summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/rect_bounder.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/rect_bounder.go')
-rw-r--r--vendor/github.com/golang/geo/s2/rect_bounder.go352
1 files changed, 0 insertions, 352 deletions
diff --git a/vendor/github.com/golang/geo/s2/rect_bounder.go b/vendor/github.com/golang/geo/s2/rect_bounder.go
deleted file mode 100644
index 419dea0c1..000000000
--- a/vendor/github.com/golang/geo/s2/rect_bounder.go
+++ /dev/null
@@ -1,352 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// RectBounder is used to compute a bounding rectangle that contains all edges
-// defined by a vertex chain (v0, v1, v2, ...). All vertices must be unit length.
-// Note that the bounding rectangle of an edge can be larger than the bounding
-// rectangle of its endpoints, e.g. consider an edge that passes through the North Pole.
-//
-// The bounds are calculated conservatively to account for numerical errors
-// when points are converted to LatLngs. More precisely, this function
-// guarantees the following:
-// Let L be a closed edge chain (Loop) such that the interior of the loop does
-// not contain either pole. Now if P is any point such that L.ContainsPoint(P),
-// then RectBound(L).ContainsPoint(LatLngFromPoint(P)).
-type RectBounder struct {
- // The previous vertex in the chain.
- a Point
- // The previous vertex latitude longitude.
- aLL LatLng
- bound Rect
-}
-
-// NewRectBounder returns a new instance of a RectBounder.
-func NewRectBounder() *RectBounder {
- return &RectBounder{
- bound: EmptyRect(),
- }
-}
-
-// maxErrorForTests returns the maximum error in RectBound provided that the
-// result does not include either pole. It is only used for testing purposes
-func (r *RectBounder) maxErrorForTests() LatLng {
- // The maximum error in the latitude calculation is
- // 3.84 * dblEpsilon for the PointCross calculation
- // 0.96 * dblEpsilon for the Latitude calculation
- // 5 * dblEpsilon added by AddPoint/RectBound to compensate for error
- // -----------------
- // 9.80 * dblEpsilon maximum error in result
- //
- // The maximum error in the longitude calculation is dblEpsilon. RectBound
- // does not do any expansion because this isn't necessary in order to
- // bound the *rounded* longitudes of contained points.
- return LatLng{10 * dblEpsilon * s1.Radian, 1 * dblEpsilon * s1.Radian}
-}
-
-// AddPoint adds the given point to the chain. The Point must be unit length.
-func (r *RectBounder) AddPoint(b Point) {
- bLL := LatLngFromPoint(b)
-
- if r.bound.IsEmpty() {
- r.a = b
- r.aLL = bLL
- r.bound = r.bound.AddPoint(bLL)
- return
- }
-
- // First compute the cross product N = A x B robustly. This is the normal
- // to the great circle through A and B. We don't use RobustSign
- // since that method returns an arbitrary vector orthogonal to A if the two
- // vectors are proportional, and we want the zero vector in that case.
- n := r.a.Sub(b.Vector).Cross(r.a.Add(b.Vector)) // N = 2 * (A x B)
-
- // The relative error in N gets large as its norm gets very small (i.e.,
- // when the two points are nearly identical or antipodal). We handle this
- // by choosing a maximum allowable error, and if the error is greater than
- // this we fall back to a different technique. Since it turns out that
- // the other sources of error in converting the normal to a maximum
- // latitude add up to at most 1.16 * dblEpsilon, and it is desirable to
- // have the total error be a multiple of dblEpsilon, we have chosen to
- // limit the maximum error in the normal to be 3.84 * dblEpsilon.
- // It is possible to show that the error is less than this when
- //
- // n.Norm() >= 8 * sqrt(3) / (3.84 - 0.5 - sqrt(3)) * dblEpsilon
- // = 1.91346e-15 (about 8.618 * dblEpsilon)
- nNorm := n.Norm()
- if nNorm < 1.91346e-15 {
- // A and B are either nearly identical or nearly antipodal (to within
- // 4.309 * dblEpsilon, or about 6 nanometers on the earth's surface).
- if r.a.Dot(b.Vector) < 0 {
- // The two points are nearly antipodal. The easiest solution is to
- // assume that the edge between A and B could go in any direction
- // around the sphere.
