summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/cap.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/cap.go')
-rw-r--r--vendor/github.com/golang/geo/s2/cap.go519
1 files changed, 0 insertions, 519 deletions
diff --git a/vendor/github.com/golang/geo/s2/cap.go b/vendor/github.com/golang/geo/s2/cap.go
deleted file mode 100644
index c4fb2e1e0..000000000
--- a/vendor/github.com/golang/geo/s2/cap.go
+++ /dev/null
@@ -1,519 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/s1"
-)
-
-var (
- // centerPoint is the default center for Caps
- centerPoint = PointFromCoords(1.0, 0, 0)
-)
-
-// Cap represents a disc-shaped region defined by a center and radius.
-// Technically this shape is called a "spherical cap" (rather than disc)
-// because it is not planar; the cap represents a portion of the sphere that
-// has been cut off by a plane. The boundary of the cap is the circle defined
-// by the intersection of the sphere and the plane. For containment purposes,
-// the cap is a closed set, i.e. it contains its boundary.
-//
-// For the most part, you can use a spherical cap wherever you would use a
-// disc in planar geometry. The radius of the cap is measured along the
-// surface of the sphere (rather than the straight-line distance through the
-// interior). Thus a cap of radius π/2 is a hemisphere, and a cap of radius
-// π covers the entire sphere.
-//
-// The center is a point on the surface of the unit sphere. (Hence the need for
-// it to be of unit length.)
-//
-// A cap can also be defined by its center point and height. The height is the
-// distance from the center point to the cutoff plane. There is also support for
-// "empty" and "full" caps, which contain no points and all points respectively.
-//
-// Here are some useful relationships between the cap height (h), the cap
-// radius (r), the maximum chord length from the cap's center (d), and the
-// radius of cap's base (a).
-//
-// h = 1 - cos(r)
-// = 2 * sin^2(r/2)
-// d^2 = 2 * h
-// = a^2 + h^2
-//
-// The zero value of Cap is an invalid cap. Use EmptyCap to get a valid empty cap.
-type Cap struct {
- center Point
- radius s1.ChordAngle
-}
-
-// CapFromPoint constructs a cap containing a single point.
-func CapFromPoint(p Point) Cap {
- return CapFromCenterChordAngle(p, 0)
-}
-
-// CapFromCenterAngle constructs a cap with the given center and angle.
-func CapFromCenterAngle(center Point, angle s1.Angle) Cap {
- return CapFromCenterChordAngle(center, s1.ChordAngleFromAngle(angle))
-}
-
-// CapFromCenterChordAngle constructs a cap where the angle is expressed as an
-// s1.ChordAngle. This constructor is more efficient than using an s1.Angle.
-func CapFromCenterChordAngle(center Point, radius s1.ChordAngle) Cap {
- return Cap{
- center: center,
- radius: radius,
- }
-}
-
-// CapFromCenterHeight constructs a cap with the given center and height. A
-// negative height yields an empty cap; a height of 2 or more yields a full cap.
-// The center should be unit length.
-func CapFromCenterHeight(center Point, height float64) Cap {
- return CapFromCenterChordAngle(center, s1.ChordAngleFromSquaredLength(2*height))
-}
-
-// CapFromCenterArea constructs a cap with the given center and surface area.
-// Note that the area can also be interpreted as the solid angle subtended by the
-// cap (because the sphere has unit radius). A negative area yields an empty cap;
-// an area of 4*π or more yields a full cap.
-func CapFromCenterArea(center Point, area float64) Cap {
- return CapFromCenterChordAngle(center, s1.ChordAngleFromSquaredLength(area/math.Pi))
-}
-
-// EmptyCap returns a cap that contains no points.
-func EmptyCap() Cap {
- return CapFromCenterChordAngle(centerPoint, s1.NegativeChordAngle)
-}
-
-// FullCap returns a cap that contains all points.
-func FullCap() Cap {
- return CapFromCenterChordAngle(centerPoint, s1.StraightChordAngle)
-}
-
-// IsValid reports whether the Cap is considered valid.
-func (c Cap) IsValid() bool {
- return c.center.Vector.IsUnit() && c.radius <= s1.StraightChordAngle
-}
-
-// IsEmpty reports whether the cap is empty, i.e. it contains no points.
-func (c Cap) IsEmpty() bool {
- return c.radius < 0
-}
-
-// IsFull reports whether the cap is full, i.e. it contains all points.
-func (c Cap) IsFull() bool {
- return c.radius == s1.StraightChordAngle
-}
-
-// Center returns the cap's center point.
-func (c Cap) Center() Point {
- return c.center
-}
-
-// Height returns the height of the cap. This is the distance from the center
-// point to the cutoff plane.
