summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/polyline.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/polyline.go')
-rw-r--r--vendor/github.com/golang/geo/s2/polyline.go589
1 files changed, 0 insertions, 589 deletions
diff --git a/vendor/github.com/golang/geo/s2/polyline.go b/vendor/github.com/golang/geo/s2/polyline.go
deleted file mode 100644
index 517968342..000000000
--- a/vendor/github.com/golang/geo/s2/polyline.go
+++ /dev/null
@@ -1,589 +0,0 @@
-// Copyright 2016 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-
- "github.com/golang/geo/s1"
-)
-
-// Polyline represents a sequence of zero or more vertices connected by
-// straight edges (geodesics). Edges of length 0 and 180 degrees are not
-// allowed, i.e. adjacent vertices should not be identical or antipodal.
-type Polyline []Point
-
-// PolylineFromLatLngs creates a new Polyline from the given LatLngs.
-func PolylineFromLatLngs(points []LatLng) *Polyline {
- p := make(Polyline, len(points))
- for k, v := range points {
- p[k] = PointFromLatLng(v)
- }
- return &p
-}
-
-// Reverse reverses the order of the Polyline vertices.
-func (p *Polyline) Reverse() {
- for i := 0; i < len(*p)/2; i++ {
- (*p)[i], (*p)[len(*p)-i-1] = (*p)[len(*p)-i-1], (*p)[i]
- }
-}
-
-// Length returns the length of this Polyline.
-func (p *Polyline) Length() s1.Angle {
- var length s1.Angle
-
- for i := 1; i < len(*p); i++ {
- length += (*p)[i-1].Distance((*p)[i])
- }
- return length
-}
-
-// Centroid returns the true centroid of the polyline multiplied by the length of the
-// polyline. The result is not unit length, so you may wish to normalize it.
-//
-// Scaling by the Polyline length makes it easy to compute the centroid
-// of several Polylines (by simply adding up their centroids).
-func (p *Polyline) Centroid() Point {
- var centroid Point
- for i := 1; i < len(*p); i++ {
- // The centroid (multiplied by length) is a vector toward the midpoint
- // of the edge, whose length is twice the sin of half the angle between
- // the two vertices. Defining theta to be this angle, we have:
- vSum := (*p)[i-1].Add((*p)[i].Vector) // Length == 2*cos(theta)
- vDiff := (*p)[i-1].Sub((*p)[i].Vector) // Length == 2*sin(theta)
-
- // Length == 2*sin(theta)
- centroid = Point{centroid.Add(vSum.Mul(math.Sqrt(vDiff.Norm2() / vSum.Norm2())))}
- }
- return centroid
-}
-
-// Equal reports whether the given Polyline is exactly the same as this one.
-func (p *Polyline) Equal(b *Polyline) bool {
- if len(*p) != len(*b) {
- return false
- }
- for i, v := range *p {
- if v != (*b)[i] {
- return false
- }
- }
-
- return true
-}
-
-// ApproxEqual reports whether two polylines have the same number of vertices,
-// and corresponding vertex pairs are separated by no more the standard margin.
-func (p *Polyline) ApproxEqual(o *Polyline) bool {
- return p.approxEqual(o, s1.Angle(epsilon))
-}
-
-// approxEqual reports whether two polylines are equal within the given margin.
-func (p *Polyline) approxEqual(o *Polyline, maxError s1.Angle) bool {
- if len(*p) != len(*o) {
- return false
- }
- for offset, val := range *p {
- if !val.approxEqual((*o)[offset], maxError) {
- return false
- }
- }
- return true
-}
-
-// CapBound returns the bounding Cap for this Polyline.
-func (p *Polyline) CapBound() Cap {
- return p.RectBound().CapBound()
-}
-
-// RectBound returns the bounding Rect for this Polyline.
-func (p *Polyline) RectBound() Rect {
- rb := NewRectBounder()
- for _, v := range *p {
- rb.AddPoint(v)
- }
- return rb.RectBound()
-}
-
-// ContainsCell reports whether this Polyline contains the given Cell. Always returns false
-// because "containment" is not numerically well-defined except at the Polyline vertices.
