1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"sync"
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type sumValue[N int64 | float64] struct {
n N
res FilteredExemplarReservoir[N]
attrs attribute.Set
}
// valueMap is the storage for sums.
type valueMap[N int64 | float64] struct {
sync.Mutex
newRes func(attribute.Set) FilteredExemplarReservoir[N]
limit limiter[sumValue[N]]
values map[attribute.Distinct]sumValue[N]
}
func newValueMap[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *valueMap[N] {
return &valueMap[N]{
newRes: r,
limit: newLimiter[sumValue[N]](limit),
values: make(map[attribute.Distinct]sumValue[N]),
}
}
func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
s.Lock()
defer s.Unlock()
attr := s.limit.Attributes(fltrAttr, s.values)
v, ok := s.values[attr.Equivalent()]
if !ok {
v.res = s.newRes(attr)
}
v.attrs = attr
v.n += value
v.res.Offer(ctx, value, droppedAttr)
s.values[attr.Equivalent()] = v
}
// newSum returns an aggregator that summarizes a set of measurements as their
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
// the measurements were made in.
func newSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *sum[N] {
return &sum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
start: now(),
}
}
// sum summarizes a set of measurements made as their arithmetic sum.
type sum[N int64 | float64] struct {
*valueMap[N]
monotonic bool
start time.Time
}
func (s *sum[N]) delta(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
// use the zero-value sData and hope for better alignment next cycle.
sData, _ := (*dest).(metricdata.Sum[N])
sData.Temporality = metricdata.DeltaTemporality
sData.IsMonotonic = s.monotonic
s.Lock()
defer s.Unlock()
n := len(s.values)
dPts := reset(sData.DataPoints, n, n)
var i int
for _, val := range s.values {
dPts[i].Attributes = val.attrs
dPts[i].StartTime = s.start
dPts[i].Time = t
dPts[i].Value = val.n
collectExemplars(&dPts[i].Exemplars, val.res.Collect)
i++
}
// Do not report stale values.
clear(s.values)
// The delta collection cycle resets.
s.start = t
sData.DataPoints = dPts
*dest = sData
return n
}
func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
// use the zero-value sData and hope for better alignment next cycle.
sData, _ := (*dest).(metricdata.Sum[N])
sData.Temporality = metricdata.CumulativeTemporality
sData.IsMonotonic = s.monotonic
s.Lock()
defer s.Unlock()
n := len(s.values)
dPts := reset(sData.DataPoints, n, n)
var i int
for _, value := range s.values {
dPts[i].Attributes = value.attrs
dPts[i].StartTime = s.start
dPts[i].Time = t
dPts[i].Value = value.n
collectExemplars(&dPts[i].Exemplars, value.res.Collect)
// TODO (#3006): This will use an unbounded amount of memory if there
// are unbounded number of attribute sets being aggregated. Attribute
// sets that become "stale" need to be forgotten so this will not
// overload the system.
i++
}
sData.DataPoints = dPts
*dest = sData
return n
}
// newPrecomputedSum returns an aggregator that summarizes a set of
// observations as their arithmetic sum. Each sum is scoped by attributes and
// the aggregation cycle the measurements were made in.
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *precomputedSum[N] {
return &precomputedSum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
start: now(),
}
}
// precomputedSum summarizes a set of observations as their arithmetic sum.
type precomputedSum[N int64 | float64] struct {
*valueMap[N]
monotonic bool
start time.Time
reported map[attribute.Distinct]N
}
func (s *precomputedSum[N]) delta(dest *metricdata.Aggregation) int {
t := now()
newReported := make(map[attribute.Distinct]N)
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
// use the zero-value sData and hope for better alignment next cycle.
sData, _ := (*dest).(metricdata.Sum[N])
sData.Temporality = metricdata.DeltaTemporality
sData.IsMonotonic = s.monotonic
s.Lock()
defer s.Unlock()
n := len(s.values)
dPts := reset(sData.DataPoints, n, n)
var i int
for key, value := range s.values {
delta := value.n - s.reported[key]
dPts[i].Attributes = value.attrs
dPts[i].StartTime = s.start
dPts[i].Time = t
dPts[i].Value = delta
collectExemplars(&dPts[i].Exemplars, value.res.Collect)
newReported[key] = value.n
i++
}
// Unused attribute sets do not report.
clear(s.values)
s.reported = newReported
// The delta collection cycle resets.
s.start = t
sData.DataPoints = dPts
*dest = sData
return n
}
func (s *precomputedSum[N]) cumulative(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
// use the zero-value sData and hope for better alignment next cycle.
sData, _ := (*dest).(metricdata.Sum[N])
sData.Temporality = metricdata.CumulativeTemporality
sData.IsMonotonic = s.monotonic
s.Lock()
defer s.Unlock()
n := len(s.values)
dPts := reset(sData.DataPoints, n, n)
var i int
for _, val := range s.values {
dPts[i].Attributes = val.attrs
dPts[i].StartTime = s.start
dPts[i].Time = t
dPts[i].Value = val.n
collectExemplars(&dPts[i].Exemplars, val.res.Collect)
i++
}
// Unused attribute sets do not report.
clear(s.values)
sData.DataPoints = dPts
*dest = sData
return n
}
|