-func (c Cap) Height() float64 {
- return float64(0.5 * c.radius)
-}
-
-// Radius returns the cap radius as an s1.Angle. (Note that the cap angle
-// is stored internally as a ChordAngle, so this method requires a trigonometric
-// operation and may yield a slightly different result than the value passed
-// to CapFromCenterAngle).
-func (c Cap) Radius() s1.Angle {
- return c.radius.Angle()
-}
-
-// Area returns the surface area of the Cap on the unit sphere.
-func (c Cap) Area() float64 {
- return 2.0 * math.Pi * math.Max(0, c.Height())
-}
-
-// Contains reports whether this cap contains the other.
-func (c Cap) Contains(other Cap) bool {
- // In a set containment sense, every cap contains the empty cap.
- if c.IsFull() || other.IsEmpty() {
- return true
- }
- return c.radius >= ChordAngleBetweenPoints(c.center, other.center).Add(other.radius)
-}
-
-// Intersects reports whether this cap intersects the other cap.
-// i.e. whether they have any points in common.
-func (c Cap) Intersects(other Cap) bool {
- if c.IsEmpty() || other.IsEmpty() {
- return false
- }
-
- return c.radius.Add(other.radius) >= ChordAngleBetweenPoints(c.center, other.center)
-}
-
-// InteriorIntersects reports whether this caps interior intersects the other cap.
-func (c Cap) InteriorIntersects(other Cap) bool {
- // Make sure this cap has an interior and the other cap is non-empty.
- if c.radius <= 0 || other.IsEmpty() {
- return false
- }
-
- return c.radius.Add(other.radius) > ChordAngleBetweenPoints(c.center, other.center)
-}
-
-// ContainsPoint reports whether this cap contains the point.
-func (c Cap) ContainsPoint(p Point) bool {
- return ChordAngleBetweenPoints(c.center, p) <= c.radius
-}
-
-// InteriorContainsPoint reports whether the point is within the interior of this cap.
-func (c Cap) InteriorContainsPoint(p Point) bool {
- return c.IsFull() || ChordAngleBetweenPoints(c.center, p) < c.radius
-}
-
-// Complement returns the complement of the interior of the cap. A cap and its
-// complement have the same boundary but do not share any interior points.
-// The complement operator is not a bijection because the complement of a
-// singleton cap (containing a single point) is the same as the complement
-// of an empty cap.
-func (c Cap) Complement() Cap {
- if c.IsFull() {
- return EmptyCap()
- }
- if c.IsEmpty() {
- return FullCap()
- }
-
- return CapFromCenterChordAngle(Point{c.center.Mul(-1)}, s1.StraightChordAngle.Sub(c.radius))
-}
-
-// CapBound returns a bounding spherical cap. This is not guaranteed to be exact.
-func (c Cap) CapBound() Cap {
- return c
-}
-
-// RectBound returns a bounding latitude-longitude rectangle.
-// The bounds are not guaranteed to be tight.
-func (c Cap) RectBound() Rect {
- if c.IsEmpty() {
- return EmptyRect()
- }
-
- capAngle := c.Radius().Radians()
- allLongitudes := false
- lat := r1.Interval{
- Lo: latitude(c.center).Radians() - capAngle,
- Hi: latitude(c.center).Radians() + capAngle,
- }
- lng := s1.FullInterval()
-
- // Check whether cap includes the south pole.
- if lat.Lo <= -math.Pi/2 {
- lat.Lo = -math.Pi / 2
- allLongitudes = true
- }
-
- // Check whether cap includes the north pole.
- if lat.Hi >= math.Pi/2 {
- lat.Hi = math.Pi / 2
- allLongitudes = true
- }
-
- if !allLongitudes {
- // Compute the range of longitudes covered by the cap. We use the law
- // of sines for spherical triangles. Consider the triangle ABC where
- // A is the north pole, B is the center of the cap, and C is the point
- // of tangency between the cap boundary and a line of longitude. Then
- // C is a right angle, and letting a,b,c denote the sides opposite A,B,C,
- // we have sin(a)/sin(A) = sin(c)/sin(C), or sin(A) = sin(a)/sin(c).
- // Here "a" is the cap angle, and "c" is the colatitude (90 degrees
- // minus the latitude). This formula also works for negative latitudes.
- //
- // The formula for sin(a) follows from the relationship h = 1 - cos(a).
- sinA := c.radius.Sin()
- sinC := math.Cos(latitude(c.center).Radians())
- if sinA <= sinC {
- angleA := math.Asin(sinA / sinC)
- lng.Lo = math.Remainder(longitude(c.center).Radians()-angleA, math.Pi*2)
- lng.Hi = math.Remainder(longitude(c.center).Radians()+angleA, math.Pi*2)
- }
- }
- return Rect{lat, lng}
-}
-
-// Equal reports whether this cap is equal to the other cap.