-func (p *Polyline) ContainsCell(cell Cell) bool {
- return false
-}
-
-// IntersectsCell reports whether this Polyline intersects the given Cell.
-func (p *Polyline) IntersectsCell(cell Cell) bool {
- if len(*p) == 0 {
- return false
- }
-
- // We only need to check whether the cell contains vertex 0 for correctness,
- // but these tests are cheap compared to edge crossings so we might as well
- // check all the vertices.
- for _, v := range *p {
- if cell.ContainsPoint(v) {
- return true
- }
- }
-
- cellVertices := []Point{
- cell.Vertex(0),
- cell.Vertex(1),
- cell.Vertex(2),
- cell.Vertex(3),
- }
-
- for j := 0; j < 4; j++ {
- crosser := NewChainEdgeCrosser(cellVertices[j], cellVertices[(j+1)&3], (*p)[0])
- for i := 1; i < len(*p); i++ {
- if crosser.ChainCrossingSign((*p)[i]) != DoNotCross {
- // There is a proper crossing, or two vertices were the same.
- return true
- }
- }
- }
- return false
-}
-
-// ContainsPoint returns false since Polylines are not closed.
-func (p *Polyline) ContainsPoint(point Point) bool {
- return false
-}
-
-// CellUnionBound computes a covering of the Polyline.
-func (p *Polyline) CellUnionBound() []CellID {
- return p.CapBound().CellUnionBound()
-}
-
-// NumEdges returns the number of edges in this shape.
-func (p *Polyline) NumEdges() int {
- if len(*p) == 0 {
- return 0
- }
- return len(*p) - 1
-}
-
-// Edge returns endpoints for the given edge index.
-func (p *Polyline) Edge(i int) Edge {
- return Edge{(*p)[i], (*p)[i+1]}
-}
-
-// ReferencePoint returns the default reference point with negative containment because Polylines are not closed.
-func (p *Polyline) ReferencePoint() ReferencePoint {
- return OriginReferencePoint(false)
-}
-
-// NumChains reports the number of contiguous edge chains in this Polyline.
-func (p *Polyline) NumChains() int {
- return minInt(1, p.NumEdges())
-}
-
-// Chain returns the i-th edge Chain in the Shape.
-func (p *Polyline) Chain(chainID int) Chain {
- return Chain{0, p.NumEdges()}
-}
-
-// ChainEdge returns the j-th edge of the i-th edge Chain.
-func (p *Polyline) ChainEdge(chainID, offset int) Edge {
- return Edge{(*p)[offset], (*p)[offset+1]}
-}
-
-// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge
-func (p *Polyline) ChainPosition(edgeID int) ChainPosition {
- return ChainPosition{0, edgeID}
-}
-
-// Dimension returns the dimension of the geometry represented by this Polyline.
-func (p *Polyline) Dimension() int { return 1 }
-
-// IsEmpty reports whether this shape contains no points.
-func (p *Polyline) IsEmpty() bool { return defaultShapeIsEmpty(p) }
-
-// IsFull reports whether this shape contains all points on the sphere.
-func (p *Polyline) IsFull() bool { return defaultShapeIsFull(p) }
-
-func (p *Polyline) typeTag() typeTag { return typeTagPolyline }
-
-func (p *Polyline) privateInterface() {}
-
-// findEndVertex reports the maximal end index such that the line segment between
-// the start index and this one such that the line segment between these two
-// vertices passes within the given tolerance of all interior vertices, in order.
-func findEndVertex(p Polyline, tolerance s1.Angle, index int) int {
- // The basic idea is to keep track of the "pie wedge" of angles
- // from the starting vertex such that a ray from the starting
- // vertex at that angle will pass through the discs of radius
- // tolerance centered around all vertices processed so far.
- //
- // First we define a coordinate frame for the tangent and normal
- // spaces at the starting vertex. Essentially this means picking
- // three orthonormal vectors X,Y,Z such that X and Y span the
- // tangent plane at the starting vertex, and Z is up. We use
- // the coordinate frame to define a mapping from 3D direction
- // vectors to a one-dimensional ray angle in the range (-π,
- // π]. The angle of a direction vector is computed by
- // transforming it into the X,Y,Z basis, and then calculating
- // atan2(y,x). This mapping allows us to represent a wedge of
- // angles as a 1D interval. Since the interval wraps around, we
- // represent it as an Interval, i.e. an interval on the unit
- // circle.
