diff options
author | 2025-03-09 17:47:56 +0100 | |
---|---|---|
committer | 2025-03-10 01:59:49 +0100 | |
commit | 3ac1ee16f377d31a0fb80c8dae28b6239ac4229e (patch) | |
tree | f61faa581feaaeaba2542b9f2b8234a590684413 /vendor/golang.org/x/crypto/ssh/keys.go | |
parent | [chore] update URLs to forked source (diff) | |
download | gotosocial-3ac1ee16f377d31a0fb80c8dae28b6239ac4229e.tar.xz |
[chore] remove vendor
Diffstat (limited to 'vendor/golang.org/x/crypto/ssh/keys.go')
-rw-r--r-- | vendor/golang.org/x/crypto/ssh/keys.go | 1778 |
1 files changed, 0 insertions, 1778 deletions
diff --git a/vendor/golang.org/x/crypto/ssh/keys.go b/vendor/golang.org/x/crypto/ssh/keys.go deleted file mode 100644 index 98e6706d5..000000000 --- a/vendor/golang.org/x/crypto/ssh/keys.go +++ /dev/null @@ -1,1778 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package ssh - -import ( - "bytes" - "crypto" - "crypto/aes" - "crypto/cipher" - "crypto/dsa" - "crypto/ecdsa" - "crypto/ed25519" - "crypto/elliptic" - "crypto/md5" - "crypto/rand" - "crypto/rsa" - "crypto/sha256" - "crypto/x509" - "encoding/asn1" - "encoding/base64" - "encoding/binary" - "encoding/hex" - "encoding/pem" - "errors" - "fmt" - "io" - "math/big" - "strings" - - "golang.org/x/crypto/ssh/internal/bcrypt_pbkdf" -) - -// Public key algorithms names. These values can appear in PublicKey.Type, -// ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner -// arguments. -const ( - KeyAlgoRSA = "ssh-rsa" - KeyAlgoDSA = "ssh-dss" - KeyAlgoECDSA256 = "ecdsa-sha2-nistp256" - KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com" - KeyAlgoECDSA384 = "ecdsa-sha2-nistp384" - KeyAlgoECDSA521 = "ecdsa-sha2-nistp521" - KeyAlgoED25519 = "ssh-ed25519" - KeyAlgoSKED25519 = "sk-ssh-ed25519@openssh.com" - - // KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not - // public key formats, so they can't appear as a PublicKey.Type. The - // corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2. - KeyAlgoRSASHA256 = "rsa-sha2-256" - KeyAlgoRSASHA512 = "rsa-sha2-512" -) - -const ( - // Deprecated: use KeyAlgoRSA. - SigAlgoRSA = KeyAlgoRSA - // Deprecated: use KeyAlgoRSASHA256. - SigAlgoRSASHA2256 = KeyAlgoRSASHA256 - // Deprecated: use KeyAlgoRSASHA512. - SigAlgoRSASHA2512 = KeyAlgoRSASHA512 -) - -// parsePubKey parses a public key of the given algorithm. -// Use ParsePublicKey for keys with prepended algorithm. -func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) { - switch algo { - case KeyAlgoRSA: - return parseRSA(in) - case KeyAlgoDSA: - return parseDSA(in) - case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521: - return parseECDSA(in) - case KeyAlgoSKECDSA256: - return parseSKECDSA(in) - case KeyAlgoED25519: - return parseED25519(in) - case KeyAlgoSKED25519: - return parseSKEd25519(in) - case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01: - cert, err := parseCert(in, certKeyAlgoNames[algo]) - if err != nil { - return nil, nil, err - } - return cert, nil, nil - } - return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo) -} - -// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format -// (see sshd(8) manual page) once the options and key type fields have been -// removed. -func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) { - in = bytes.TrimSpace(in) - - i := bytes.IndexAny(in, " \t") - if i == -1 { - i = len(in) - } - base64Key := in[:i] - - key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key))) - n, err := base64.StdEncoding.Decode(key, base64Key) - if err != nil { - return nil, "", err - } - key = key[:n] - out, err = ParsePublicKey(key) - if err != nil { - return nil, "", err - } - comment = string(bytes.TrimSpace(in[i:])) - return out, comment, nil -} - -// ParseKnownHosts parses an entry in the format of the known_hosts file. -// -// The known_hosts format is documented in the sshd(8) manual page. This -// function will parse a single entry from in. On successful return, marker -// will contain the optional marker value (i.e. "cert-authority" or "revoked") -// or else be empty, hosts will contain the hosts that this entry matches, -// pubKey will contain the public key and comment will contain any trailing -// comment at the end of the line. See the sshd(8) manual page for the various -// forms that a host string can take. -// -// The unparsed remainder of the input will be returned in rest. This function -// can be called repeatedly to parse multiple entries. -// -// If no entries were found in the input then err will be io.EOF. Otherwise a -// non-nil err value indicates a parse error. -func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) { - for len(in) > 0 { - end := bytes.IndexByte(in, '\n') - if end != -1 { - rest = in[end+1:] - in = in[:end] - } else { - rest = nil - } - - end = bytes.IndexByte(in, '\r') - if end != -1 { - in = in[:end] - } - - in = bytes.TrimSpace(in) - if len(in) == 0 || in[0] == '#' { - in = rest - continue - } - - i := bytes.IndexAny(in, " \t") - if i == -1 { - in = rest - continue - } - - // Strip out the beginning of the known_host key. - // This is either an optional marker or a (set