summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/crypto/ssh/keys.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/crypto/ssh/keys.go')
-rw-r--r--vendor/golang.org/x/crypto/ssh/keys.go1778
1 files changed, 0 insertions, 1778 deletions
diff --git a/vendor/golang.org/x/crypto/ssh/keys.go b/vendor/golang.org/x/crypto/ssh/keys.go
deleted file mode 100644
index 98e6706d5..000000000
--- a/vendor/golang.org/x/crypto/ssh/keys.go
+++ /dev/null
@@ -1,1778 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package ssh
-
-import (
- "bytes"
- "crypto"
- "crypto/aes"
- "crypto/cipher"
- "crypto/dsa"
- "crypto/ecdsa"
- "crypto/ed25519"
- "crypto/elliptic"
- "crypto/md5"
- "crypto/rand"
- "crypto/rsa"
- "crypto/sha256"
- "crypto/x509"
- "encoding/asn1"
- "encoding/base64"
- "encoding/binary"
- "encoding/hex"
- "encoding/pem"
- "errors"
- "fmt"
- "io"
- "math/big"
- "strings"
-
- "golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
-)
-
-// Public key algorithms names. These values can appear in PublicKey.Type,
-// ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner
-// arguments.
-const (
- KeyAlgoRSA = "ssh-rsa"
- KeyAlgoDSA = "ssh-dss"
- KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"
- KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
- KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"
- KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
- KeyAlgoED25519 = "ssh-ed25519"
- KeyAlgoSKED25519 = "sk-ssh-ed25519@openssh.com"
-
- // KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not
- // public key formats, so they can't appear as a PublicKey.Type. The
- // corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2.
- KeyAlgoRSASHA256 = "rsa-sha2-256"
- KeyAlgoRSASHA512 = "rsa-sha2-512"
-)
-
-const (
- // Deprecated: use KeyAlgoRSA.
- SigAlgoRSA = KeyAlgoRSA
- // Deprecated: use KeyAlgoRSASHA256.
- SigAlgoRSASHA2256 = KeyAlgoRSASHA256
- // Deprecated: use KeyAlgoRSASHA512.
- SigAlgoRSASHA2512 = KeyAlgoRSASHA512
-)
-
-// parsePubKey parses a public key of the given algorithm.
-// Use ParsePublicKey for keys with prepended algorithm.
-func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
- switch algo {
- case KeyAlgoRSA:
- return parseRSA(in)
- case KeyAlgoDSA:
- return parseDSA(in)
- case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
- return parseECDSA(in)
- case KeyAlgoSKECDSA256:
- return parseSKECDSA(in)
- case KeyAlgoED25519:
- return parseED25519(in)
- case KeyAlgoSKED25519:
- return parseSKEd25519(in)
- case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
- cert, err := parseCert(in, certKeyAlgoNames[algo])
- if err != nil {
- return nil, nil, err
- }
- return cert, nil, nil
- }
- return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
-}
-
-// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
-// (see sshd(8) manual page) once the options and key type fields have been
-// removed.
-func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
- in = bytes.TrimSpace(in)
-
- i := bytes.IndexAny(in, " \t")
- if i == -1 {
- i = len(in)
- }
- base64Key := in[:i]
-
- key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
- n, err := base64.StdEncoding.Decode(key, base64Key)
- if err != nil {
- return nil, "", err
- }
- key = key[:n]
- out, err = ParsePublicKey(key)
- if err != nil {
- return nil, "", err
- }
- comment = string(bytes.TrimSpace(in[i:]))
- return out, comment, nil
-}
-
-// ParseKnownHosts parses an entry in the format of the known_hosts file.
-//
-// The known_hosts format is documented in the sshd(8) manual page. This
-// function will parse a single entry from in. On successful return, marker
-// will contain the optional marker value (i.e. "cert-authority" or "revoked")
-// or else be empty, hosts will contain the hosts that this entry matches,
-// pubKey will contain the public key and comment will contain any trailing
-// comment at the end of the line. See the sshd(8) manual page for the various
-// forms that a host string can take.
-//
-// The unparsed remainder of the input will be returned in rest. This function
-// can be called repeatedly to parse multiple entries.
-//
-// If no entries were found in the input then err will be io.EOF. Otherwise a
-// non-nil err value indicates a parse error.
-func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
- for len(in) > 0 {
- end := bytes.IndexByte(in, '\n')
- if end != -1 {
- rest = in[end+1:]
- in = in[:end]
- } else {
- rest = nil
- }
-
- end = bytes.IndexByte(in, '\r')
- if end != -1 {
- in = in[:end]
- }
-
- in = bytes.TrimSpace(in)
- if len(in) == 0 || in[0] == '#' {
- in = rest
- continue
- }
-
- i := bytes.IndexAny(in, " \t")
- if i == -1 {
- in = rest
- continue
- }
-
- // Strip out the beginning of the known_host key.
- // This is either an optional marker or a (set of) hostname(s).
- keyFields := bytes.Fields(in)
- if len(keyFields) < 3 || len(keyFields) > 5 {
- return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
- }
-
- // keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
- // list of hosts
- marker := ""
- if keyFields[0][0] == '@' {
- marker = string(keyFields[0][1:])
- keyFields = keyFields[1:]
- }
-
- hosts := string(keyFields[0])
- // keyFields[1] contains the key type (e.g. “ssh-rsa”).
- // However, that information is duplicated inside the
- // base64-encoded key and so is ignored here.
-
- key := bytes.Join(keyFields[2:], []byte(" "))
- if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
- return "", nil, nil, "", nil, err
- }
-
- return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
- }
-
- return "", nil, nil, "", nil, io.EOF
-}
-
-// ParseAuthorizedKey parses a public key from an authorized_keys
-// file used in OpenSSH according to the sshd(8) manual page.
-func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
- for len(in) > 0 {
- end := bytes.IndexByte(in, '\n')
- if end != -1 {
- rest = in[end+1:]
- in = in[:end]
- } else {
- rest = nil
- }
-
- end = bytes.IndexByte(in, '\r')
- if end != -1 {
- in = in[:end]
- }
-
- in = bytes.TrimSpace(in)
- if len(in) == 0 || in[0] == '#' {
- in = rest
- continue
- }
-
- i := bytes.IndexAny(in, " \t")
- if i == -1 {
- in = rest
- continue
- }
-
- if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
- return out, comment, options, rest, nil
- }
-
- // No key type recognised. Maybe there's an options field at
- // the beginning.