- origin := p[index]
- frame := getFrame(origin)
-
- // As we go along, we keep track of the current wedge of angles
- // and the distance to the last vertex (which must be
- // non-decreasing).
- currentWedge := s1.FullInterval()
- var lastDistance s1.Angle
-
- for index++; index < len(p); index++ {
- candidate := p[index]
- distance := origin.Distance(candidate)
-
- // We don't allow simplification to create edges longer than
- // 90 degrees, to avoid numeric instability as lengths
- // approach 180 degrees. We do need to allow for original
- // edges longer than 90 degrees, though.
- if distance > math.Pi/2 && lastDistance > 0 {
- break
- }
-
- // Vertices must be in increasing order along the ray, except
- // for the initial disc around the origin.
- if distance < lastDistance && lastDistance > tolerance {
- break
- }
-
- lastDistance = distance
-
- // Points that are within the tolerance distance of the origin
- // do not constrain the ray direction, so we can ignore them.
- if distance <= tolerance {
- continue
- }
-
- // If the current wedge of angles does not contain the angle
- // to this vertex, then stop right now. Note that the wedge
- // of possible ray angles is not necessarily empty yet, but we
- // can't continue unless we are willing to backtrack to the
- // last vertex that was contained within the wedge (since we
- // don't create new vertices). This would be more complicated
- // and also make the worst-case running time more than linear.
- direction := toFrame(frame, candidate)
- center := math.Atan2(direction.Y, direction.X)
- if !currentWedge.Contains(center) {
- break
- }
-
- // To determine how this vertex constrains the possible ray
- // angles, consider the triangle ABC where A is the origin, B
- // is the candidate vertex, and C is one of the two tangent
- // points between A and the spherical cap of radius
- // tolerance centered at B. Then from the spherical law of
- // sines, sin(a)/sin(A) = sin(c)/sin(C), where a and c are
- // the lengths of the edges opposite A and C. In our case C
- // is a 90 degree angle, therefore A = asin(sin(a) / sin(c)).
- // Angle A is the half-angle of the allowable wedge.
- halfAngle := math.Asin(math.Sin(tolerance.Radians()) / math.Sin(distance.Radians()))
- target := s1.IntervalFromPointPair(center, center).Expanded(halfAngle)
- currentWedge = currentWedge.Intersection(target)
- }
-
- // We break out of the loop when we reach a vertex index that
- // can't be included in the line segment, so back up by one
- // vertex.
- return index - 1
-}
-
-// SubsampleVertices returns a subsequence of vertex indices such that the
-// polyline connecting these vertices is never further than the given tolerance from
-// the original polyline. Provided the first and last vertices are distinct,
-// they are always preserved; if they are not, the subsequence may contain
-// only a single index.
-//
-// Some useful properties of the algorithm:
-//
-// - It runs in linear time.
-//
-// - The output always represents a valid polyline. In particular, adjacent
-// output vertices are never identical or antipodal.
-//
-// - The method is not optimal, but it tends to produce 2-3% fewer
-// vertices than the Douglas-Peucker algorithm with the same tolerance.
-//
-// - The output is parametrically equivalent to the original polyline to
-// within the given tolerance. For example, if a polyline backtracks on
-// itself and then proceeds onwards, the backtracking will be preserved
-// (to within the given tolerance). This is different than the
-// Douglas-Peucker algorithm which only guarantees geometric equivalence.
-func (p *Polyline) SubsampleVertices(tolerance s1.Angle) []int {
- var result []int
-
- if len(*p) < 1 {
- return result
- }
-
- result = append(result, 0)
- clampedTolerance := s1.Angle(math.Max(tolerance.Radians(), 0))
-
- for index := 0; index+1 < len(*p); {
- nextIndex := findEndVertex(*p, clampedTolerance, index)
- // Don't create duplicate adjacent vertices.