of) hostname(s). - keyFields := bytes.Fields(in) - if len(keyFields) < 3 || len(keyFields) > 5 { - return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data") - } - - // keyFields[0] is either "@cert-authority", "@revoked" or a comma separated - // list of hosts - marker := "" - if keyFields[0][0] == '@' { - marker = string(keyFields[0][1:]) - keyFields = keyFields[1:] - } - - hosts := string(keyFields[0]) - // keyFields[1] contains the key type (e.g. “ssh-rsa”). - // However, that information is duplicated inside the - // base64-encoded key and so is ignored here. - - key := bytes.Join(keyFields[2:], []byte(" ")) - if pubKey, comment, err = parseAuthorizedKey(key); err != nil { - return "", nil, nil, "", nil, err - } - - return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil - } - - return "", nil, nil, "", nil, io.EOF -} - -// ParseAuthorizedKey parses a public key from an authorized_keys -// file used in OpenSSH according to the sshd(8) manual page. -func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) { - for len(in) > 0 { - end := bytes.IndexByte(in, '\n') - if end != -1 { - rest = in[end+1:] - in = in[:end] - } else { - rest = nil - } - - end = bytes.IndexByte(in, '\r') - if end != -1 { - in = in[:end] - } - - in = bytes.TrimSpace(in) - if len(in) == 0 || in[0] == '#' { - in = rest - continue - } - - i := bytes.IndexAny(in, " \t") - if i == -1 { - in = rest - continue - } - - if out, comment, err = parseAuthorizedKey(in[i:]); err == nil { - return out, comment, options, rest, nil - } - - // No key type recognised. Maybe there's an options field at - // the beginning. - var b byte - inQuote := false - var candidateOptions []string - optionStart := 0 - for i, b = range in { - isEnd := !inQuote && (b == ' ' || b == '\t') - if (b == ',' && !inQuote) || isEnd { - if i-optionStart > 0 { - candidateOptions = append(candidateOptions, string(in[optionStart:i])) - } - optionStart = i + 1 - } - if isEnd { - break - } - if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) { - inQuote = !inQuote - } - } - for i < len(in) && (in[i] == ' ' || in[i] == '\t') { - i++ - } - if i == len(in) { - // Invalid line: unmatched quote - in = rest - continue - } - - in = in[i:] - i = bytes.IndexAny(in, " \t") - if i == -1 { - in = rest - continue - } - - if out, comment, err = parseAuthorizedKey(in[i:]); err == nil { - options = candidateOptions - return out, comment, options, rest, nil - } - - in = rest - continue - } - - return nil, "", nil, nil, errors.New("ssh: no key found") -} - -// ParsePublicKey parses an SSH public key formatted for use in -// the SSH wire protocol according to RFC 4253, section 6.6. -func ParsePublicKey(in []byte) (out PublicKey, err error) { - algo, in, ok := parseString(in) - if !ok { - return nil, errShortRead - } - var rest []byte - out, rest, err = parsePubKey(in, string(algo)) - if len(rest) > 0 { - return nil, errors.New("ssh: trailing junk in public key") - } - - return out, err -} - -// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH -// authorized_keys file. The return value ends with newline. -func MarshalAuthorizedKey(key PublicKey) []byte { - b := &bytes.Buffer{} - b.WriteString(key.Type()) - b.WriteByte(' ') - e := base64.NewEncoder(base64.StdEncoding, b) - e.Write(key.Marshal()) - e.Close() - b.WriteByte('\n') - return b.Bytes() -} - -// MarshalPrivateKey returns a PEM block with the private key serialized in the -// OpenSSH format. -func MarshalPrivateKey(key crypto.PrivateKey, comment string) (*pem.Block, error) { - return marshalOpenSSHPrivateKey(key, comment, unencryptedOpenSSHMarshaler) -} - -// MarshalPrivateKeyWithPassphrase returns a PEM block holding the encrypted -// private key serialized in the OpenSSH format. -func MarshalPrivateKeyWithPassphrase(key crypto.PrivateKey, comment string, passphrase []byte) (*pem.Block, error) { - return marshalOpenSSHPrivateKey(key, comment, passphraseProtectedOpenSSHMarshaler(passphrase)) -} - -// PublicKey represents a public key using an unspecified algorithm. -// -// Some PublicKeys provided by this package also implement CryptoPublicKey. -type PublicKey interface { - // Type returns the key format name, e.g. "ssh-rsa". - Type() string - - // Marshal returns the serialized key data in SSH wire format, with the name - // prefix. To unmarshal the returned data, use the ParsePublicKey function. - Marshal() []byte - - // Verify that sig is a signature on the given data using this key. This - // method will hash the data appropriately first. sig.Format is allowed to - // be any signature algorithm compatible with the key type, the caller - // should check if it has more stringent requirements. - Verify(data []byte, sig *Signature) error -} - -// CryptoPublicKey, if implemented by a PublicKey, -// returns the underlying crypto.PublicKey form of the key. -type CryptoPublicKey interface { - CryptoPublicKey() crypto.PublicKey -} - -// A Signer can create signatures that verify against a public key. -// -// Some Signers provided by this package also implement MultiAlgorithmSigner. -type Signer interface { - // PublicKey returns the associated