- var b byte
- inQuote := false
- var candidateOptions []string
- optionStart := 0
- for i, b = range in {
- isEnd := !inQuote && (b == ' ' || b == '\t')
- if (b == ',' && !inQuote) || isEnd {
- if i-optionStart > 0 {
- candidateOptions = append(candidateOptions, string(in[optionStart:i]))
- }
- optionStart = i + 1
- }
- if isEnd {
- break
- }
- if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
- inQuote = !inQuote
- }
- }
- for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
- i++
- }
- if i == len(in) {
- // Invalid line: unmatched quote
- in = rest
- continue
- }
-
- in = in[i:]
- i = bytes.IndexAny(in, " \t")
- if i == -1 {
- in = rest
- continue
- }
-
- if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
- options = candidateOptions
- return out, comment, options, rest, nil
- }
-
- in = rest
- continue
- }
-
- return nil, "", nil, nil, errors.New("ssh: no key found")
-}
-
-// ParsePublicKey parses an SSH public key formatted for use in
-// the SSH wire protocol according to RFC 4253, section 6.6.
-func ParsePublicKey(in []byte) (out PublicKey, err error) {
- algo, in, ok := parseString(in)
- if !ok {
- return nil, errShortRead
- }
- var rest []byte
- out, rest, err = parsePubKey(in, string(algo))
- if len(rest) > 0 {
- return nil, errors.New("ssh: trailing junk in public key")
- }
-
- return out, err
-}
-
-// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
-// authorized_keys file. The return value ends with newline.
-func MarshalAuthorizedKey(key PublicKey) []byte {
- b := &bytes.Buffer{}
- b.WriteString(key.Type())
- b.WriteByte(' ')
- e := base64.NewEncoder(base64.StdEncoding, b)
- e.Write(key.Marshal())
- e.Close()
- b.WriteByte('\n')
- return b.Bytes()
-}
-
-// MarshalPrivateKey returns a PEM block with the private key serialized in the
-// OpenSSH format.
-func MarshalPrivateKey(key crypto.PrivateKey, comment string) (*pem.Block, error) {
- return marshalOpenSSHPrivateKey(key, comment, unencryptedOpenSSHMarshaler)
-}
-
-// MarshalPrivateKeyWithPassphrase returns a PEM block holding the encrypted
-// private key serialized in the OpenSSH format.
-func MarshalPrivateKeyWithPassphrase(key crypto.PrivateKey, comment string, passphrase []byte) (*pem.Block, error) {
- return marshalOpenSSHPrivateKey(key, comment, passphraseProtectedOpenSSHMarshaler(passphrase))
-}
-
-// PublicKey represents a public key using an unspecified algorithm.
-//
-// Some PublicKeys provided by this package also implement CryptoPublicKey.
-type PublicKey interface {
- // Type returns the key format name, e.g. "ssh-rsa".
- Type() string
-
- // Marshal returns the serialized key data in SSH wire format, with the name
- // prefix. To unmarshal the returned data, use the ParsePublicKey function.
- Marshal() []byte
-
- // Verify that sig is a signature on the given data using this key. This
- // method will hash the data appropriately first. sig.Format is allowed to
- // be any signature algorithm compatible with the key type, the caller
- // should check if it has more stringent requirements.
- Verify(data []byte, sig *Signature) error
-}
-
-// CryptoPublicKey, if implemented by a PublicKey,
-// returns the underlying crypto.PublicKey form of the key.
-type CryptoPublicKey interface {
- CryptoPublicKey() crypto.PublicKey
-}
-
-// A Signer can create signatures that verify against a public key.
-//
-// Some Signers provided by this package also implement MultiAlgorithmSigner.
-type Signer interface {
- // PublicKey returns the associated PublicKey.
- PublicKey() PublicKey
-
- // Sign returns a signature for the given data. This method will hash the
- // data appropriately first. The signature algorithm is expected to match
- // the key format returned by the PublicKey.Type method (and not to be any
- // alternative algorithm supported by the key format).
- Sign(rand io.Reader, data []byte) (*Signature, error)
-}
-
-// An AlgorithmSigner is a Signer that also supports specifying an algorithm to
-// use for signing.
-//
-// An AlgorithmSigner can't advertise the algorithms it supports, unless it also
-// implements MultiAlgorithmSigner, so it should be prepared to be invoked with
-// every algorithm supported by the public key format.
-type AlgorithmSigner interface {
- Signer
-
- // SignWithAlgorithm is like Signer.Sign, but allows specifying a desired
- // signing algorithm. Callers may pass an empty string for the algorithm in
- // which case the AlgorithmSigner will use a default algorithm. This default
- // doesn't currently control any behavior in this package.
- SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
-}
-
-// MultiAlgorithmSigner is an AlgorithmSigner that also reports the algorithms
-// supported by that signer.
-type MultiAlgorithmSigner interface {
- AlgorithmSigner
-
- // Algorithms returns the available algorithms in preference order. The list
- // must not be empty, and it must not include certificate types.
- Algorithms() []string
-}
-
-// NewSignerWithAlgorithms returns a signer restricted to the specified
-// algorithms. The algorithms must be set in preference order. The list must not
-// be empty, and it must not include certificate types. An error is returned if
-// the specified algorithms are incompatible with the public key type.