- if (*p)[nextIndex] != (*p)[index] {
- result = append(result, nextIndex)
- }
- index = nextIndex
- }
-
- return result
-}
-
-// Encode encodes the Polyline.
-func (p Polyline) Encode(w io.Writer) error {
- e := &encoder{w: w}
- p.encode(e)
- return e.err
-}
-
-func (p Polyline) encode(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeUint32(uint32(len(p)))
- for _, v := range p {
- e.writeFloat64(v.X)
- e.writeFloat64(v.Y)
- e.writeFloat64(v.Z)
- }
-}
-
-// Decode decodes the polyline.
-func (p *Polyline) Decode(r io.Reader) error {
- d := decoder{r: asByteReader(r)}
- p.decode(d)
- return d.err
-}
-
-func (p *Polyline) decode(d decoder) {
- version := d.readInt8()
- if d.err != nil {
- return
- }
- if int(version) != int(encodingVersion) {
- d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion)
- return
- }
- nvertices := d.readUint32()
- if d.err != nil {
- return
- }
- if nvertices > maxEncodedVertices {
- d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices)
- return
- }
- *p = make([]Point, nvertices)
- for i := range *p {
- (*p)[i].X = d.readFloat64()
- (*p)[i].Y = d.readFloat64()
- (*p)[i].Z = d.readFloat64()
- }
-}
-
-// Project returns a point on the polyline that is closest to the given point,
-// and the index of the next vertex after the projected point. The
-// value of that index is always in the range [1, len(polyline)].
-// The polyline must not be empty.
-func (p *Polyline) Project(point Point) (Point, int) {
- if len(*p) == 1 {
- // If there is only one vertex, it is always closest to any given point.
- return (*p)[0], 1
- }
-
- // Initial value larger than any possible distance on the unit sphere.
- minDist := 10 * s1.Radian
- minIndex := -1
-
- // Find the line segment in the polyline that is closest to the point given.
- for i := 1; i < len(*p); i++ {
- if dist := DistanceFromSegment(point, (*p)[i-1], (*p)[i]); dist < minDist {
- minDist = dist
- minIndex = i
- }
- }
-
- // Compute the point on the segment found that is closest to the point given.
- closest := Project(point, (*p)[minIndex-1], (*p)[minIndex])
- if closest == (*p)[minIndex] {
- minIndex++
- }
-
- return closest, minIndex
-}
-
-// IsOnRight reports whether the point given is on the right hand side of the
-// polyline, using a naive definition of "right-hand-sideness" where the point
-// is on the RHS of the polyline iff the point is on the RHS of the line segment
-// in the polyline which it is closest to.
-// The polyline must have at least 2 vertices.
-func (p *Polyline) IsOnRight(point Point) bool {
- // If the closest point C is an interior vertex of the polyline, let B and D
- // be the previous and next vertices. The given point P is on the right of
- // the polyline (locally) if B, P, D are ordered CCW around vertex C.
- closest, next := p.Project(point)
- if closest == (*p)[next-1] && next > 1 && next < len(*p) {
- if point == (*p)[next-1] {
- // Polyline vertices are not on the RHS.
- return false
- }
- return OrderedCCW((*p)[next-2], point, (*p)[next], (*p)[next-1])
- }
- // Otherwise, the closest point C is incident to exactly one polyline edge.
- // We test the point P against that edge.
- if next == len(*p) {
- next--
- }
- return Sign(point, (*p)[next], (*p)[next-1])
-}
-
-// Validate checks whether this is a valid polyline or not.
-func (p *Polyline) Validate() error {
- // All vertices must be unit length.
- for i, pt := range *p {
- if !pt.IsUnit() {
- return fmt.Errorf("vertex %d is not unit length", i)
- }
- }
-
- // Adjacent vertices must not be identical or antipodal.