-func (c Cap) Equal(other Cap) bool {
- return (c.radius == other.radius && c.center == other.center) ||
- (c.IsEmpty() && other.IsEmpty()) ||
- (c.IsFull() && other.IsFull())
-}
-
-// ApproxEqual reports whether this cap is equal to the other cap within the given tolerance.
-func (c Cap) ApproxEqual(other Cap) bool {
- const epsilon = 1e-14
- r2 := float64(c.radius)
- otherR2 := float64(other.radius)
- return c.center.ApproxEqual(other.center) &&
- math.Abs(r2-otherR2) <= epsilon ||
- c.IsEmpty() && otherR2 <= epsilon ||
- other.IsEmpty() && r2 <= epsilon ||
- c.IsFull() && otherR2 >= 2-epsilon ||
- other.IsFull() && r2 >= 2-epsilon
-}
-
-// AddPoint increases the cap if necessary to include the given point. If this cap is empty,
-// then the center is set to the point with a zero height. p must be unit-length.
-func (c Cap) AddPoint(p Point) Cap {
- if c.IsEmpty() {
- c.center = p
- c.radius = 0
- return c
- }
-
- // After calling cap.AddPoint(p), cap.Contains(p) must be true. However
- // we don't need to do anything special to achieve this because Contains()
- // does exactly the same distance calculation that we do here.
- if newRad := ChordAngleBetweenPoints(c.center, p); newRad > c.radius {
- c.radius = newRad
- }
- return c
-}
-
-// AddCap increases the cap height if necessary to include the other cap. If this cap is empty,
-// it is set to the other cap.
-func (c Cap) AddCap(other Cap) Cap {
- if c.IsEmpty() {
- return other
- }
- if other.IsEmpty() {
- return c
- }
-
- // We round up the distance to ensure that the cap is actually contained.
- // TODO(roberts): Do some error analysis in order to guarantee this.
- dist := ChordAngleBetweenPoints(c.center, other.center).Add(other.radius)
- if newRad := dist.Expanded(dblEpsilon * float64(dist)); newRad > c.radius {
- c.radius = newRad
- }
- return c
-}
-
-// Expanded returns a new cap expanded by the given angle. If the cap is empty,
-// it returns an empty cap.
-func (c Cap) Expanded(distance s1.Angle) Cap {
- if c.IsEmpty() {
- return EmptyCap()
- }
- return CapFromCenterChordAngle(c.center, c.radius.Add(s1.ChordAngleFromAngle(distance)))
-}
-
-func (c Cap) String() string {
- return fmt.Sprintf("[Center=%v, Radius=%f]", c.center.Vector, c.Radius().Degrees())
-}
-
-// radiusToHeight converts an s1.Angle into the height of the cap.
-func radiusToHeight(r s1.Angle) float64 {
- if r.Radians() < 0 {
- return float64(s1.NegativeChordAngle)
- }
- if r.Radians() >= math.Pi {
- return float64(s1.RightChordAngle)
- }
- return float64(0.5 * s1.ChordAngleFromAngle(r))
-
-}
-
-// ContainsCell reports whether the cap contains the given cell.
-func (c Cap) ContainsCell(cell Cell) bool {
- // If the cap does not contain all cell vertices, return false.
- var vertices [4]Point
- for k := 0; k < 4; k++ {
- vertices[k] = cell.Vertex(k)
- if !c.ContainsPoint(vertices[k]) {
- return false
- }
- }
- // Otherwise, return true if the complement of the cap does not intersect the cell.
- return !c.Complement().intersects(cell, vertices)
-}
-
-// IntersectsCell reports whether the cap intersects the cell.
-func (c Cap) IntersectsCell(cell Cell) bool {
- // If the cap contains any cell vertex, return true.
- var vertices [4]Point
- for k := 0; k < 4; k++ {
- vertices[k] = cell.Vertex(k)
- if c.ContainsPoint(vertices[k]) {
- return true
- }
- }
- return c.intersects(cell, vertices)
-}
-
-// intersects reports whether the cap intersects any point of the cell excluding
-// its vertices (which are assumed to already have been checked).
-func (c Cap) intersects(cell Cell, vertices [4]Point) bool {
- // If the cap is a hemisphere or larger, the cell and the complement of the cap
- // are both convex. Therefore since no vertex of the cell is contained, no other
- // interior point of the cell is contained either.
- if c.radius >= s1.RightChordAngle {
- return false
- }
-
- // We need to check for empty caps due to the center check just below.
- if c.IsEmpty() {
- return false
- }
-
- // Optimization: return true if the cell contains the cap center. This allows half
- // of the edge checks below to be skipped.
- if cell.ContainsPoint(c.center) {
- return true
- }
-
- // At this point we know that the cell does not contain the cap center, and the cap
- // does not contain any cell vertex. The only way that they can intersect is if the
- // cap intersects the interior of some edge.