-func NewSignerWithAlgorithms(signer AlgorithmSigner, algorithms []string) (MultiAlgorithmSigner, error) {
- if len(algorithms) == 0 {
- return nil, errors.New("ssh: please specify at least one valid signing algorithm")
- }
- var signerAlgos []string
- supportedAlgos := algorithmsForKeyFormat(underlyingAlgo(signer.PublicKey().Type()))
- if s, ok := signer.(*multiAlgorithmSigner); ok {
- signerAlgos = s.Algorithms()
- } else {
- signerAlgos = supportedAlgos
- }
-
- for _, algo := range algorithms {
- if !contains(supportedAlgos, algo) {
- return nil, fmt.Errorf("ssh: algorithm %q is not supported for key type %q",
- algo, signer.PublicKey().Type())
- }
- if !contains(signerAlgos, algo) {
- return nil, fmt.Errorf("ssh: algorithm %q is restricted for the provided signer", algo)
- }
- }
- return &multiAlgorithmSigner{
- AlgorithmSigner: signer,
- supportedAlgorithms: algorithms,
- }, nil
-}
-
-type multiAlgorithmSigner struct {
- AlgorithmSigner
- supportedAlgorithms []string
-}
-
-func (s *multiAlgorithmSigner) Algorithms() []string {
- return s.supportedAlgorithms
-}
-
-func (s *multiAlgorithmSigner) isAlgorithmSupported(algorithm string) bool {
- if algorithm == "" {
- algorithm = underlyingAlgo(s.PublicKey().Type())
- }
- for _, algo := range s.supportedAlgorithms {
- if algorithm == algo {
- return true
- }
- }
- return false
-}
-
-func (s *multiAlgorithmSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
- if !s.isAlgorithmSupported(algorithm) {
- return nil, fmt.Errorf("ssh: algorithm %q is not supported: %v", algorithm, s.supportedAlgorithms)
- }
- return s.AlgorithmSigner.SignWithAlgorithm(rand, data, algorithm)
-}
-
-type rsaPublicKey rsa.PublicKey
-
-func (r *rsaPublicKey) Type() string {
- return "ssh-rsa"
-}
-
-// parseRSA parses an RSA key according to RFC 4253, section 6.6.
-func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- E *big.Int
- N *big.Int
- Rest []byte `ssh:"rest"`
- }
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
-
- if w.E.BitLen() > 24 {
- return nil, nil, errors.New("ssh: exponent too large")
- }
- e := w.E.Int64()
- if e < 3 || e&1 == 0 {
- return nil, nil, errors.New("ssh: incorrect exponent")
- }
-
- var key rsa.PublicKey
- key.E = int(e)
- key.N = w.N
- return (*rsaPublicKey)(&key), w.Rest, nil
-}
-
-func (r *rsaPublicKey) Marshal() []byte {
- e := new(big.Int).SetInt64(int64(r.E))
- // RSA publickey struct layout should match the struct used by
- // parseRSACert in the x/crypto/ssh/agent package.
- wirekey := struct {
- Name string
- E *big.Int
- N *big.Int
- }{
- KeyAlgoRSA,
- e,
- r.N,
- }
- return Marshal(&wirekey)
-}
-
-func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
- supportedAlgos := algorithmsForKeyFormat(r.Type())
- if !contains(supportedAlgos, sig.Format) {
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
- }
- hash := hashFuncs[sig.Format]
- h := hash.New()
- h.Write(data)
- digest := h.Sum(nil)
-
- // Signatures in PKCS1v15 must match the key's modulus in
- // length. However with SSH, some signers provide RSA
- // signatures which are missing the MSB 0's of the bignum
- // represented. With ssh-rsa signatures, this is encouraged by
- // the spec (even though e.g. OpenSSH will give the full
- // length unconditionally). With rsa-sha2-* signatures, the
- // verifier is allowed to support these, even though they are
- // out of spec. See RFC 4253 Section 6.6 for ssh-rsa and RFC
- // 8332 Section 3 for rsa-sha2-* details.
- //
- // In practice:
- // * OpenSSH always allows "short" signatures:
- // https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L526
- // but always generates padded signatures:
- // https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L439
- //
- // * PuTTY versions 0.81 and earlier will generate short
- // signatures for all RSA signature variants. Note that
- // PuTTY is embedded in other software, such as WinSCP and
- // FileZilla. At the time of writing, a patch has been
- // applied to PuTTY to generate padded signatures for
- // rsa-sha2-*, but not yet released:
- // https://git.tartarus.org/?p=simon/putty.git;a=commitdiff;h=a5bcf3d384e1bf15a51a6923c3724cbbee022d8e
- //
- // * SSH.NET versions 2024.0.0 and earlier will generate short
- // signatures for all RSA signature variants, fixed in 2024.1.0:
- // https://github.com/sshnet/SSH.NET/releases/tag/2024.1.0
- //
- // As a result, we pad these up to the key size by inserting
- // leading 0's.
- //
- // Note that support for short signatures with rsa-sha2-* may
- // be removed in the future due to such signatures not being
- // allowed by the spec.
- blob := sig.Blob
- keySize := (*rsa.PublicKey)(r).Size()
- if len(blob) < keySize {
- padded := make([]byte, keySize)
- copy(padded[keySize-len(blob):], blob)
- blob = padded
- }
- return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, blob)
-}
-
-func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
- return (*rsa.PublicKey)(r)
-}
-
-type dsaPublicKey dsa.PublicKey
-
-func (k *dsaPublicKey) Type() string {
- return "ssh-dss"
-}
-
-func checkDSAParams(param *dsa.Parameters) error {
- // SSH specifies FIPS 186-2, which only provided a single size
- // (1024 bits) DSA key. FIPS 186-3 allows for larger key
- // sizes, which would confuse SSH.
- if l := param.P.BitLen(); l != 1024 {
- return fmt.Errorf("ssh: unsupported DSA key size %d", l)
- }
-
- return nil
-}
-
-// parseDSA parses an DSA key according to RFC 4253, section 6.6.
-func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- P, Q, G, Y *big.Int
- Rest []byte `ssh:"rest"`
- }
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
-
- param := dsa.Parameters{
- P: w.P,
- Q: w.Q,
- G: w.G,
- }
- if err := checkDSAParams(&param); err != nil {
- return nil, nil, err
- }
-
- key := &dsaPublicKey{
- Parameters: param,
- Y: w.Y,
- }
- return key, w.Rest, nil
-}
-
-func (k *dsaPublicKey) Marshal() []byte {
- // DSA publickey struct layout should match the struct used by
- // parseDSACert in the x/crypto/ssh/agent package.