PublicKey. - PublicKey() PublicKey - - // Sign returns a signature for the given data. This method will hash the - // data appropriately first. The signature algorithm is expected to match - // the key format returned by the PublicKey.Type method (and not to be any - // alternative algorithm supported by the key format). - Sign(rand io.Reader, data []byte) (*Signature, error) -} - -// An AlgorithmSigner is a Signer that also supports specifying an algorithm to -// use for signing. -// -// An AlgorithmSigner can't advertise the algorithms it supports, unless it also -// implements MultiAlgorithmSigner, so it should be prepared to be invoked with -// every algorithm supported by the public key format. -type AlgorithmSigner interface { - Signer - - // SignWithAlgorithm is like Signer.Sign, but allows specifying a desired - // signing algorithm. Callers may pass an empty string for the algorithm in - // which case the AlgorithmSigner will use a default algorithm. This default - // doesn't currently control any behavior in this package. - SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) -} - -// MultiAlgorithmSigner is an AlgorithmSigner that also reports the algorithms -// supported by that signer. -type MultiAlgorithmSigner interface { - AlgorithmSigner - - // Algorithms returns the available algorithms in preference order. The list - // must not be empty, and it must not include certificate types. - Algorithms() []string -} - -// NewSignerWithAlgorithms returns a signer restricted to the specified -// algorithms. The algorithms must be set in preference order. The list must not -// be empty, and it must not include certificate types. An error is returned if -// the specified algorithms are incompatible with the public key type. -func NewSignerWithAlgorithms(signer AlgorithmSigner, algorithms []string) (MultiAlgorithmSigner, error) { - if len(algorithms) == 0 { - return nil, errors.New("ssh: please specify at least one valid signing algorithm") - } - var signerAlgos []string - supportedAlgos := algorithmsForKeyFormat(underlyingAlgo(signer.PublicKey().Type())) - if s, ok := signer.(*multiAlgorithmSigner); ok { - signerAlgos = s.Algorithms() - } else { - signerAlgos = supportedAlgos - } - - for _, algo := range algorithms { - if !contains(supportedAlgos, algo) { - return nil, fmt.Errorf("ssh: algorithm %q is not supported for key type %q", - algo, signer.PublicKey().Type()) - } - if !contains(signerAlgos, algo) { - return nil, fmt.Errorf("ssh: algorithm %q is restricted for the provided signer", algo) - } - } - return &multiAlgorithmSigner{ - AlgorithmSigner: signer, - supportedAlgorithms: algorithms, - }, nil -} - -type multiAlgorithmSigner struct { - AlgorithmSigner - supportedAlgorithms []string -} - -func (s *multiAlgorithmSigner) Algorithms() []string { - return s.supportedAlgorithms -} - -func (s *multiAlgorithmSigner) isAlgorithmSupported(algorithm string) bool { - if algorithm == "" { - algorithm = underlyingAlgo(s.PublicKey().Type()) - } - for _, algo := range s.supportedAlgorithms { - if algorithm == algo { - return true - } - } - return false -} - -func (s *multiAlgorithmSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) { - if !s.isAlgorithmSupported(algorithm) { - return nil, fmt.Errorf("ssh: algorithm %q is not supported: %v", algorithm, s.supportedAlgorithms) - } - return s.AlgorithmSigner.SignWithAlgorithm(rand, data, algorithm) -} - -type rsaPublicKey rsa.PublicKey - -func (r *rsaPublicKey) Type() string { - return "ssh-rsa" -} - -// parseRSA parses an RSA key according to RFC 4253, section 6.6. -func parseRSA(in []byte) (out PublicKey, rest []byte, err error) { - var w struct { - E *big.Int - N *big.Int - Rest []byte `ssh:"rest"` - } - if err := Unmarshal(in, &w); err != nil { - return nil, nil, err - } - - if w.E.BitLen() > 24 { - return nil, nil, errors.New("ssh: exponent too large") - } - e := w.E.Int64() - if e < 3 || e&1 == 0 { - return nil, nil, errors.New("ssh: incorrect exponent") - } - - var key rsa.PublicKey - key.E = int(e) - key.N = w.N - return (*rsaPublicKey)(&key), w.Rest, nil -} - -func (r *rsaPublicKey) Marshal() []byte { - e := new(big.Int).SetInt64(int64(r.E)) - // RSA publickey struct layout should match the struct used by - // parseRSACert in the x/crypto/ssh/agent package. - wirekey := struct { - Name string - E *big.Int - N *big.Int - }{ - KeyAlgoRSA, - e, - r.N, - } - return Marshal(&wirekey) -} - -func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error { - supportedAlgos := algorithmsForKeyFormat(r.Type()) - if !contains(supportedAlgos, sig.Format) { - return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type()) - } - hash := hashFuncs[sig.Format] - h := hash.New() - h.Write(data) - digest := h.Sum(nil) - - // Signatures in PKCS1v15 must match the key's modulus in - // length. However with SSH, some signers provide RSA - // signatures which are missing the MSB 0's of the bignum - // represented. With ssh-rsa signatures, this is encouraged by - // the spec (even though e.g. OpenSSH will give the full - // length unconditionally). With rsa-sha2-* signatures, the - // verifier is allowed to support these, even though they are - // out of spec. See RFC 4253 Section 6.6 for ssh-rsa and RFC - // 8332 Section 3 for rsa-sha2-* details. - // - // In practice: - // * OpenSSH always allows "short" signatures: - // https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L526 - // but always generates padded signatures: - // https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L439 - // - // * PuTTY versions 0.81 and earlier will generate short - // signatures for all RSA signature variants. Note that - // PuTTY is embedded in other software, such as WinSCP and - // FileZilla. At the time of writing, a patch has been - // applied to PuTTY to generate padded signatures for - // rsa-sha2-*, but not yet released: - // https://git.tartarus.org/?p=simon/putty.git;a=commitdiff;h=a5bcf3d384e1bf15a51a6923c3724cbbee022d8e - // - // * SSH.NET versions 2024.0.0 and earlier will generate short - // signatures for all RSA signature variants, fixed in 2024.1.0: - // https://github.com/sshnet/SSH.NET/releases/tag/2024.1.0 - // - // As a result, we pad these up to the key size by inserting - // leading 0's. - // - // Note that support for short signatures with rsa-sha2-* may - // be removed in the future due to such signatures not being - // allowed by the spec. - blob := sig.Blob - keySize := (*rsa.PublicKey)(r).Size() - if len(blob) < keySize { - padded := make([]byte, keySize) - copy(padded[keySize-len(blob):], blob) - blob = padded - } - return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, blob) -} - -func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey { - return (*rsa.PublicKey)(r) -} - -type dsaPublicKey dsa.PublicKey - -func (k *dsaPublicKey) Type() string { - return "ssh-dss" -} - -func checkDSAParams(param *dsa.Parameters) error { - // SSH specifies FIPS 186-2, which only provided a single size - // (1024 bits) DSA key. FIPS 186-3 allows for larger key - // sizes, which would confuse SSH. - if l := param.P.BitLen(); l != 1024 { - return fmt.Errorf("ssh: unsupported DSA key size %d", l) - } - - return nil -} - -// parseDSA parses an DSA key according to RFC 4253, section 6.6. -func parseDSA(in []byte) (out PublicKey, rest []byte, err error) { - var w struct { - P, Q, G, Y *big.Int - Rest []byte `ssh:"rest"` - } - if err := Unmarshal(in, &w); err != nil { - return nil, nil, err - } - - param := dsa.Parameters{ - P: w.P, - Q: w.Q, - G: w.G, - } - if err := checkDSAParams(¶m); err != nil { - return nil, nil, err - } - - key := &dsaPublicKey{ - Parameters: param, - Y: w.Y, - } - return key, w.Rest, nil -} - -func (k *dsaPublicKey) Marshal() []byte { - // DSA publickey struct layout should match the struct used by - // parseDSACert in the x/crypto/ssh/agent package. - w := struct { - Name string - P, Q, G, Y *big.Int - }{ - k.Type(), - k.P, - k.Q, - k.G, - k.Y, - } - - return Marshal(&w) -} - -func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error { - if sig.Format != k.Type() { - return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) - } - h := hashFuncs[sig.Format].New() - h.Write(data) - digest := h.Sum(nil) - - // Per RFC 4253, section 6.6, - // The value for 'dss_signature_blob' is encoded as a string containing - // r, followed by s (which are 160-bit integers, without lengths or - // padding, unsigned, and in network byte order). - // For DSS purposes, sig.Blob should be exactly 40 bytes in length. - if len(sig.Blob) != 40 { - return errors.New("ssh: DSA signature parse error") - } - r := new(big.Int).SetBytes(sig.Blob[:20]) - s := new(big.Int).SetBytes(sig.Blob[20:]) - if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) { - return nil - } - return errors.New("ssh: signature did not verify") -} - -func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey { - return (*dsa.PublicKey)(k) -} - -type dsaPrivateKey struct { - *dsa.PrivateKey -} - -func (k *dsaPrivateKey) PublicKey() PublicKey { - return (*dsaPublicKey)(&k.PrivateKey.PublicKey) -} - -func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) { - return k.SignWithAlgorithm(rand, data, k.PublicKey().Type()) -} - -func (k *dsaPrivateKey) Algorithms() []string { - return []string{k.PublicKey().Type()} -} - -func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) { - if algorithm != "" && algorithm != k.PublicKey().Type() { - return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm) - } - - h := hashFuncs[k.PublicKey().Type()].New() - h.Write(data) - digest := h.Sum(nil) - r, s, err := dsa.Sign(rand, k.PrivateKey, digest) - if err != nil { - return nil, err - } - - sig := make([]byte, 40) - rb := r.Bytes() - sb := s.Bytes() - - copy(sig[20-len(rb):20], rb) - copy(sig[40-len(sb):], sb) - - return &Signature{ - Format: k.PublicKey().Type(), - Blob: sig, - }, nil -} - -type ecdsaPublicKey ecdsa.PublicKey - -func (k *ecdsaPublicKey) Type() string { - return "ecdsa-sha2-" + k.nistID() -} - -func (k *ecdsaPublicKey) nistID() string { - switch k.Params().BitSize { - case 256: - return "nistp256" - case 384: - return "nistp384" - case 521: - return "nistp521" - } - panic("ssh: unsupported