summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/point.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/point.go')
-rw-r--r--vendor/github.com/golang/geo/s2/point.go258
1 files changed, 0 insertions, 258 deletions
diff --git a/vendor/github.com/golang/geo/s2/point.go b/vendor/github.com/golang/geo/s2/point.go
deleted file mode 100644
index 89e7ae0ed..000000000
--- a/vendor/github.com/golang/geo/s2/point.go
+++ /dev/null
@@ -1,258 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
- "sort"
-
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// Point represents a point on the unit sphere as a normalized 3D vector.
-// Fields should be treated as read-only. Use one of the factory methods for creation.
-type Point struct {
- r3.Vector
-}
-
-// sortPoints sorts the slice of Points in place.
-func sortPoints(e []Point) {
- sort.Sort(points(e))
-}
-
-// points implements the Sort interface for slices of Point.
-type points []Point
-
-func (p points) Len() int { return len(p) }
-func (p points) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
-func (p points) Less(i, j int) bool { return p[i].Cmp(p[j].Vector) == -1 }
-
-// PointFromCoords creates a new normalized point from coordinates.
-//
-// This always returns a valid point. If the given coordinates can not be normalized
-// the origin point will be returned.
-//
-// This behavior is different from the C++ construction of a S2Point from coordinates
-// (i.e. S2Point(x, y, z)) in that in C++ they do not Normalize.
-func PointFromCoords(x, y, z float64) Point {
- if x == 0 && y == 0 && z == 0 {
- return OriginPoint()
- }
- return Point{r3.Vector{x, y, z}.Normalize()}
-}
-
-// OriginPoint returns a unique "origin" on the sphere for operations that need a fixed
-// reference point. In particular, this is the "point at infinity" used for
-// point-in-polygon testing (by counting the number of edge crossings).
-//
-// It should *not* be a point that is commonly used in edge tests in order
-// to avoid triggering code to handle degenerate cases (this rules out the
-// north and south poles). It should also not be on the boundary of any
-// low-level S2Cell for the same reason.
-func OriginPoint() Point {
- return Point{r3.Vector{-0.0099994664350250197, 0.0025924542609324121, 0.99994664350250195}}
-}
-
-// PointCross returns a Point that is orthogonal to both p and op. This is similar to
-// p.Cross(op) (the true cross product) except that it does a better job of
-// ensuring orthogonality when the Point is nearly parallel to op, it returns
-// a non-zero result even when p == op or p == -op and the result is a Point.
-//
-// It satisfies the following properties (f == PointCross):
-//
-// (1) f(p, op) != 0 for all p, op
-// (2) f(op,p) == -f(p,op) unless p == op or p == -op
-// (3) f(-p,op) == -f(p,op) unless p == op or p == -op
-// (4) f(p,-op) == -f(p,op) unless p == op or p == -op
-func (p Point) PointCross(op Point) Point {
- // NOTE(dnadasi): In the C++ API the equivalent method here was known as "RobustCrossProd",
- // but PointCross more accurately describes how this method is used.
- x := p.Add(op.Vector).Cross(op.Sub(p.Vector))
-
- // Compare exactly to the 0 vector.
- if x == (r3.Vector{}) {
- // The only result that makes sense mathematically is to return zero, but
- // we find it more convenient to return an arbitrary orthogonal vector.
- return Point{p.Ortho()}
- }
-
- return Point{x}
-}
-
-// OrderedCCW returns true if the edges OA, OB, and OC are encountered in that
-// order while sweeping CCW around the point O.
-//
-// You can think of this as testing whether A <= B <= C with respect to the
-// CCW ordering around O that starts at A, or equivalently, whether B is
-// contained in the range of angles (inclusive) that starts at A and extends
-// CCW to C. Properties:
-//
-// (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b
-// (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c
-// (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c
-// (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true
-// (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false
-func OrderedCCW(a, b, c, o Point) bool {
- sum := 0
- if RobustSign(b, o, a) != Clockwise {
- sum++
- }
- if RobustSign(c, o, b) != Clockwise {
- sum++
- }
- if RobustSign(a, o, c) == CounterClockwise {
- sum++
- }
- return sum >= 2
-}
-
-// Distance returns the angle between two points.
-func (p Point) Distance(b Point) s1.Angle {
- return p.Vector.Angle(b.Vector)
-}
-
-// ApproxEqual reports whether the two points are similar enough to be equal.
-func (p Point) ApproxEqual(other Point) bool {
- return p.approxEqual(other, s1.Angle(epsilon))
-}
-
-// approxEqual reports whether the two points are within the given epsilon.
-func (p Point) approxEqual(other Point, eps s1.Angle) bool {
- return p.Vector.Angle(other.Vector) <= eps
-}
-
-// ChordAngleBetweenPoints constructs a ChordAngle corresponding to the distance
-// between the two given points. The points must be unit length.