- w := struct {
- Name string
- P, Q, G, Y *big.Int
- }{
- k.Type(),
- k.P,
- k.Q,
- k.G,
- k.Y,
- }
-
- return Marshal(&w)
-}
-
-func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
- if sig.Format != k.Type() {
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
- }
- h := hashFuncs[sig.Format].New()
- h.Write(data)
- digest := h.Sum(nil)
-
- // Per RFC 4253, section 6.6,
- // The value for 'dss_signature_blob' is encoded as a string containing
- // r, followed by s (which are 160-bit integers, without lengths or
- // padding, unsigned, and in network byte order).
- // For DSS purposes, sig.Blob should be exactly 40 bytes in length.
- if len(sig.Blob) != 40 {
- return errors.New("ssh: DSA signature parse error")
- }
- r := new(big.Int).SetBytes(sig.Blob[:20])
- s := new(big.Int).SetBytes(sig.Blob[20:])
- if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
- return nil
- }
- return errors.New("ssh: signature did not verify")
-}
-
-func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
- return (*dsa.PublicKey)(k)
-}
-
-type dsaPrivateKey struct {
- *dsa.PrivateKey
-}
-
-func (k *dsaPrivateKey) PublicKey() PublicKey {
- return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
-}
-
-func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
- return k.SignWithAlgorithm(rand, data, k.PublicKey().Type())
-}
-
-func (k *dsaPrivateKey) Algorithms() []string {
- return []string{k.PublicKey().Type()}
-}
-
-func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
- if algorithm != "" && algorithm != k.PublicKey().Type() {
- return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
- }
-
- h := hashFuncs[k.PublicKey().Type()].New()
- h.Write(data)
- digest := h.Sum(nil)
- r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
- if err != nil {
- return nil, err
- }
-
- sig := make([]byte, 40)
- rb := r.Bytes()
- sb := s.Bytes()
-
- copy(sig[20-len(rb):20], rb)
- copy(sig[40-len(sb):], sb)
-
- return &Signature{
- Format: k.PublicKey().Type(),
- Blob: sig,
- }, nil
-}
-
-type ecdsaPublicKey ecdsa.PublicKey
-
-func (k *ecdsaPublicKey) Type() string {
- return "ecdsa-sha2-" + k.nistID()
-}
-
-func (k *ecdsaPublicKey) nistID() string {
- switch k.Params().BitSize {
- case 256:
- return "nistp256"
- case 384:
- return "nistp384"
- case 521:
- return "nistp521"
- }
- panic("ssh: unsupported ecdsa key size")
-}
-
-type ed25519PublicKey ed25519.PublicKey
-
-func (k ed25519PublicKey) Type() string {
- return KeyAlgoED25519
-}
-
-func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- KeyBytes []byte
- Rest []byte `ssh:"rest"`
- }
-
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
-
- if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
- return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
- }
-
- return ed25519PublicKey(w.KeyBytes), w.Rest, nil
-}
-
-func (k ed25519PublicKey) Marshal() []byte {
- w := struct {
- Name string
- KeyBytes []byte
- }{
- KeyAlgoED25519,
- []byte(k),
- }
- return Marshal(&w)
-}
-
-func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
- if sig.Format != k.Type() {
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
- }
- if l := len(k); l != ed25519.PublicKeySize {
- return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
- }
-
- if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok {
- return errors.New("ssh: signature did not verify")
- }
-
- return nil
-}
-
-func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
- return ed25519.PublicKey(k)
-}
-
-func supportedEllipticCurve(curve elliptic.Curve) bool {
- return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
-}
-
-// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
-func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- Curve string
- KeyBytes []byte
- Rest []byte `ssh:"rest"`
- }
-
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
-
- key := new(ecdsa.PublicKey)
-
- switch w.Curve {
- case "nistp256":
- key.Curve = elliptic.P256()
- case "nistp384":
- key.Curve = elliptic.P384()
- case "nistp521":
- key.Curve = elliptic.P521()
- default:
- return nil, nil, errors.New("ssh: unsupported curve")
- }
-
- key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
- if key.X == nil || key.Y == nil {
- return nil, nil, errors.New("ssh: invalid curve point")
- }
- return (*ecdsaPublicKey)(key), w.Rest, nil
-}
-
-func (k *ecdsaPublicKey) Marshal() []byte {
- // See RFC 5656, section 3.1.
- keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
- // ECDSA publickey struct layout should match the struct used by
- // parseECDSACert in the x/crypto/ssh/agent package.
- w := struct {
- Name string
- ID string
- Key []byte
- }{
- k.Type(),
- k.nistID(),
- keyBytes,
- }
-
- return Marshal(&w)
-}
-
-func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
- if sig.Format != k.Type() {
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
- }
-
- h := hashFuncs[sig.Format].New()
- h.Write(data)
- digest := h.Sum(nil)
-
- // Per RFC 5656, section 3.1.2,
- // The ecdsa_signature_blob value has the following specific encoding:
- // mpint r
- // mpint s
- var ecSig struct {
- R *big.Int
- S *big.Int
- }
-
- if err := Unmarshal(sig.Blob, &ecSig); err != nil {
- return err
- }
-
- if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
- return nil
- }
- return errors.New("ssh: signature did not verify")
-}
-
-func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
- return (*ecdsa.PublicKey)(k)
-}
-
-// skFields holds the additional fields present in U2F/FIDO2 signatures.
-// See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
-type skFields struct {
- // Flags contains U2F/FIDO2 flags such as 'user present'
- Flags byte
- // Counter is a monotonic signature counter which can be
- // used to detect concurrent use of a private key, should
- // it be extracted from hardware.
- Counter uint32
-}
-
-type skECDSAPublicKey struct {
- // application is a URL-like string, typically "ssh:" for SSH.
- // see openssh/PROTOCOL.u2f for details.
- application string
- ecdsa.PublicKey
-}
-
-func (k *skECDSAPublicKey) Type() string {
- return KeyAlgoSKECDSA256
-}
-
-func (k *skECDSAPublicKey) nistID() string {
- return "nistp256"
-}
-
-func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- Curve string
- KeyBytes []byte
- Application string
- Rest []byte `ssh:"rest"`
- }
-
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
-
- key := new(skECDSAPublicKey)
- key.application = w.Application
-
- if w.Curve != "nistp256" {
- return nil, nil, errors.New("ssh: unsupported curve")
- }
- key.Curve = elliptic.P256()
-
- key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
- if key.X == nil || key.Y == nil {
- return nil, nil, errors.New("ssh: invalid curve point")
- }
-
- return key, w.Rest, nil
-}
-
-func (k *skECDSAPublicKey) Marshal() []byte {
- // See RFC 5656, section 3.1.
- keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
- w := struct {
- Name string
- ID string
- Key []byte
- Application string
- }{
- k.Type(),
- k.nistID(),
- keyBytes,
- k.application,
- }
-
- return Marshal(&w)
-}
-
-func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
- if sig.Format != k.Type() {
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
- }
-
- h := hashFuncs[sig.Format].New()
- h.Write([]byte(k.application))
- appDigest := h.Sum(nil)
-
- h.Reset()
- h.Write(data)
- dataDigest := h.Sum(nil)
-
- var ecSig struct {
- R *big.Int
- S *big.Int
- }
- if err := Unmarshal(sig.Blob, &ecSig); err != nil {
- return err
- }
-
- var skf skFields
- if err := Unmarshal(sig.Rest, &skf); err != nil {
- return err
- }
-
- blob := struct {
- ApplicationDigest []byte `ssh:"rest"`
- Flags byte
- Counter uint32
- MessageDigest []byte `ssh:"rest"`
- }{
- appDigest,
- skf.Flags,
- skf.Counter,
- dataDigest,
- }
-
- original := Marshal(blob)
-
- h.Reset()
- h.Write(original)
- digest := h.Sum(nil)
-
- if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
- return nil
- }
- return errors.New("ssh: signature did not verify")
-}
-
-func (k *skECDSAPublicKey) CryptoPublicKey() crypto.PublicKey {
- return &k.PublicKey
-}
-
-type skEd25519PublicKey struct {
- // application is a URL-like string, typically "ssh:" for SSH.
- // see openssh/PROTOCOL.u2f for details.
- application string
- ed25519.PublicKey
-}
-
-func (k *skEd25519PublicKey) Type() string {
- return KeyAlgoSKED25519
-}
-
-func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- KeyBytes []byte
- Application string
- Rest []byte `ssh:"rest"`
- }
-
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
-
- if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
- return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
- }
-
- key := new(skEd25519PublicKey)
- key.application = w.Application
- key.PublicKey = ed25519.PublicKey(w.KeyBytes)
-
- return key, w.Rest, nil
-}
-
-func (k *skEd25519PublicKey) Marshal() []byte {
- w := struct {
- Name string
- KeyBytes []byte
- Application string
- }{
- KeyAlgoSKED25519,
- []byte(k.PublicKey),
- k.application,
- }
- return Marshal(&w)
-}
-
-func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
- if sig.Format != k.Type() {
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
- }
- if l := len(k.PublicKey); l != ed25519.PublicKeySize {
- return fmt.Errorf("invalid size %d for Ed25519 public key", l)
- }
-
- h := hashFuncs[sig.Format].New()
- h.Write([]byte(k.application))
- appDigest := h.Sum(nil)
-
- h.Reset()
- h.Write(data)
- dataDigest := h.Sum(nil)
-
- var edSig struct {
- Signature []byte `ssh:"rest"`
- }
-
- if err := Unmarshal(sig.Blob, &edSig); err != nil {
- return err
- }
-
- var skf skFields
- if err := Unmarshal(sig.Rest, &skf); err != nil {
- return err
- }
-
- blob := struct {
- ApplicationDigest []byte `ssh:"rest"`
- Flags byte
- Counter uint32
- MessageDigest []byte `ssh:"rest"`
- }{
- appDigest,
- skf.Flags,
- skf.Counter,
- dataDigest,
- }
-
- original := Marshal(blob)
-
- if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok {
- return errors.New("ssh: signature did not verify")
- }
-
- return nil
-}
-
-func (k *skEd25519PublicKey) CryptoPublicKey() crypto.PublicKey {
- return k.PublicKey
-}
-
-// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
-// *ecdsa.PrivateKey or any other crypto.Signer and returns a
-// corresponding Signer instance. ECDSA keys must use P-256, P-384 or
-// P-521. DSA keys must use parameter size L1024N160.
-func NewSignerFromKey(key interface{}) (Signer, error) {
- switch key := key.(type) {
- case crypto.Signer:
- return NewSignerFromSigner(key)
- case *dsa.PrivateKey:
- return newDSAPrivateKey(key)
- default:
- return nil, fmt.Errorf("ssh: unsupported key type %T", key)
- }
-}
-
-func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
- if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
- return nil, err
- }
-
- return &dsaPrivateKey{key}, nil
-}
-
-type wrappedSigner struct {
- signer crypto.Signer
- pubKey PublicKey
-}
-
-// NewSignerFromSigner takes any crypto.Signer implementation and
-// returns a corresponding Signer interface. This can be used, for
-// example, with keys kept in hardware modules.
-func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
- pubKey, err := NewPublicKey(signer.Public())
- if err != nil {
- return nil, err
- }
-
- return &wrappedSigner{signer, pubKey}, nil
-}
-
-func (s *wrappedSigner) PublicKey() PublicKey {
- return s.pubKey
-}
-
-func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
- return s.SignWithAlgorithm(rand, data, s.pubKey.Type())
-}
-
-func (s *wrappedSigner) Algorithms() []string {
- return algorithmsForKeyFormat(s.pubKey.Type())
-}
-
-func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
- if algorithm == "" {
- algorithm = s.pubKey.Type()
- }
-
- if !contains(s.Algorithms(), algorithm) {
- return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type())
- }
-
- hashFunc := hashFuncs[algorithm]
- var digest []byte
- if hashFunc != 0 {
- h := hashFunc.New()
- h.Write(data)
- digest = h.Sum(nil)
- } else {
- digest = data
- }
-
- signature, err := s.signer.Sign(rand, digest, hashFunc)
- if err != nil {
- return nil, err
- }
-
- // crypto.Signer.Sign is expected to return an ASN.1-encoded signature
- // for ECDSA and DSA, but that's not the encoding expected by SSH, so
- // re-encode.