- sin2Angle := c.radius.Sin2()
- for k := 0; k < 4; k++ {
- edge := cell.Edge(k).Vector
- dot := c.center.Vector.Dot(edge)
- if dot > 0 {
- // The center is in the interior half-space defined by the edge. We do not need
- // to consider these edges, since if the cap intersects this edge then it also
- // intersects the edge on the opposite side of the cell, because the center is
- // not contained with the cell.
- continue
- }
-
- // The Norm2() factor is necessary because "edge" is not normalized.
- if dot*dot > sin2Angle*edge.Norm2() {
- return false
- }
-
- // Otherwise, the great circle containing this edge intersects the interior of the cap. We just
- // need to check whether the point of closest approach occurs between the two edge endpoints.
- dir := edge.Cross(c.center.Vector)
- if dir.Dot(vertices[k].Vector) < 0 && dir.Dot(vertices[(k+1)&3].Vector) > 0 {
- return true
- }
- }
- return false
-}
-
-// CellUnionBound computes a covering of the Cap. In general the covering
-// consists of at most 4 cells except for very large caps, which may need
-// up to 6 cells. The output is not sorted.
-func (c Cap) CellUnionBound() []CellID {
- // TODO(roberts): The covering could be made quite a bit tighter by mapping
- // the cap to a rectangle in (i,j)-space and finding a covering for that.
-
- // Find the maximum level such that the cap contains at most one cell vertex
- // and such that CellID.AppendVertexNeighbors() can be called.
- level := MinWidthMetric.MaxLevel(c.Radius().Radians()) - 1
-
- // If level < 0, more than three face cells are required.
- if level < 0 {
- cellIDs := make([]CellID, 6)
- for face := 0; face < 6; face++ {
- cellIDs[face] = CellIDFromFace(face)
- }
- return cellIDs
- }
- // The covering consists of the 4 cells at the given level that share the
- // cell vertex that is closest to the cap center.
- return cellIDFromPoint(c.center).VertexNeighbors(level)
-}
-
-// Centroid returns the true centroid of the cap multiplied by its surface area
-// The result lies on the ray from the origin through the cap's center, but it
-// is not unit length. Note that if you just want the "surface centroid", i.e.
-// the normalized result, then it is simpler to call Center.
-//
-// The reason for multiplying the result by the cap area is to make it
-// easier to compute the centroid of more complicated shapes. The centroid
-// of a union of disjoint regions can be computed simply by adding their
-// Centroid() results. Caveat: for caps that contain a single point
-// (i.e., zero radius), this method always returns the origin (0, 0, 0).
-// This is because shapes with no area don't affect the centroid of a
-// union whose total area is positive.
-func (c Cap) Centroid() Point {
- // From symmetry, the centroid of the cap must be somewhere on the line
- // from the origin to the center of the cap on the surface of the sphere.
- // When a sphere is divided into slices of constant thickness by a set of
- // parallel planes, all slices have the same surface area. This implies
- // that the radial component of the centroid is simply the midpoint of the
- // range of radial distances spanned by the cap. That is easily computed
- // from the cap height.
- if c.IsEmpty() {
- return Point{}
- }
- r := 1 - 0.5*c.Height()
- return Point{c.center.Mul(r * c.Area())}
-}
-
-// Union returns the smallest cap which encloses this cap and other.
-func (c Cap) Union(other Cap) Cap {
- // If the other cap is larger, swap c and other for the rest of the computations.
- if c.radius < other.radius {
- c, other = other, c
- }
-
- if c.IsFull() || other.IsEmpty() {
- return c
- }
-
- // TODO: This calculation would be more efficient using s1.ChordAngles.
- cRadius := c.Radius()
- otherRadius := other.Radius()
- distance := c.center.Distance(other.center)
- if cRadius >= distance+otherRadius {
- return c
- }
-
- resRadius := 0.5 * (distance + cRadius + otherRadius)
- resCenter := InterpolateAtDistance(0.5*(distance-cRadius+otherRadius), c.center, other.center)
- return CapFromCenterAngle(resCenter, resRadius)
-}
-
-// Encode encodes the Cap.
-func (c Cap) Encode(w io.Writer) error {
- e := &encoder{w: w}
- c.encode(e)
- return e.err
-}
-
-func (c Cap) encode(e *encoder) {
- e.writeFloat64(c.center.X)
- e.writeFloat64(c.center.Y)
- e.writeFloat64(c.center.Z)
- e.writeFloat64(float64(c.radius))
-}
-
-// Decode decodes the Cap.
-func (c *Cap) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- c.decode(d)
- return d.err
-}
-
-func (c *Cap) decode(d *decoder) {
- c.center.X = d.readFloat64()
- c.center.Y = d.readFloat64()
- c.center.Z = d.readFloat64()
- c.radius = s1.ChordAngle(d.readFloat64())
-}