- for i := 1; i < len(*p); i++ {
- prev, cur := (*p)[i-1], (*p)[i]
- if prev == cur {
- return fmt.Errorf("vertices %d and %d are identical", i-1, i)
- }
- if prev == (Point{cur.Mul(-1)}) {
- return fmt.Errorf("vertices %d and %d are antipodal", i-1, i)
- }
- }
-
- return nil
-}
-
-// Intersects reports whether this polyline intersects the given polyline. If
-// the polylines share a vertex they are considered to be intersecting. When a
-// polyline endpoint is the only intersection with the other polyline, the
-// function may return true or false arbitrarily.
-//
-// The running time is quadratic in the number of vertices.
-func (p *Polyline) Intersects(o *Polyline) bool {
- if len(*p) == 0 || len(*o) == 0 {
- return false
- }
-
- if !p.RectBound().Intersects(o.RectBound()) {
- return false
- }
-
- // TODO(roberts): Use ShapeIndex here.
- for i := 1; i < len(*p); i++ {
- crosser := NewChainEdgeCrosser((*p)[i-1], (*p)[i], (*o)[0])
- for j := 1; j < len(*o); j++ {
- if crosser.ChainCrossingSign((*o)[j]) != DoNotCross {
- return true
- }
- }
- }
- return false
-}
-
-// Interpolate returns the point whose distance from vertex 0 along the polyline is
-// the given fraction of the polyline's total length, and the index of
-// the next vertex after the interpolated point P. Fractions less than zero
-// or greater than one are clamped. The return value is unit length. The cost of
-// this function is currently linear in the number of vertices.
-//
-// This method allows the caller to easily construct a given suffix of the
-// polyline by concatenating P with the polyline vertices starting at that next
-// vertex. Note that P is guaranteed to be different than the point at the next
-// vertex, so this will never result in a duplicate vertex.
-//
-// The polyline must not be empty. Note that if fraction >= 1.0, then the next
-// vertex will be set to len(p) (indicating that no vertices from the polyline
-// need to be appended). The value of the next vertex is always between 1 and
-// len(p).
-//
-// This method can also be used to construct a prefix of the polyline, by
-// taking the polyline vertices up to next vertex-1 and appending the
-// returned point P if it is different from the last vertex (since in this
-// case there is no guarantee of distinctness).
-func (p *Polyline) Interpolate(fraction float64) (Point, int) {
- // We intentionally let the (fraction >= 1) case fall through, since
- // we need to handle it in the loop below in any case because of
- // possible roundoff errors.
- if fraction <= 0 {
- return (*p)[0], 1
- }
- target := s1.Angle(fraction) * p.Length()
-
- for i := 1; i < len(*p); i++ {
- length := (*p)[i-1].Distance((*p)[i])
- if target < length {
- // This interpolates with respect to arc length rather than
- // straight-line distance, and produces a unit-length result.
- result := InterpolateAtDistance(target, (*p)[i-1], (*p)[i])
-
- // It is possible that (result == vertex(i)) due to rounding errors.
- if result == (*p)[i] {
- return result, i + 1
- }
- return result, i
- }
- target -= length
- }
-
- return (*p)[len(*p)-1], len(*p)
-}
-
-// Uninterpolate is the inverse operation of Interpolate. Given a point on the
-// polyline, it returns the ratio of the distance to the point from the
-// beginning of the polyline over the length of the polyline. The return
-// value is always betwen 0 and 1 inclusive.
-//
-// The polyline should not be empty. If it has fewer than 2 vertices, the
-// return value is zero.
-func (p *Polyline) Uninterpolate(point Point, nextVertex int) float64 {
- if len(*p) < 2 {
- return 0
- }
-
- var sum s1.Angle
- for i := 1; i < nextVertex; i++ {
- sum += (*p)[i-1].Distance((*p)[i])
- }
- lengthToPoint := sum + (*p)[nextVertex-1].Distance(point)
- for i := nextVertex; i < len(*p); i++ {
- sum += (*p)[i-1].Distance((*p)[i])
- }
- // The ratio can be greater than 1.0 due to rounding errors or because the
- // point is not exactly on the polyline.
- return minFloat64(1.0, float64(lengthToPoint/sum))
-}
-
-// TODO(roberts): Differences from C++.
-// NearlyCoversPolyline
-// InitToSnapped
-// InitToSimplified
-// SnapLevel
-// encode/decode compressed