- switch s.pubKey.(type) {
- case *ecdsaPublicKey, *dsaPublicKey:
- type asn1Signature struct {
- R, S *big.Int
- }
- asn1Sig := new(asn1Signature)
- _, err := asn1.Unmarshal(signature, asn1Sig)
- if err != nil {
- return nil, err
- }
-
- switch s.pubKey.(type) {
- case *ecdsaPublicKey:
- signature = Marshal(asn1Sig)
-
- case *dsaPublicKey:
- signature = make([]byte, 40)
- r := asn1Sig.R.Bytes()
- s := asn1Sig.S.Bytes()
- copy(signature[20-len(r):20], r)
- copy(signature[40-len(s):40], s)
- }
- }
-
- return &Signature{
- Format: algorithm,
- Blob: signature,
- }, nil
-}
-
-// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
-// or ed25519.PublicKey returns a corresponding PublicKey instance.
-// ECDSA keys must use P-256, P-384 or P-521.
-func NewPublicKey(key interface{}) (PublicKey, error) {
- switch key := key.(type) {
- case *rsa.PublicKey:
- return (*rsaPublicKey)(key), nil
- case *ecdsa.PublicKey:
- if !supportedEllipticCurve(key.Curve) {
- return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
- }
- return (*ecdsaPublicKey)(key), nil
- case *dsa.PublicKey:
- return (*dsaPublicKey)(key), nil
- case ed25519.PublicKey:
- if l := len(key); l != ed25519.PublicKeySize {
- return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
- }
- return ed25519PublicKey(key), nil
- default:
- return nil, fmt.Errorf("ssh: unsupported key type %T", key)
- }
-}
-
-// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
-// the same keys as ParseRawPrivateKey. If the private key is encrypted, it
-// will return a PassphraseMissingError.
-func ParsePrivateKey(pemBytes []byte) (Signer, error) {
- key, err := ParseRawPrivateKey(pemBytes)
- if err != nil {
- return nil, err
- }
-
- return NewSignerFromKey(key)
-}
-
-// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
-// key and passphrase. It supports the same keys as
-// ParseRawPrivateKeyWithPassphrase.
-func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
- key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
- if err != nil {
- return nil, err
- }
-
- return NewSignerFromKey(key)
-}
-
-// encryptedBlock tells whether a private key is
-// encrypted by examining its Proc-Type header
-// for a mention of ENCRYPTED
-// according to RFC 1421 Section 4.6.1.1.
-func encryptedBlock(block *pem.Block) bool {
- return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
-}
-
-// A PassphraseMissingError indicates that parsing this private key requires a
-// passphrase. Use ParsePrivateKeyWithPassphrase.
-type PassphraseMissingError struct {
- // PublicKey will be set if the private key format includes an unencrypted
- // public key along with the encrypted private key.
- PublicKey PublicKey
-}
-
-func (*PassphraseMissingError) Error() string {
- return "ssh: this private key is passphrase protected"
-}
-
-// ParseRawPrivateKey returns a private key from a PEM encoded private key. It supports
-// RSA, DSA, ECDSA, and Ed25519 private keys in PKCS#1, PKCS#8, OpenSSL, and OpenSSH
-// formats. If the private key is encrypted, it will return a PassphraseMissingError.
-func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
- block, _ := pem.Decode(pemBytes)
- if block == nil {
- return nil, errors.New("ssh: no key found")
- }
-
- if encryptedBlock(block) {
- return nil, &PassphraseMissingError{}
- }
-
- switch block.Type {
- case "RSA PRIVATE KEY":
- return x509.ParsePKCS1PrivateKey(block.Bytes)
- // RFC5208 - https://tools.ietf.org/html/rfc5208
- case "PRIVATE KEY":
- return x509.ParsePKCS8PrivateKey(block.Bytes)
- case "EC PRIVATE KEY":
- return x509.ParseECPrivateKey(block.Bytes)
- case "DSA PRIVATE KEY":
- return ParseDSAPrivateKey(block.Bytes)
- case "OPENSSH PRIVATE KEY":
- return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey)
- default:
- return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
- }
-}
-
-// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
-// passphrase from a PEM encoded private key. If the passphrase is wrong, it
-// will return x509.IncorrectPasswordError.
-func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
- block, _ := pem.Decode(pemBytes)
- if block == nil {
- return nil, errors.New("ssh: no key found")
- }
-
- if block.Type == "OPENSSH PRIVATE KEY" {
- return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase))
- }
-
- if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
- return nil, errors.New("ssh: not an encrypted key")
- }
-
- buf, err := x509.DecryptPEMBlock(block, passphrase)
- if err != nil {
- if err == x509.IncorrectPasswordError {
- return nil, err
- }
- return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
- }
-
- var result interface{}
-
- switch block.Type {
- case "RSA PRIVATE KEY":
- result, err = x509.ParsePKCS1PrivateKey(buf)
- case "EC PRIVATE KEY":
- result, err = x509.ParseECPrivateKey(buf)
- case "DSA PRIVATE KEY":
- result, err = ParseDSAPrivateKey(buf)
- default:
- err = fmt.Errorf("ssh: unsupported key type %q", block.Type)
- }
- // Because of deficiencies in the format, DecryptPEMBlock does not always
- // detect an incorrect password. In these cases decrypted DER bytes is
- // random noise. If the parsing of the key returns an asn1.StructuralError
- // we return x509.IncorrectPasswordError.
- if _, ok := err.(asn1.StructuralError); ok {
- return nil, x509.IncorrectPasswordError
- }
-
- return result, err
-}
-
-// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
-// specified by the OpenSSL DSA man page.
