summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/projections.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/projections.go')
-rw-r--r--vendor/github.com/golang/geo/s2/projections.go241
1 files changed, 0 insertions, 241 deletions
diff --git a/vendor/github.com/golang/geo/s2/projections.go b/vendor/github.com/golang/geo/s2/projections.go
deleted file mode 100644
index f7273609c..000000000
--- a/vendor/github.com/golang/geo/s2/projections.go
+++ /dev/null
@@ -1,241 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/r2"
- "github.com/golang/geo/s1"
-)
-
-// Projection defines an interface for different ways of mapping between s2 and r2 Points.
-// It can also define the coordinate wrapping behavior along each axis.
-type Projection interface {
- // Project converts a point on the sphere to a projected 2D point.
- Project(p Point) r2.Point
-
- // Unproject converts a projected 2D point to a point on the sphere.
- //
- // If wrapping is defined for a given axis (see below), then this method
- // should accept any real number for the corresponding coordinate.
- Unproject(p r2.Point) Point
-
- // FromLatLng is a convenience function equivalent to Project(LatLngToPoint(ll)),
- // but the implementation is more efficient.
- FromLatLng(ll LatLng) r2.Point
-
- // ToLatLng is a convenience function equivalent to LatLngFromPoint(Unproject(p)),
- // but the implementation is more efficient.
- ToLatLng(p r2.Point) LatLng
-
- // Interpolate returns the point obtained by interpolating the given
- // fraction of the distance along the line from A to B.
- // Fractions < 0 or > 1 result in extrapolation instead.
- Interpolate(f float64, a, b r2.Point) r2.Point
-
- // WrapDistance reports the coordinate wrapping distance along each axis.
- // If this value is non-zero for a given axis, the coordinates are assumed
- // to "wrap" with the given period. For example, if WrapDistance.Y == 360
- // then (x, y) and (x, y + 360) should map to the same Point.
- //
- // This information is used to ensure that edges takes the shortest path
- // between two given points. For example, if coordinates represent
- // (latitude, longitude) pairs in degrees and WrapDistance().Y == 360,
- // then the edge (5:179, 5:-179) would be interpreted as spanning 2 degrees
- // of longitude rather than 358 degrees.
- //
- // If a given axis does not wrap, its WrapDistance should be set to zero.
- WrapDistance() r2.Point
-
- // WrapDestination that wraps the coordinates of B if necessary in order to
- // obtain the shortest edge AB. For example, suppose that A = [170, 20],
- // B = [-170, 20], and the projection wraps so that [x, y] == [x + 360, y].
- // Then this function would return [190, 20] for point B (reducing the edge
- // length in the "x" direction from 340 to 20).
- WrapDestination(a, b r2.Point) r2.Point
-
- // We do not support implementations of this interface outside this package.
- privateInterface()
-}
-
-// PlateCarreeProjection defines the "plate carree" (square plate) projection,
-// which converts points on the sphere to (longitude, latitude) pairs.
-// Coordinates can be scaled so that they represent radians, degrees, etc, but
-// the projection is always centered around (latitude=0, longitude=0).
-//
-// Note that (x, y) coordinates are backwards compared to the usual (latitude,
-// longitude) ordering, in order to match the usual convention for graphs in
-// which "x" is horizontal and "y" is vertical.
-type PlateCarreeProjection struct {
- xWrap float64
- toRadians float64 // Multiplier to convert coordinates to radians.
- fromRadians float64 // Multiplier to convert coordinates from radians.
-}
-
-// NewPlateCarreeProjection constructs a plate carree projection where the
-// x-coordinates (lng) span [-xScale, xScale] and the y coordinates (lat)
-// span [-xScale/2, xScale/2]. For example if xScale==180 then the x
-// range is [-180, 180] and the y range is [-90, 90].
-//
-// By default coordinates are expressed in radians, i.e. the x range is
-// [-Pi, Pi] and the y range is [-Pi/2, Pi/2].
-func NewPlateCarreeProjection(xScale float64) Projection {
- return &PlateCarreeProjection{
- xWrap: 2 * xScale,
- toRadians: math.Pi / xScale,
- fromRadians: xScale / math.Pi,
- }
-}
-
-// Project converts a point on the sphere to a projected 2D point.
-func (p *PlateCarreeProjection) Project(pt Point) r2.Point {
- return p.FromLatLng(LatLngFromPoint(pt))
-}
-
-// Unproject converts a projected 2D point to a point on the sphere.
-func (p *PlateCarreeProjection) Unproject(pt r2.Point) Point {
- return PointFromLatLng(p.ToLatLng(pt))
-}
-
-// FromLatLng returns the LatLng projected into an R2 Point.
-func (p *PlateCarreeProjection) FromLatLng(ll LatLng) r2.Point {
- return r2.Point{
- X: p.fromRadians * ll.Lng.Radians(),
- Y: p.fromRadians * ll.Lat.Radians(),
- }
-}
-
-// ToLatLng returns the LatLng projected from the given R2 Point.
-func (p *PlateCarreeProjection) ToLatLng(pt r2.Point) LatLng {
- return LatLng{
- Lat: s1.Angle(p.toRadians * pt.Y),
- Lng: s1.Angle(p.toRadians * math.Remainder(pt.X, p.xWrap)),
- }
-}
-
-// Interpolate returns the point obtained by interpolating the given
-// fraction of the distance along the line from A to B.