- r.bound = FullRect()
- } else {
- // The two points are nearly identical (to within 4.309 * dblEpsilon).
- // In this case we can just use the bounding rectangle of the points,
- // since after the expansion done by GetBound this Rect is
- // guaranteed to include the (lat,lng) values of all points along AB.
- r.bound = r.bound.Union(RectFromLatLng(r.aLL).AddPoint(bLL))
- }
- r.a = b
- r.aLL = bLL
- return
- }
-
- // Compute the longitude range spanned by AB.
- lngAB := s1.EmptyInterval().AddPoint(r.aLL.Lng.Radians()).AddPoint(bLL.Lng.Radians())
- if lngAB.Length() >= math.Pi-2*dblEpsilon {
- // The points lie on nearly opposite lines of longitude to within the
- // maximum error of the calculation. The easiest solution is to assume
- // that AB could go on either side of the pole.
- lngAB = s1.FullInterval()
- }
-
- // Next we compute the latitude range spanned by the edge AB. We start
- // with the range spanning the two endpoints of the edge:
- latAB := r1.IntervalFromPoint(r.aLL.Lat.Radians()).AddPoint(bLL.Lat.Radians())
-
- // This is the desired range unless the edge AB crosses the plane
- // through N and the Z-axis (which is where the great circle through A
- // and B attains its minimum and maximum latitudes). To test whether AB
- // crosses this plane, we compute a vector M perpendicular to this
- // plane and then project A and B onto it.
- m := n.Cross(r3.Vector{0, 0, 1})
- mA := m.Dot(r.a.Vector)
- mB := m.Dot(b.Vector)
-
- // We want to test the signs of "mA" and "mB", so we need to bound
- // the error in these calculations. It is possible to show that the
- // total error is bounded by
- //
- // (1 + sqrt(3)) * dblEpsilon * nNorm + 8 * sqrt(3) * (dblEpsilon**2)
- // = 6.06638e-16 * nNorm + 6.83174e-31
-
- mError := 6.06638e-16*nNorm + 6.83174e-31
- if mA*mB < 0 || math.Abs(mA) <= mError || math.Abs(mB) <= mError {
- // Minimum/maximum latitude *may* occur in the edge interior.
- //
- // The maximum latitude is 90 degrees minus the latitude of N. We
- // compute this directly using atan2 in order to get maximum accuracy
- // near the poles.
- //
- // Our goal is compute a bound that contains the computed latitudes of
- // all S2Points P that pass the point-in-polygon containment test.
- // There are three sources of error we need to consider:
- // - the directional error in N (at most 3.84 * dblEpsilon)
- // - converting N to a maximum latitude
- // - computing the latitude of the test point P
- // The latter two sources of error are at most 0.955 * dblEpsilon
- // individually, but it is possible to show by a more complex analysis
- // that together they can add up to at most 1.16 * dblEpsilon, for a
- // total error of 5 * dblEpsilon.
- //
- // We add 3 * dblEpsilon to the bound here, and GetBound() will pad
- // the bound by another 2 * dblEpsilon.
- maxLat := math.Min(
- math.Atan2(math.Sqrt(n.X*n.X+n.Y*n.Y), math.Abs(n.Z))+3*dblEpsilon,
- math.Pi/2)
-
- // In order to get tight bounds when the two points are close together,
- // we also bound the min/max latitude relative to the latitudes of the
- // endpoints A and B. First we compute the distance between A and B,
- // and then we compute the maximum change in latitude between any two
- // points along the great circle that are separated by this distance.
- // This gives us a latitude change "budget". Some of this budget must
- // be spent getting from A to B; the remainder bounds the round-trip
- // distance (in latitude) from A or B to the min or max latitude
- // attained along the edge AB.
- latBudget := 2 * math.Asin(0.5*(r.a.Sub(b.Vector)).Norm()*math.Sin(maxLat))
- maxDelta := 0.5*(latBudget-latAB.Length()) + dblEpsilon
-
- // Test whether AB passes through the point of maximum latitude or
- // minimum latitude. If the dot product(s) are small enough then the
- // result may be ambiguous.