-func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
- var k struct {
- Version int
- P *big.Int
- Q *big.Int
- G *big.Int
- Pub *big.Int
- Priv *big.Int
- }
- rest, err := asn1.Unmarshal(der, &k)
- if err != nil {
- return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
- }
- if len(rest) > 0 {
- return nil, errors.New("ssh: garbage after DSA key")
- }
-
- return &dsa.PrivateKey{
- PublicKey: dsa.PublicKey{
- Parameters: dsa.Parameters{
- P: k.P,
- Q: k.Q,
- G: k.G,
- },
- Y: k.Pub,
- },
- X: k.Priv,
- }, nil
-}
-
-func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
- if kdfName != "none" || cipherName != "none" {
- return nil, &PassphraseMissingError{}
- }
- if kdfOpts != "" {
- return nil, errors.New("ssh: invalid openssh private key")
- }
- return privKeyBlock, nil
-}
-
-func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
- return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
- if kdfName == "none" || cipherName == "none" {
- return nil, errors.New("ssh: key is not password protected")
- }
- if kdfName != "bcrypt" {
- return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt")
- }
-
- var opts struct {
- Salt string
- Rounds uint32
- }
- if err := Unmarshal([]byte(kdfOpts), &opts); err != nil {
- return nil, err
- }
-
- k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16)
- if err != nil {
- return nil, err
- }
- key, iv := k[:32], k[32:]
-
- c, err := aes.NewCipher(key)
- if err != nil {
- return nil, err
- }
- switch cipherName {
- case "aes256-ctr":
- ctr := cipher.NewCTR(c, iv)
- ctr.XORKeyStream(privKeyBlock, privKeyBlock)
- case "aes256-cbc":
- if len(privKeyBlock)%c.BlockSize() != 0 {
- return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
- }
- cbc := cipher.NewCBCDecrypter(c, iv)
- cbc.CryptBlocks(privKeyBlock, privKeyBlock)
- default:
- return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
- }
-
- return privKeyBlock, nil
- }
-}
-
-func unencryptedOpenSSHMarshaler(privKeyBlock []byte) ([]byte, string, string, string, error) {
- key := generateOpenSSHPadding(privKeyBlock, 8)
- return key, "none", "none", "", nil
-}
-
-func passphraseProtectedOpenSSHMarshaler(passphrase []byte) openSSHEncryptFunc {
- return func(privKeyBlock []byte) ([]byte, string, string, string, error) {
- salt := make([]byte, 16)
- if _, err := rand.Read(salt); err != nil {
- return nil, "", "", "", err
- }
-
- opts := struct {
- Salt []byte
- Rounds uint32
- }{salt, 16}
-
- // Derive key to encrypt the private key block.
- k, err := bcrypt_pbkdf.Key(passphrase, salt, int(opts.Rounds), 32+aes.BlockSize)
- if err != nil {
- return nil, "", "", "", err
- }
-
- // Add padding matching the block size of AES.
- keyBlock := generateOpenSSHPadding(privKeyBlock, aes.BlockSize)
-
- // Encrypt the private key using the derived secret.
-
- dst := make([]byte, len(keyBlock))
- key, iv := k[:32], k[32:]
- block, err := aes.NewCipher(key)
- if err != nil {
- return nil, "", "", "", err
- }
-
- stream := cipher.NewCTR(block, iv)
- stream.XORKeyStream(dst, keyBlock)
-
- return dst, "aes256-ctr", "bcrypt", string(Marshal(opts)), nil
- }
-}
-
-const privateKeyAuthMagic = "openssh-key-v1\x00"
-
-type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error)
-type openSSHEncryptFunc func(PrivKeyBlock []byte) (ProtectedKeyBlock []byte, cipherName, kdfName, kdfOptions string, err error)
-
-type openSSHEncryptedPrivateKey struct {
- CipherName string
- KdfName string
- KdfOpts string
- NumKeys uint32
- PubKey []byte
- PrivKeyBlock []byte
-}
-
-type openSSHPrivateKey struct {
- Check1 uint32
- Check2 uint32
- Keytype string
- Rest []byte `ssh:"rest"`
-}
-
-type openSSHRSAPrivateKey struct {
- N *big.Int
- E *big.Int
- D *big.Int
- Iqmp *big.Int
- P *big.Int
- Q *big.Int
- Comment string
- Pad []byte `ssh:"rest"`
-}
-
-type openSSHEd25519PrivateKey struct {
- Pub []byte
- Priv []byte
- Comment string
- Pad []byte `ssh:"rest"`
-}
-
-type openSSHECDSAPrivateKey struct {
- Curve string
- Pub []byte
- D *big.Int
- Comment string
- Pad []byte `ssh:"rest"`
-}
-
-// parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt
-// function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used
-// as the decrypt function to parse an unencrypted private key. See
-// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key.
-func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) {
- if len(key) < len(privateKeyAuthMagic) || string(key[:len(privateKeyAuthMagic)]) != privateKeyAuthMagic {
- return nil, errors.New("ssh: invalid openssh private key format")
- }
- remaining := key[len(privateKeyAuthMagic):]
-
- var w openSSHEncryptedPrivateKey
- if err := Unmarshal(remaining, &w); err != nil {
- return nil, err
- }
- if w.NumKeys != 1 {
- // We only support single key files, and so does OpenSSH.
- // https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171
- return nil, errors.New("ssh: multi-key files are not supported")
- }
-
- privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock)
- if err != nil {
- if err, ok := err.(*PassphraseMissingError); ok {
- pub, errPub := ParsePublicKey(w.PubKey)
- if errPub != nil {
- return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub)
- }
- err.PublicKey = pub
- }
- return nil, err
- }
-
- var pk1 openSSHPrivateKey
- if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 {
- if w.CipherName != "none" {
- return nil, x509.IncorrectPasswordError
- }
- return nil, errors.New("ssh: malformed OpenSSH key")
- }
-
- switch pk1.Keytype {
- case KeyAlgoRSA:
- var key openSSHRSAPrivateKey
- if err := Unmarshal(pk1.Rest, &key); err != nil {
- return nil, err
- }
-
- if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
- return nil, err
- }
-
- pk := &rsa.PrivateKey{
- PublicKey: rsa.PublicKey{
- N: key.N,
- E: int(key.E.Int64()),
- },
- D: key.D,
- Primes: []*big.Int{key.P, key.Q},
- }
-
- if err := pk.Validate(); err != nil {
- return nil, err
- }
-
- pk.Precompute()
-
- return pk, nil
- case KeyAlgoED25519:
- var key openSSHEd25519PrivateKey
- if err := Unmarshal(pk1.Rest, &key); err != nil {
- return nil, err
- }
-
- if len(key.Priv) != ed25519.PrivateKeySize {
- return nil, errors.New("ssh: private key unexpected length")
- }
-
- if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
- return nil, err
- }
-
- pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
- copy(pk, key.Priv)
- return &pk, nil
- case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
- var key openSSHECDSAPrivateKey
- if err := Unmarshal(pk1.Rest, &key); err != nil {
- return nil, err
- }
-
- if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
- return nil, err
- }
-
- var curve elliptic.Curve
- switch key.Curve {
- case "nistp256":
- curve = elliptic.P256()
- case "nistp384":
- curve = elliptic.P384()
- case "nistp521":
- curve = elliptic.P521()
- default:
- return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve)
- }
-
- X, Y := elliptic.Unmarshal(curve, key.Pub)
- if X == nil || Y == nil {
- return nil, errors.New("ssh: failed to unmarshal public key")
- }
-
- if key.D.Cmp(curve.Params().N) >= 0 {
- return nil, errors.New("ssh: scalar is out of range")
- }
-
- x, y := curve.ScalarBaseMult(key.D.Bytes())
- if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
- return nil, errors.New("ssh: public key does not match private key")
- }
-
- return &ecdsa.PrivateKey{
- PublicKey: ecdsa.PublicKey{
- Curve: curve,
- X: X,
- Y: Y,
- },
- D: key.D,
- }, nil
- default:
- return nil, errors.New("ssh: unhandled key type")
- }
-}
-
-func marshalOpenSSHPrivateKey(key crypto.PrivateKey, comment string, encrypt openSSHEncryptFunc) (*pem.Block, error) {
- var w openSSHEncryptedPrivateKey
- var pk1 openSSHPrivateKey
-
- // Random check bytes.