-func ChordAngleBetweenPoints(x, y Point) s1.ChordAngle {
- return s1.ChordAngle(math.Min(4.0, x.Sub(y.Vector).Norm2()))
-}
-
-// regularPoints generates a slice of points shaped as a regular polygon with
-// the numVertices vertices, all located on a circle of the specified angular radius
-// around the center. The radius is the actual distance from center to each vertex.
-func regularPoints(center Point, radius s1.Angle, numVertices int) []Point {
- return regularPointsForFrame(getFrame(center), radius, numVertices)
-}
-
-// regularPointsForFrame generates a slice of points shaped as a regular polygon
-// with numVertices vertices, all on a circle of the specified angular radius around
-// the center. The radius is the actual distance from the center to each vertex.
-func regularPointsForFrame(frame matrix3x3, radius s1.Angle, numVertices int) []Point {
- // We construct the loop in the given frame coordinates, with the center at
- // (0, 0, 1). For a loop of radius r, the loop vertices have the form
- // (x, y, z) where x^2 + y^2 = sin(r) and z = cos(r). The distance on the
- // sphere (arc length) from each vertex to the center is acos(cos(r)) = r.
- z := math.Cos(radius.Radians())
- r := math.Sin(radius.Radians())
- radianStep := 2 * math.Pi / float64(numVertices)
- var vertices []Point
-
- for i := 0; i < numVertices; i++ {
- angle := float64(i) * radianStep
- p := Point{r3.Vector{r * math.Cos(angle), r * math.Sin(angle), z}}
- vertices = append(vertices, Point{fromFrame(frame, p).Normalize()})
- }
-
- return vertices
-}
-
-// CapBound returns a bounding cap for this point.
-func (p Point) CapBound() Cap {
- return CapFromPoint(p)
-}
-
-// RectBound returns a bounding latitude-longitude rectangle from this point.
-func (p Point) RectBound() Rect {
- return RectFromLatLng(LatLngFromPoint(p))
-}
-
-// ContainsCell returns false as Points do not contain any other S2 types.
-func (p Point) ContainsCell(c Cell) bool { return false }
-
-// IntersectsCell reports whether this Point intersects the given cell.
-func (p Point) IntersectsCell(c Cell) bool {
- return c.ContainsPoint(p)
-}
-
-// ContainsPoint reports if this Point contains the other Point.
-// (This method is named to satisfy the Region interface.)
-func (p Point) ContainsPoint(other Point) bool {
- return p.Contains(other)
-}
-
-// CellUnionBound computes a covering of the Point.
-func (p Point) CellUnionBound() []CellID {
- return p.CapBound().CellUnionBound()
-}
-
-// Contains reports if this Point contains the other Point.
-// (This method matches all other s2 types where the reflexive Contains
-// method does not contain the type's name.)
-func (p Point) Contains(other Point) bool { return p == other }
-
-// Encode encodes the Point.
-func (p Point) Encode(w io.Writer) error {
- e := &encoder{w: w}
- p.encode(e)
- return e.err
-}
-
-func (p Point) encode(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeFloat64(p.X)
- e.writeFloat64(p.Y)
- e.writeFloat64(p.Z)
-}
-
-// Decode decodes the Point.
-func (p *Point) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- p.decode(d)
- return d.err
-}
-
-func (p *Point) decode(d *decoder) {
- version := d.readInt8()
- if d.err != nil {
- return
- }
- if version != encodingVersion {
- d.err = fmt.Errorf("only version %d is supported", encodingVersion)
- return
- }
- p.X = d.readFloat64()
- p.Y = d.readFloat64()
- p.Z = d.readFloat64()
-}
-
-// Rotate the given point about the given axis by the given angle. p and
-// axis must be unit length; angle has no restrictions (e.g., it can be
-// positive, negative, greater than 360 degrees, etc).
-func Rotate(p, axis Point, angle s1.Angle) Point {
- // Let M be the plane through P that is perpendicular to axis, and let
- // center be the point where M intersects axis. We construct a
- // right-handed orthogonal frame (dx, dy, center) such that dx is the
- // vector from center to P, and dy has the same length as dx. The
- // result can then be expressed as (cos(angle)*dx + sin(angle)*dy + center).
- center := axis.Mul(p.Dot(axis.Vector))
- dx := p.Sub(center)
- dy := axis.Cross(p.Vector)
- // Mathematically the result is unit length, but normalization is necessary
- // to ensure that numerical errors don't accumulate.
- return Point{dx.Mul(math.Cos(angle.Radians())).Add(dy.Mul(math.Sin(angle.Radians()))).Add(center).Normalize()}
-}