,0)
- }
- posToOrientation = [4]int{swapMask, 0, 0, invertMask | swapMask}
- lookupIJ [1 << (2*lookupBits + 2)]int
- lookupPos [1 << (2*lookupBits + 2)]int
-)
-
-func init() {
- initLookupCell(0, 0, 0, 0, 0, 0)
- initLookupCell(0, 0, 0, swapMask, 0, swapMask)
- initLookupCell(0, 0, 0, invertMask, 0, invertMask)
- initLookupCell(0, 0, 0, swapMask|invertMask, 0, swapMask|invertMask)
-}
-
-// initLookupCell initializes the lookupIJ table at init time.
-func initLookupCell(level, i, j, origOrientation, pos, orientation int) {
- if level == lookupBits {
- ij := (i << lookupBits) + j
- lookupPos[(ij<<2)+origOrientation] = (pos << 2) + orientation
- lookupIJ[(pos<<2)+origOrientation] = (ij << 2) + orientation
- return
- }
-
- level++
- i <<= 1
- j <<= 1
- pos <<= 2
- r := posToIJ[orientation]
- initLookupCell(level, i+(r[0]>>1), j+(r[0]&1), origOrientation, pos, orientation^posToOrientation[0])
- initLookupCell(level, i+(r[1]>>1), j+(r[1]&1), origOrientation, pos+1, orientation^posToOrientation[1])
- initLookupCell(level, i+(r[2]>>1), j+(r[2]&1), origOrientation, pos+2, orientation^posToOrientation[2])
- initLookupCell(level, i+(r[3]>>1), j+(r[3]&1), origOrientation, pos+3, orientation^posToOrientation[3])
-}
-
-// CommonAncestorLevel returns the level of the common ancestor of the two S2 CellIDs.
-func (ci CellID) CommonAncestorLevel(other CellID) (level int, ok bool) {
- bits := uint64(ci ^ other)
- if bits < ci.lsb() {
- bits = ci.lsb()
- }
- if bits < other.lsb() {
- bits = other.lsb()
- }
-
- msbPos := findMSBSetNonZero64(bits)
- if msbPos > 60 {
- return 0, false
- }
- return (60 - msbPos) >> 1, true
-}
-
-// Advance advances or retreats the indicated number of steps along the
-// Hilbert curve at the current level, and returns the new position. The
-// position is never advanced past End() or before Begin().
-func (ci CellID) Advance(steps int64) CellID {
- if steps == 0 {
- return ci
- }
-
- // We clamp the number of steps if necessary to ensure that we do not
- // advance past the End() or before the Begin() of this level. Note that
- // minSteps and maxSteps always fit in a signed 64-bit integer.
- stepShift := uint(2*(maxLevel-ci.Level()) + 1)
- if steps < 0 {
- minSteps := -int64(uint64(ci) >> stepShift)
- if steps < minSteps {
- steps = minSteps
- }
- } else {
- maxSteps := int64((wrapOffset + ci.lsb() - uint64(ci)) >> stepShift)
- if steps > maxSteps {
- steps = maxSteps
- }
- }
- return ci + CellID(steps)<<stepShift
-}
-
-// centerST return the center of the CellID in (s,t)-space.
-func (ci CellID) centerST() r2.Point {
- _, si, ti := ci.faceSiTi()
- return r2.Point{siTiToST(si), siTiToST(ti)}
-}
-
-// sizeST returns the edge length of this CellID in (s,t)-space at the given level.
-func (ci CellID) sizeST(level int) float64 {
- return ijToSTMin(sizeIJ(level))
-}
-
-// boundST returns the bound of this CellID in (s,t)-space.
-func (ci CellID) boundST() r2.Rect {
- s := ci.sizeST(ci.Level())
- return r2.RectFromCenterSize(ci.centerST(), r2.Point{s, s})
-}
-
-// centerUV returns the center of this CellID in (u,v)-space. Note that
-// the center of the cell is defined as the point at which it is recursively
-// subdivided into four children; in general, it is not at the midpoint of
-// the (u,v) rectangle covered by the cell.
-func (ci CellID) centerUV() r2.Point {
- _, si, ti := ci.faceSiTi()
- return r2.Point{stToUV(siTiToST(si)), stToUV(siTiToST(ti))}
-}
-
-// boundUV returns the bound of this CellID in (u,v)-space.
-func (ci CellID) boundUV() r2.Rect {
- _, i, j, _ := ci.faceIJOrientation()
- return ijLevelToBoundUV(i, j, ci.Level())
-}
-
-// expandEndpoint returns a new u-coordinate u' such that the distance from the
-// line u=u' to the given edge (u,v0)-(u,v1) is exactly the given distance
-// (which is specified as the sine of the angle corresponding to the distance).
-func expandEndpoint(u, maxV, sinDist float64) float64 {
- // This is based on solving a spherical right triangle, similar to the
- // calculation in Cap.RectBound.
- // Given an edge of the form (u,v0)-(u,v1), let maxV = max(abs(v0), abs(v1)).
- sinUShift := sinDist * math.Sqrt((1+u*u+maxV*maxV)/(1+u*u))
- cosUShift := math.Sqrt(1 - sinUShift*sinUShift)
- // The following is an expansion of tan(atan(u) + asin(sinUShift)).