- var check uint32
- if err := binary.Read(rand.Reader, binary.BigEndian, &check); err != nil {
- return nil, err
- }
-
- pk1.Check1 = check
- pk1.Check2 = check
- w.NumKeys = 1
-
- // Use a []byte directly on ed25519 keys.
- if k, ok := key.(*ed25519.PrivateKey); ok {
- key = *k
- }
-
- switch k := key.(type) {
- case *rsa.PrivateKey:
- E := new(big.Int).SetInt64(int64(k.PublicKey.E))
- // Marshal public key:
- // E and N are in reversed order in the public and private key.
- pubKey := struct {
- KeyType string
- E *big.Int
- N *big.Int
- }{
- KeyAlgoRSA,
- E, k.PublicKey.N,
- }
- w.PubKey = Marshal(pubKey)
-
- // Marshal private key.
- key := openSSHRSAPrivateKey{
- N: k.PublicKey.N,
- E: E,
- D: k.D,
- Iqmp: k.Precomputed.Qinv,
- P: k.Primes[0],
- Q: k.Primes[1],
- Comment: comment,
- }
- pk1.Keytype = KeyAlgoRSA
- pk1.Rest = Marshal(key)
- case ed25519.PrivateKey:
- pub := make([]byte, ed25519.PublicKeySize)
- priv := make([]byte, ed25519.PrivateKeySize)
- copy(pub, k[32:])
- copy(priv, k)
-
- // Marshal public key.
- pubKey := struct {
- KeyType string
- Pub []byte
- }{
- KeyAlgoED25519, pub,
- }
- w.PubKey = Marshal(pubKey)
-
- // Marshal private key.
- key := openSSHEd25519PrivateKey{
- Pub: pub,
- Priv: priv,
- Comment: comment,
- }
- pk1.Keytype = KeyAlgoED25519
- pk1.Rest = Marshal(key)
- case *ecdsa.PrivateKey:
- var curve, keyType string
- switch name := k.Curve.Params().Name; name {
- case "P-256":
- curve = "nistp256"
- keyType = KeyAlgoECDSA256
- case "P-384":
- curve = "nistp384"
- keyType = KeyAlgoECDSA384
- case "P-521":
- curve = "nistp521"
- keyType = KeyAlgoECDSA521
- default:
- return nil, errors.New("ssh: unhandled elliptic curve " + name)
- }
-
- pub := elliptic.Marshal(k.Curve, k.PublicKey.X, k.PublicKey.Y)
-
- // Marshal public key.
- pubKey := struct {
- KeyType string
- Curve string
- Pub []byte
- }{
- keyType, curve, pub,
- }
- w.PubKey = Marshal(pubKey)
-
- // Marshal private key.
- key := openSSHECDSAPrivateKey{
- Curve: curve,
- Pub: pub,
- D: k.D,
- Comment: comment,
- }
- pk1.Keytype = keyType
- pk1.Rest = Marshal(key)
- default:
- return nil, fmt.Errorf("ssh: unsupported key type %T", k)
- }
-
- var err error
- // Add padding and encrypt the key if necessary.
- w.PrivKeyBlock, w.CipherName, w.KdfName, w.KdfOpts, err = encrypt(Marshal(pk1))
- if err != nil {
- return nil, err
- }
-
- b := Marshal(w)
- block := &pem.Block{
- Type: "OPENSSH PRIVATE KEY",
- Bytes: append([]byte(privateKeyAuthMagic), b...),
- }
- return block, nil
-}
-
-func checkOpenSSHKeyPadding(pad []byte) error {
- for i, b := range pad {
- if int(b) != i+1 {
- return errors.New("ssh: padding not as expected")
- }
- }
- return nil
-}
-
-func generateOpenSSHPadding(block []byte, blockSize int) []byte {
- for i, l := 0, len(block); (l+i)%blockSize != 0; i++ {
- block = append(block, byte(i+1))
- }
- return block
-}
-
-// FingerprintLegacyMD5 returns the user presentation of the key's
-// fingerprint as described by RFC 4716 section 4.
-func FingerprintLegacyMD5(pubKey PublicKey) string {
- md5sum := md5.Sum(pubKey.Marshal())
- hexarray := make([]string, len(md5sum))
- for i, c := range md5sum {
- hexarray[i] = hex.EncodeToString([]byte{c})
- }
- return strings.Join(hexarray, ":")
-}
-
-// FingerprintSHA256 returns the user presentation of the key's
-// fingerprint as unpadded base64 encoded sha256 hash.
-// This format was introduced from OpenSSH 6.8.
-// https://www.openssh.com/txt/release-6.8
-// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
-func FingerprintSHA256(pubKey PublicKey) string {
- sha256sum := sha256.Sum256(pubKey.Marshal())
- hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
- return "SHA256:" + hash
-}