- if mA <= mError && mB >= -mError {
- latAB.Hi = math.Min(maxLat, latAB.Hi+maxDelta)
- }
- if mB <= mError && mA >= -mError {
- latAB.Lo = math.Max(-maxLat, latAB.Lo-maxDelta)
- }
- }
- r.a = b
- r.aLL = bLL
- r.bound = r.bound.Union(Rect{latAB, lngAB})
-}
-
-// RectBound returns the bounding rectangle of the edge chain that connects the
-// vertices defined so far. This bound satisfies the guarantee made
-// above, i.e. if the edge chain defines a Loop, then the bound contains
-// the LatLng coordinates of all Points contained by the loop.
-func (r *RectBounder) RectBound() Rect {
- return r.bound.expanded(LatLng{s1.Angle(2 * dblEpsilon), 0}).PolarClosure()
-}
-
-// ExpandForSubregions expands a bounding Rect so that it is guaranteed to
-// contain the bounds of any subregion whose bounds are computed using
-// ComputeRectBound. For example, consider a loop L that defines a square.
-// GetBound ensures that if a point P is contained by this square, then
-// LatLngFromPoint(P) is contained by the bound. But now consider a diamond
-// shaped loop S contained by L. It is possible that GetBound returns a
-// *larger* bound for S than it does for L, due to rounding errors. This
-// method expands the bound for L so that it is guaranteed to contain the
-// bounds of any subregion S.
-//
-// More precisely, if L is a loop that does not contain either pole, and S
-// is a loop such that L.Contains(S), then
-//
-// ExpandForSubregions(L.RectBound).Contains(S.RectBound).
-//
-func ExpandForSubregions(bound Rect) Rect {
- // Empty bounds don't need expansion.
- if bound.IsEmpty() {
- return bound
- }
-
- // First we need to check whether the bound B contains any nearly-antipodal
- // points (to within 4.309 * dblEpsilon). If so then we need to return
- // FullRect, since the subregion might have an edge between two
- // such points, and AddPoint returns Full for such edges. Note that
- // this can happen even if B is not Full for example, consider a loop
- // that defines a 10km strip straddling the equator extending from
- // longitudes -100 to +100 degrees.
- //
- // It is easy to check whether B contains any antipodal points, but checking
- // for nearly-antipodal points is trickier. Essentially we consider the
- // original bound B and its reflection through the origin B', and then test
- // whether the minimum distance between B and B' is less than 4.309 * dblEpsilon.
-
- // lngGap is a lower bound on the longitudinal distance between B and its
- // reflection B'. (2.5 * dblEpsilon is the maximum combined error of the
- // endpoint longitude calculations and the Length call.)
- lngGap := math.Max(0, math.Pi-bound.Lng.Length()-2.5*dblEpsilon)
-
- // minAbsLat is the minimum distance from B to the equator (if zero or
- // negative, then B straddles the equator).
- minAbsLat := math.Max(bound.Lat.Lo, -bound.Lat.Hi)
-
- // latGapSouth and latGapNorth measure the minimum distance from B to the
- // south and north poles respectively.
- latGapSouth := math.Pi/2 + bound.Lat.Lo
- latGapNorth := math.Pi/2 - bound.Lat.Hi
-
- if minAbsLat >= 0 {
- // The bound B does not straddle the equator. In this case the minimum
- // distance is between one endpoint of the latitude edge in B closest to
- // the equator and the other endpoint of that edge in B'. The latitude
- // distance between these two points is 2*minAbsLat, and the longitude
- // distance is lngGap. We could compute the distance exactly using the
- // Haversine formula, but then we would need to bound the errors in that
- // calculation. Since we only need accuracy when the distance is very
- // small (close to 4.309 * dblEpsilon), we substitute the Euclidean
- // distance instead. This gives us a right triangle XYZ with two edges of
- // length x = 2*minAbsLat and y ~= lngGap. The desired distance is the
- // length of the third edge z, and we have
- //
- // z ~= sqrt(x^2 + y^2) >= (x + y) / sqrt(2)
- //
- // Therefore the region may contain nearly antipodal points only if
- //
- // 2*minAbsLat + lngGap < sqrt(2) * 4.309 * dblEpsilon
- // ~= 1.354e-15
- //
- // Note that because the given bound B is conservative, minAbsLat and
- // lngGap are both lower bounds on their true values so we do not need
- // to make any adjustments for their errors.
