summaryrefslogtreecommitdiff
path: root/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go')
-rw-r--r--vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go17
1 files changed, 8 insertions, 9 deletions
diff --git a/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go b/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
index 891366922..8e132ad61 100644
--- a/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
+++ b/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
@@ -9,25 +9,24 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
- "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type sumValue[N int64 | float64] struct {
n N
- res exemplar.FilteredReservoir[N]
+ res FilteredExemplarReservoir[N]
attrs attribute.Set
}
// valueMap is the storage for sums.
type valueMap[N int64 | float64] struct {
sync.Mutex
- newRes func() exemplar.FilteredReservoir[N]
+ newRes func(attribute.Set) FilteredExemplarReservoir[N]
limit limiter[sumValue[N]]
values map[attribute.Distinct]sumValue[N]
}
-func newValueMap[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *valueMap[N] {
+func newValueMap[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *valueMap[N] {
return &valueMap[N]{
newRes: r,
limit: newLimiter[sumValue[N]](limit),
@@ -42,7 +41,7 @@ func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.S
attr := s.limit.Attributes(fltrAttr, s.values)
v, ok := s.values[attr.Equivalent()]
if !ok {
- v.res = s.newRes()
+ v.res = s.newRes(attr)
}
v.attrs = attr
@@ -55,7 +54,7 @@ func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.S
// newSum returns an aggregator that summarizes a set of measurements as their
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
// the measurements were made in.
-func newSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *sum[N] {
+func newSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *sum[N] {
return &sum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
@@ -142,9 +141,9 @@ func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
}
// newPrecomputedSum returns an aggregator that summarizes a set of
-// observatrions as their arithmetic sum. Each sum is scoped by attributes and
+// observations as their arithmetic sum. Each sum is scoped by attributes and
// the aggregation cycle the measurements were made in.
-func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *precomputedSum[N] {
+func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *precomputedSum[N] {
return &precomputedSum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
@@ -152,7 +151,7 @@ func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() ex
}
}
-// precomputedSum summarizes a set of observatrions as their arithmetic sum.
+// precomputedSum summarizes a set of observations as their arithmetic sum.
type precomputedSum[N int64 | float64] struct {
*valueMap[N]