ecdsa key size") -} - -type ed25519PublicKey ed25519.PublicKey - -func (k ed25519PublicKey) Type() string { - return KeyAlgoED25519 -} - -func parseED25519(in []byte) (out PublicKey, rest []byte, err error) { - var w struct { - KeyBytes []byte - Rest []byte `ssh:"rest"` - } - - if err := Unmarshal(in, &w); err != nil { - return nil, nil, err - } - - if l := len(w.KeyBytes); l != ed25519.PublicKeySize { - return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l) - } - - return ed25519PublicKey(w.KeyBytes), w.Rest, nil -} - -func (k ed25519PublicKey) Marshal() []byte { - w := struct { - Name string - KeyBytes []byte - }{ - KeyAlgoED25519, - []byte(k), - } - return Marshal(&w) -} - -func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error { - if sig.Format != k.Type() { - return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) - } - if l := len(k); l != ed25519.PublicKeySize { - return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l) - } - - if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok { - return errors.New("ssh: signature did not verify") - } - - return nil -} - -func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey { - return ed25519.PublicKey(k) -} - -func supportedEllipticCurve(curve elliptic.Curve) bool { - return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521() -} - -// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1. -func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) { - var w struct { - Curve string - KeyBytes []byte - Rest []byte `ssh:"rest"` - } - - if err := Unmarshal(in, &w); err != nil { - return nil, nil, err - } - - key := new(ecdsa.PublicKey) - - switch w.Curve { - case "nistp256": - key.Curve = elliptic.P256() - case "nistp384": - key.Curve = elliptic.P384() - case "nistp521": - key.Curve = elliptic.P521() - default: - return nil, nil, errors.New("ssh: unsupported curve") - } - - key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes) - if key.X == nil || key.Y == nil { - return nil, nil, errors.New("ssh: invalid curve point") - } - return (*ecdsaPublicKey)(key), w.Rest, nil -} - -func (k *ecdsaPublicKey) Marshal() []byte { - // See RFC 5656, section 3.1. - keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y) - // ECDSA publickey struct layout should match the struct used by - // parseECDSACert in the x/crypto/ssh/agent package. - w := struct { - Name string - ID string - Key []byte - }{ - k.Type(), - k.nistID(), - keyBytes, - } - - return Marshal(&w) -} - -func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error { - if sig.Format != k.Type() { - return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) - } - - h := hashFuncs[sig.Format].New() - h.Write(data) - digest := h.Sum(nil) - - // Per RFC 5656, section 3.1.2, - // The ecdsa_signature_blob value has the following specific encoding: - // mpint r - // mpint s - var ecSig struct { - R *big.Int - S *big.Int - } - - if err := Unmarshal(sig.Blob, &ecSig); err != nil { - return err - } - - if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) { - return nil - } - return errors.New("ssh: signature did not verify") -} - -func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey { - return (*ecdsa.PublicKey)(k) -} - -// skFields holds the additional fields present in U2F/FIDO2 signatures. -// See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details. -type skFields struct { - // Flags contains U2F/FIDO2 flags such as 'user present' - Flags byte - // Counter is a monotonic signature counter which can be - // used to detect concurrent use of a private key, should - // it be extracted from hardware. - Counter uint32 -} - -type skECDSAPublicKey struct { - // application is a URL-like string, typically "ssh:" for SSH. - // see openssh/PROTOCOL.u2f for details. - application string - ecdsa.PublicKey -} - -func (k *skECDSAPublicKey) Type() string { - return KeyAlgoSKECDSA256 -} - -func (k *skECDSAPublicKey) nistID() string { - return "nistp256" -} - -func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) { - var w struct { - Curve string - KeyBytes []byte - Application string - Rest []byte `ssh:"rest"` - } - - if err := Unmarshal(in, &w); err != nil { - return nil, nil, err - } - - key := new(skECDSAPublicKey) - key.application = w.Application - - if w.Curve != "nistp256" { - return nil, nil, errors.New("ssh: unsupported curve") - } - key.Curve = elliptic.P256() - - key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes) - if key.X == nil || key.Y == nil { - return nil, nil, errors.New("ssh: invalid curve point") - } - - return key, w.Rest, nil -} - -func (k *skECDSAPublicKey) Marshal() []byte { - // See RFC 5656, section 3.1. - keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y) - w := struct { - Name string - ID string - Key []byte - Application string - }{ - k.Type(), - k.nistID(), - keyBytes, - k.application, - } - - return Marshal(&w) -} - -func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error { - if sig.Format != k.Type() { - return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) - } - - h := hashFuncs[sig.Format].New() - h.Write([]byte(k.application)) - appDigest := h.Sum(nil) - - h.Reset() - h.Write(data) - dataDigest := h.Sum(nil) - - var ecSig struct { - R *big.Int - S *big.Int - } - if err := Unmarshal(sig.Blob, &ecSig); err != nil { - return err - } - - var skf skFields - if err := Unmarshal(sig.Rest, &skf); err != nil { - return err - } - - blob := struct { - ApplicationDigest []byte `ssh:"rest"` - Flags byte - Counter uint32 - MessageDigest []byte `ssh:"rest"` - }{ - appDigest, - skf.Flags, - skf.Counter, - dataDigest, - } - - original := Marshal(blob) - - h.Reset() - h.Write(original) - digest := h.Sum(nil) - - if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) { - return nil - } - return errors.New("ssh: signature did not verify") -} - -func (k *skECDSAPublicKey) CryptoPublicKey() crypto.PublicKey { - return &k.PublicKey -} - -type skEd25519PublicKey struct { - // application is a URL-like string, typically "ssh:" for SSH. - // see openssh/PROTOCOL.u2f for details. - application string - ed25519.PublicKey -} - -func (k *skEd25519PublicKey) Type() string { - return KeyAlgoSKED25519 -} - -func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) { - var w struct { - KeyBytes []byte - Application string - Rest []byte `ssh:"rest"` - } - - if err := Unmarshal(in, &w); err != nil { - return nil, nil, err - } - - if l := len(w.KeyBytes); l != ed25519.PublicKeySize { - return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l) - } - - key := new(skEd25519PublicKey) - key.application = w.Application - key.PublicKey = ed25519.PublicKey(w.KeyBytes) - - return key, w.Rest, nil -} - -func (k *skEd25519PublicKey) Marshal() []byte { - w := struct { - Name string - KeyBytes []byte - Application string - }{ - KeyAlgoSKED25519, - []byte(k.PublicKey), - k.application, - } - return Marshal(&w) -} - -func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error { - if sig.Format != k.Type() { - return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) - } - if l := len(k.PublicKey); l != ed25519.PublicKeySize { - return fmt.Errorf("invalid size %d for Ed25519 public key", l) - } - - h := hashFuncs[sig.Format].New() - h.Write([]byte(k.application)) - appDigest := h.Sum(nil) - - h.Reset() - h.Write(data) - dataDigest := h.Sum(nil) - - var edSig struct { - Signature []byte `ssh:"rest"` - } - - if err := Unmarshal(sig.Blob, &edSig); err != nil { - return err - } - - var skf skFields - if err := Unmarshal(sig.Rest, &skf); err != nil { - return err - } - - blob := struct { - ApplicationDigest []byte `ssh:"rest"` - Flags byte - Counter uint32 - MessageDigest []byte `ssh:"rest"` - }{ - appDigest, - skf.Flags, - skf.Counter, - dataDigest, - } - - original := Marshal(blob) - - if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok { - return errors.New("ssh: signature did not verify") - } - - return nil -} - -func (k *skEd25519PublicKey) CryptoPublicKey() crypto.PublicKey { - return k.PublicKey -} - -// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey, -// *ecdsa.PrivateKey or any other crypto.Signer and returns a -// corresponding Signer instance. ECDSA keys must use P-256, P-384 or -// P-521. DSA keys must use parameter size L1024N160. -func NewSignerFromKey(key interface{}) (Signer, error) { - switch key := key.(type) { - case crypto.Signer: - return NewSignerFromSigner(key) - case *dsa.PrivateKey: - return newDSAPrivateKey(key) - default: - return nil, fmt.Errorf("ssh: unsupported key type %T", key) - } -} - -func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) { - if err := checkDSAParams(&key.PublicKey.Parameters); err != nil { - return nil, err - } - - return &dsaPrivateKey{key}, nil -} - -type wrappedSigner struct { - signer crypto.Signer - pubKey PublicKey -} - -// NewSignerFromSigner takes any crypto.Signer implementation and -// returns a corresponding Signer interface. This can be used, for -// example, with keys kept in hardware modules. -func NewSignerFromSigner(signer crypto.Signer) (Signer, error) { - pubKey, err := NewPublicKey(signer.Public()) - if err != nil { - return nil, err - } - - return &wrappedSigner{signer, pubKey}, nil -} - -func (s *wrappedSigner) PublicKey() PublicKey { - return s.pubKey -} - -func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) { - return s.SignWithAlgorithm(rand, data, s.pubKey.Type()) -} - -func (s *wrappedSigner) Algorithms() []string { - return algorithmsForKeyFormat(s.pubKey.Type()) -} - -func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) { - if algorithm == "" { - algorithm = s.pubKey.Type() - } - - if !contains(s.Algorithms(), algorithm) { - return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type()) - } - - hashFunc := hashFuncs[algorithm] - var digest []byte - if hashFunc != 0 { - h := hashFunc.New() - h.Write(data) - digest = h.Sum(nil) - } else { - digest = data - } - - signature, err := s.signer.Sign(rand, digest, hashFunc) - if err != nil { - return nil, err - } - - // crypto.Signer.Sign is expected to return an ASN.1-encoded signature - // for ECDSA and DSA, but that's not the encoding expected by SSH, so - // re-encode. - switch s.pubKey.