- if 2*minAbsLat+lngGap < 1.354e-15 {
- return FullRect()
- }
- } else if lngGap >= math.Pi/2 {
- // B spans at most Pi/2 in longitude. The minimum distance is always
- // between one corner of B and the diagonally opposite corner of B'. We
- // use the same distance approximation that we used above; in this case
- // we have an obtuse triangle XYZ with two edges of length x = latGapSouth
- // and y = latGapNorth, and angle Z >= Pi/2 between them. We then have
- //
- // z >= sqrt(x^2 + y^2) >= (x + y) / sqrt(2)
- //
- // Unlike the case above, latGapSouth and latGapNorth are not lower bounds
- // (because of the extra addition operation, and because math.Pi/2 is not
- // exactly equal to Pi/2); they can exceed their true values by up to
- // 0.75 * dblEpsilon. Putting this all together, the region may contain
- // nearly antipodal points only if
- //
- // latGapSouth + latGapNorth < (sqrt(2) * 4.309 + 1.5) * dblEpsilon
- // ~= 1.687e-15
- if latGapSouth+latGapNorth < 1.687e-15 {
- return FullRect()
- }
- } else {
- // Otherwise we know that (1) the bound straddles the equator and (2) its
- // width in longitude is at least Pi/2. In this case the minimum
- // distance can occur either between a corner of B and the diagonally
- // opposite corner of B' (as in the case above), or between a corner of B
- // and the opposite longitudinal edge reflected in B'. It is sufficient
- // to only consider the corner-edge case, since this distance is also a
- // lower bound on the corner-corner distance when that case applies.
-
- // Consider the spherical triangle XYZ where X is a corner of B with
- // minimum absolute latitude, Y is the closest pole to X, and Z is the
- // point closest to X on the opposite longitudinal edge of B'. This is a
- // right triangle (Z = Pi/2), and from the spherical law of sines we have
- //
- // sin(z) / sin(Z) = sin(y) / sin(Y)
- // sin(maxLatGap) / 1 = sin(dMin) / sin(lngGap)
- // sin(dMin) = sin(maxLatGap) * sin(lngGap)
- //
- // where "maxLatGap" = max(latGapSouth, latGapNorth) and "dMin" is the
- // desired minimum distance. Now using the facts that sin(t) >= (2/Pi)*t
- // for 0 <= t <= Pi/2, that we only need an accurate approximation when
- // at least one of "maxLatGap" or lngGap is extremely small (in which
- // case sin(t) ~= t), and recalling that "maxLatGap" has an error of up
- // to 0.75 * dblEpsilon, we want to test whether
- //
- // maxLatGap * lngGap < (4.309 + 0.75) * (Pi/2) * dblEpsilon
- // ~= 1.765e-15
- if math.Max(latGapSouth, latGapNorth)*lngGap < 1.765e-15 {
- return FullRect()
- }
- }
- // Next we need to check whether the subregion might contain any edges that
- // span (math.Pi - 2 * dblEpsilon) radians or more in longitude, since AddPoint
- // sets the longitude bound to Full in that case. This corresponds to
- // testing whether (lngGap <= 0) in lngExpansion below.
-
- // Otherwise, the maximum latitude error in AddPoint is 4.8 * dblEpsilon.
- // In the worst case, the errors when computing the latitude bound for a
- // subregion could go in the opposite direction as the errors when computing
- // the bound for the original region, so we need to double this value.
- // (More analysis shows that it's okay to round down to a multiple of
- // dblEpsilon.)
- //
- // For longitude, we rely on the fact that atan2 is correctly rounded and
- // therefore no additional bounds expansion is necessary.
-
- latExpansion := 9 * dblEpsilon
- lngExpansion := 0.0
- if lngGap <= 0 {
- lngExpansion = math.Pi
- }
- return bound.expanded(LatLng{s1.Angle(latExpansion), s1.Angle(lngExpansion)}).PolarClosure()
-}