diff options
Diffstat (limited to 'vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go')
-rw-r--r-- | vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go | 17 |
1 files changed, 8 insertions, 9 deletions
diff --git a/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go b/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go index 891366922..8e132ad61 100644 --- a/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go +++ b/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go @@ -9,25 +9,24 @@ import ( "time" "go.opentelemetry.io/otel/attribute" - "go.opentelemetry.io/otel/sdk/metric/internal/exemplar" "go.opentelemetry.io/otel/sdk/metric/metricdata" ) type sumValue[N int64 | float64] struct { n N - res exemplar.FilteredReservoir[N] + res FilteredExemplarReservoir[N] attrs attribute.Set } // valueMap is the storage for sums. type valueMap[N int64 | float64] struct { sync.Mutex - newRes func() exemplar.FilteredReservoir[N] + newRes func(attribute.Set) FilteredExemplarReservoir[N] limit limiter[sumValue[N]] values map[attribute.Distinct]sumValue[N] } -func newValueMap[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *valueMap[N] { +func newValueMap[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *valueMap[N] { return &valueMap[N]{ newRes: r, limit: newLimiter[sumValue[N]](limit), @@ -42,7 +41,7 @@ func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.S attr := s.limit.Attributes(fltrAttr, s.values) v, ok := s.values[attr.Equivalent()] if !ok { - v.res = s.newRes() + v.res = s.newRes(attr) } v.attrs = attr @@ -55,7 +54,7 @@ func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.S // newSum returns an aggregator that summarizes a set of measurements as their // arithmetic sum. Each sum is scoped by attributes and the aggregation cycle // the measurements were made in. -func newSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *sum[N] { +func newSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *sum[N] { return &sum[N]{ valueMap: newValueMap[N](limit, r), monotonic: monotonic, @@ -142,9 +141,9 @@ func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int { } // newPrecomputedSum returns an aggregator that summarizes a set of -// observatrions as their arithmetic sum. Each sum is scoped by attributes and +// observations as their arithmetic sum. Each sum is scoped by attributes and // the aggregation cycle the measurements were made in. -func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *precomputedSum[N] { +func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *precomputedSum[N] { return &precomputedSum[N]{ valueMap: newValueMap[N](limit, r), monotonic: monotonic, @@ -152,7 +151,7 @@ func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() ex } } -// precomputedSum summarizes a set of observatrions as their arithmetic sum. +// precomputedSum summarizes a set of observations as their arithmetic sum. type precomputedSum[N int64 | float64] struct { *valueMap[N] |