(type) { - case *ecdsaPublicKey, *dsaPublicKey: - type asn1Signature struct { - R, S *big.Int - } - asn1Sig := new(asn1Signature) - _, err := asn1.Unmarshal(signature, asn1Sig) - if err != nil { - return nil, err - } - - switch s.pubKey.(type) { - case *ecdsaPublicKey: - signature = Marshal(asn1Sig) - - case *dsaPublicKey: - signature = make([]byte, 40) - r := asn1Sig.R.Bytes() - s := asn1Sig.S.Bytes() - copy(signature[20-len(r):20], r) - copy(signature[40-len(s):40], s) - } - } - - return &Signature{ - Format: algorithm, - Blob: signature, - }, nil -} - -// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey, -// or ed25519.PublicKey returns a corresponding PublicKey instance. -// ECDSA keys must use P-256, P-384 or P-521. -func NewPublicKey(key interface{}) (PublicKey, error) { - switch key := key.(type) { - case *rsa.PublicKey: - return (*rsaPublicKey)(key), nil - case *ecdsa.PublicKey: - if !supportedEllipticCurve(key.Curve) { - return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported") - } - return (*ecdsaPublicKey)(key), nil - case *dsa.PublicKey: - return (*dsaPublicKey)(key), nil - case ed25519.PublicKey: - if l := len(key); l != ed25519.PublicKeySize { - return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l) - } - return ed25519PublicKey(key), nil - default: - return nil, fmt.Errorf("ssh: unsupported key type %T", key) - } -} - -// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports -// the same keys as ParseRawPrivateKey. If the private key is encrypted, it -// will return a PassphraseMissingError. -func ParsePrivateKey(pemBytes []byte) (Signer, error) { - key, err := ParseRawPrivateKey(pemBytes) - if err != nil { - return nil, err - } - - return NewSignerFromKey(key) -} - -// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private -// key and passphrase. It supports the same keys as -// ParseRawPrivateKeyWithPassphrase. -func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) { - key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase) - if err != nil { - return nil, err - } - - return NewSignerFromKey(key) -} - -// encryptedBlock tells whether a private key is -// encrypted by examining its Proc-Type header -// for a mention of ENCRYPTED -// according to RFC 1421 Section 4.6.1.1. -func encryptedBlock(block *pem.Block) bool { - return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED") -} - -// A PassphraseMissingError indicates that parsing this private key requires a -// passphrase. Use ParsePrivateKeyWithPassphrase. -type PassphraseMissingError struct { - // PublicKey will be set if the private key format includes an unencrypted - // public key along with the encrypted private key. - PublicKey PublicKey -} - -func (*PassphraseMissingError) Error() string { - return "ssh: this private key is passphrase protected" -} - -// ParseRawPrivateKey returns a private key from a PEM encoded private key. It supports -// RSA, DSA, ECDSA, and Ed25519 private keys in PKCS#1, PKCS#8, OpenSSL, and OpenSSH -// formats. If the private key is encrypted, it will return a PassphraseMissingError. -func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) { - block, _ := pem.Decode(pemBytes) - if block == nil { - return nil, errors.New("ssh: no key found") - } - - if encryptedBlock(block) { - return nil, &PassphraseMissingError{} - } - - switch block.Type { - case "RSA PRIVATE KEY": - return x509.ParsePKCS1PrivateKey(block.Bytes) - // RFC5208 - https://tools.ietf.org/html/rfc5208 - case "PRIVATE KEY": - return x509.ParsePKCS8PrivateKey(block.Bytes) - case "EC PRIVATE KEY": - return x509.ParseECPrivateKey(block.Bytes) - case "DSA PRIVATE KEY": - return ParseDSAPrivateKey(block.Bytes) - case "OPENSSH PRIVATE KEY": - return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey) - default: - return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type) - } -} - -// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with -// passphrase from a PEM encoded private key. If the passphrase is wrong, it -// will return x509.IncorrectPasswordError. -func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) { - block, _ := pem.Decode(pemBytes) - if block == nil { - return nil, errors.New("ssh: no key found") - } - - if block.Type == "OPENSSH PRIVATE KEY" { - return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase)) - } - - if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) { - return nil, errors.New("ssh: not an encrypted key") - } - - buf, err := x509.DecryptPEMBlock(block, passphrase) - if err != nil { - if err == x509.IncorrectPasswordError { - return nil, err - } - return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err) - } - - var result interface{} - - switch block.Type { - case "RSA PRIVATE KEY": - result, err = x509.ParsePKCS1PrivateKey(buf) - case "EC PRIVATE KEY": - result, err = x509.ParseECPrivateKey(buf) - case "DSA PRIVATE KEY": - result, err = ParseDSAPrivateKey(buf) - default: - err = fmt.Errorf("ssh: unsupported key type %q", block.Type) - } - // Because of deficiencies in the format, DecryptPEMBlock does not always - // detect an incorrect password. In these cases decrypted DER bytes is - // random noise. If the parsing of the key returns an asn1.StructuralError - // we return x509.IncorrectPasswordError. - if _, ok := err.