-func (p *PlateCarreeProjection) Interpolate(f float64, a, b r2.Point) r2.Point {
- return a.Mul(1 - f).Add(b.Mul(f))
-}
-
-// WrapDistance reports the coordinate wrapping distance along each axis.
-func (p *PlateCarreeProjection) WrapDistance() r2.Point {
- return r2.Point{p.xWrap, 0}
-}
-
-// WrapDestination wraps the points if needed to get the shortest edge.
-func (p *PlateCarreeProjection) WrapDestination(a, b r2.Point) r2.Point {
- return wrapDestination(a, b, p.WrapDistance)
-}
-
-func (p *PlateCarreeProjection) privateInterface() {}
-
-// MercatorProjection defines the spherical Mercator projection. Google Maps
-// uses this projection together with WGS84 coordinates, in which case it is
-// known as the "Web Mercator" projection (see Wikipedia). This class makes
-// no assumptions regarding the coordinate system of its input points, but
-// simply applies the spherical Mercator projection to them.
-//
-// The Mercator projection is finite in width (x) but infinite in height (y).
-// "x" corresponds to longitude, and spans a finite range such as [-180, 180]
-// (with coordinate wrapping), while "y" is a function of latitude and spans
-// an infinite range. (As "y" coordinates get larger, points get closer to
-// the north pole but never quite reach it.) The north and south poles have
-// infinite "y" values. (Note that this will cause problems if you tessellate
-// a Mercator edge where one endpoint is a pole. If you need to do this, clip
-// the edge first so that the "y" coordinate is no more than about 5 * maxX.)
-type MercatorProjection struct {
- xWrap float64
- toRadians float64 // Multiplier to convert coordinates to radians.
- fromRadians float64 // Multiplier to convert coordinates from radians.
-}
-
-// NewMercatorProjection constructs a Mercator projection with the given maximum
-// longitude axis value corresponding to a range of [-maxLng, maxLng].
-// The horizontal and vertical axes are scaled equally.
-func NewMercatorProjection(maxLng float64) Projection {
- return &MercatorProjection{
- xWrap: 2 * maxLng,
- toRadians: math.Pi / maxLng,
- fromRadians: maxLng / math.Pi,
- }
-}
-
-// Project converts a point on the sphere to a projected 2D point.
-func (p *MercatorProjection) Project(pt Point) r2.Point {
- return p.FromLatLng(LatLngFromPoint(pt))
-}
-
-// Unproject converts a projected 2D point to a point on the sphere.
-func (p *MercatorProjection) Unproject(pt r2.Point) Point {
- return PointFromLatLng(p.ToLatLng(pt))
-}
-
-// FromLatLng returns the LatLng projected into an R2 Point.
-func (p *MercatorProjection) FromLatLng(ll LatLng) r2.Point {
- // This formula is more accurate near zero than the log(tan()) version.
- // Note that latitudes of +/- 90 degrees yield "y" values of +/- infinity.
- sinPhi := math.Sin(float64(ll.Lat))
- y := 0.5 * math.Log((1+sinPhi)/(1-sinPhi))
- return r2.Point{p.fromRadians * float64(ll.Lng), p.fromRadians * y}
-}
-
-// ToLatLng returns the LatLng projected from the given R2 Point.
-func (p *MercatorProjection) ToLatLng(pt r2.Point) LatLng {
- // This formula is more accurate near zero than the atan(exp()) version.
- x := p.toRadians * math.Remainder(pt.X, p.xWrap)
- k := math.Exp(2 * p.toRadians * pt.Y)
- var y float64
- if math.IsInf(k, 0) {
- y = math.Pi / 2
- } else {
- y = math.Asin((k - 1) / (k + 1))
- }
- return LatLng{s1.Angle(y), s1.Angle(x)}
-}
-
-// Interpolate returns the point obtained by interpolating the given
-// fraction of the distance along the line from A to B.
-func (p *MercatorProjection) Interpolate(f float64, a, b r2.Point) r2.Point {
- return a.Mul(1 - f).Add(b.Mul(f))
-}
-
-// WrapDistance reports the coordinate wrapping distance along each axis.
-func (p *MercatorProjection) WrapDistance() r2.Point {
- return r2.Point{p.xWrap, 0}
-}
-
-// WrapDestination wraps the points if needed to get the shortest edge.
-func (p *MercatorProjection) WrapDestination(a, b r2.Point) r2.Point {
- return wrapDestination(a, b, p.WrapDistance)
-}
-
-func (p *MercatorProjection) privateInterface() {}
-
-func wrapDestination(a, b r2.Point, wrapDistance func() r2.Point) r2.Point {
- wrap := wrapDistance()
- x := b.X
- y := b.Y
- // The code below ensures that "b" is unmodified unless wrapping is required.
- if wrap.X > 0 && math.Abs(x-a.X) > 0.5*wrap.X {
- x = a.X + math.Remainder(x-a.X, wrap.X)
- }
- if wrap.Y > 0 && math.Abs(y-a.Y) > 0.5*wrap.Y {
- y = a.Y + math.Remainder(y-a.Y, wrap.Y)
- }
- return r2.Point{x, y}
-}