- return (cosUShift*u + sinUShift) / (cosUShift - sinUShift*u)
-}
-
-// expandedByDistanceUV returns a rectangle expanded in (u,v)-space so that it
-// contains all points within the given distance of the boundary, and return the
-// smallest such rectangle. If the distance is negative, then instead shrink this
-// rectangle so that it excludes all points within the given absolute distance
-// of the boundary.
-//
-// Distances are measured *on the sphere*, not in (u,v)-space. For example,
-// you can use this method to expand the (u,v)-bound of an CellID so that
-// it contains all points within 5km of the original cell. You can then
-// test whether a point lies within the expanded bounds like this:
-//
-// if u, v, ok := faceXYZtoUV(face, point); ok && bound.ContainsPoint(r2.Point{u,v}) { ... }
-//
-// Limitations:
-//
-// - Because the rectangle is drawn on one of the six cube-face planes
-// (i.e., {x,y,z} = +/-1), it can cover at most one hemisphere. This
-// limits the maximum amount that a rectangle can be expanded. For
-// example, CellID bounds can be expanded safely by at most 45 degrees
-// (about 5000 km on the Earth's surface).
-//
-// - The implementation is not exact for negative distances. The resulting
-// rectangle will exclude all points within the given distance of the
-// boundary but may be slightly smaller than necessary.
-func expandedByDistanceUV(uv r2.Rect, distance s1.Angle) r2.Rect {
- // Expand each of the four sides of the rectangle just enough to include all
- // points within the given distance of that side. (The rectangle may be
- // expanded by a different amount in (u,v)-space on each side.)
- maxU := math.Max(math.Abs(uv.X.Lo), math.Abs(uv.X.Hi))
- maxV := math.Max(math.Abs(uv.Y.Lo), math.Abs(uv.Y.Hi))
- sinDist := math.Sin(float64(distance))
- return r2.Rect{
- X: r1.Interval{expandEndpoint(uv.X.Lo, maxV, -sinDist),
- expandEndpoint(uv.X.Hi, maxV, sinDist)},
- Y: r1.Interval{expandEndpoint(uv.Y.Lo, maxU, -sinDist),
- expandEndpoint(uv.Y.Hi, maxU, sinDist)}}
-}
-
-// MaxTile returns the largest cell with the same RangeMin such that
-// RangeMax < limit.RangeMin. It returns limit if no such cell exists.
-// This method can be used to generate a small set of CellIDs that covers
-// a given range (a tiling). This example shows how to generate a tiling
-// for a semi-open range of leaf cells [start, limit):
-//
-// for id := start.MaxTile(limit); id != limit; id = id.Next().MaxTile(limit)) { ... }
-//
-// Note that in general the cells in the tiling will be of different sizes;
-// they gradually get larger (near the middle of the range) and then
-// gradually get smaller as limit is approached.
-func (ci CellID) MaxTile(limit CellID) CellID {
- start := ci.RangeMin()
- if start >= limit.RangeMin() {
- return limit
- }
-
- if ci.RangeMax() >= limit {
- // The cell is too large, shrink it. Note that when generating coverings
- // of CellID ranges, this loop usually executes only once. Also because
- // ci.RangeMin() < limit.RangeMin(), we will always exit the loop by the
- // time we reach a leaf cell.
- for {
- ci = ci.Children()[0]
- if ci.RangeMax() < limit {
- break
- }
- }
- return ci
- }
-
- // The cell may be too small. Grow it if necessary. Note that generally
- // this loop only iterates once.
- for !ci.isFace() {
- parent := ci.immediateParent()
- if parent.RangeMin() != start || parent.RangeMax() >= limit {
- break
- }
- ci = parent
- }
- return ci
-}
-
-// centerFaceSiTi returns the (face, si, ti) coordinates of the center of the cell.
-// Note that although (si,ti) coordinates span the range [0,2**31] in general,
-// the cell center coordinates are always in the range [1,2**31-1] and
-// therefore can be represented using a signed 32-bit integer.
-func (ci CellID) centerFaceSiTi() (face, si, ti int) {
- // First we compute the discrete (i,j) coordinates of a leaf cell contained
- // within the given cell. Given that cells are represented by the Hilbert
- // curve position corresponding at their center, it turns out that the cell
- // returned by faceIJOrientation is always one of two leaf cells closest
- // to the center of the cell (unless the given cell is a leaf cell itself,
- // in which case there is only one possibility).
- //
- // Given a cell of size s >= 2 (i.e. not a leaf cell), and letting (imin,
- // jmin) be the coordinates of its lower left-hand corner, the leaf cell
- // returned by faceIJOrientation is either (imin + s/2, jmin + s/2)
- // (imin + s/2 - 1, jmin + s/2 - 1). The first case is the one we want.
- // We can distinguish these two cases by looking at the low bit of i or
- // j. In the second case the low bit is one, unless s == 2 (i.e. the
- // level just above leaf cells) in which case the low bit is zero.
- //
- // In the code below, the expression ((i ^ (int(id) >> 2)) & 1) is true
- // if we are in the second case described above.
- face, i, j, _ := ci.faceIJOrientation()
- delta := 0
- if ci.IsLeaf() {
- delta = 1
- } else if (int64(i)^(int64(ci)>>2))&1 == 1 {
- delta = 2
- }
-
- // Note that (2 * {i,j} + delta) will never overflow a 32-bit integer.
- return face, 2*i + delta, 2*j + delta
-}