(asn1.StructuralError); ok { - return nil, x509.IncorrectPasswordError - } - - return result, err -} - -// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as -// specified by the OpenSSL DSA man page. -func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) { - var k struct { - Version int - P *big.Int - Q *big.Int - G *big.Int - Pub *big.Int - Priv *big.Int - } - rest, err := asn1.Unmarshal(der, &k) - if err != nil { - return nil, errors.New("ssh: failed to parse DSA key: " + err.Error()) - } - if len(rest) > 0 { - return nil, errors.New("ssh: garbage after DSA key") - } - - return &dsa.PrivateKey{ - PublicKey: dsa.PublicKey{ - Parameters: dsa.Parameters{ - P: k.P, - Q: k.Q, - G: k.G, - }, - Y: k.Pub, - }, - X: k.Priv, - }, nil -} - -func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) { - if kdfName != "none" || cipherName != "none" { - return nil, &PassphraseMissingError{} - } - if kdfOpts != "" { - return nil, errors.New("ssh: invalid openssh private key") - } - return privKeyBlock, nil -} - -func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc { - return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) { - if kdfName == "none" || cipherName == "none" { - return nil, errors.New("ssh: key is not password protected") - } - if kdfName != "bcrypt" { - return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt") - } - - var opts struct { - Salt string - Rounds uint32 - } - if err := Unmarshal([]byte(kdfOpts), &opts); err != nil { - return nil, err - } - - k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16) - if err != nil { - return nil, err - } - key, iv := k[:32], k[32:] - - c, err := aes.NewCipher(key) - if err != nil { - return nil, err - } - switch cipherName { - case "aes256-ctr": - ctr := cipher.NewCTR(c, iv) - ctr.XORKeyStream(privKeyBlock, privKeyBlock) - case "aes256-cbc": - if len(privKeyBlock)%c.BlockSize() != 0 { - return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size") - } - cbc := cipher.NewCBCDecrypter(c, iv) - cbc.CryptBlocks(privKeyBlock, privKeyBlock) - default: - return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc") - } - - return privKeyBlock, nil - } -} - -func unencryptedOpenSSHMarshaler(privKeyBlock []byte) ([]byte, string, string, string, error) { - key := generateOpenSSHPadding(privKeyBlock, 8) - return key, "none", "none", "", nil -} - -func passphraseProtectedOpenSSHMarshaler(passphrase []byte) openSSHEncryptFunc { - return func(privKeyBlock []byte) ([]byte, string, string, string, error) { - salt := make([]byte, 16) - if _, err := rand.Read(salt); err != nil { - return nil, "", "", "", err - } - - opts := struct { - Salt []byte - Rounds uint32 - }{salt, 16} - - // Derive key to encrypt the private key block. - k, err := bcrypt_pbkdf.Key(passphrase, salt, int(opts.Rounds), 32+aes.BlockSize) - if err != nil { - return nil, "", "", "", err - } - - // Add padding matching the block size of AES. - keyBlock := generateOpenSSHPadding(privKeyBlock, aes.BlockSize) - - // Encrypt the private key using the derived secret. - - dst := make([]byte, len(keyBlock)) - key, iv := k[:32], k[32:] - block, err := aes.NewCipher(key) - if err != nil { - return nil, "", "", "", err - } - - stream := cipher.NewCTR(block, iv) - stream.XORKeyStream(dst, keyBlock) - - return dst, "aes256-ctr", "bcrypt", string(Marshal(opts)), nil - } -} - -const privateKeyAuthMagic = "openssh-key-v1\x00" - -type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error) -type openSSHEncryptFunc func(PrivKeyBlock []byte) (ProtectedKeyBlock []byte, cipherName, kdfName, kdfOptions string, err error) - -type openSSHEncryptedPrivateKey struct { - CipherName string - KdfName string - KdfOpts string - NumKeys uint32 - PubKey []byte - PrivKeyBlock []byte -} - -type openSSHPrivateKey struct { - Check1 uint32 - Check2 uint32 - Keytype string - Rest []byte `ssh:"rest"` -} - -type openSSHRSAPrivateKey struct { - N *big.Int - E *big.Int - D *big.Int - Iqmp *big.Int - P *big.Int - Q *big.Int - Comment string - Pad []byte `ssh:"rest"` -} - -type openSSHEd25519PrivateKey struct { - Pub []byte - Priv []byte - Comment string - Pad []byte `ssh:"rest"` -} - -type openSSHECDSAPrivateKey struct { - Curve string - Pub []byte - D *big.Int - Comment string - Pad []byte `ssh:"rest"` -} - -// parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt -// function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used -// as the decrypt function to parse an unencrypted private key. See -// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key. -func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) { - if len(key) < len(privateKeyAuthMagic) || string(key[:len(privateKeyAuthMagic)]) != privateKeyAuthMagic { - return nil, errors.New("ssh: invalid openssh private key format") - } - remaining := key[len(privateKeyAuthMagic):] - - var w openSSHEncryptedPrivateKey - if err := Unmarshal(remaining, &w); err != nil { - return nil, err - } - if w.NumKeys != 1 { - // We only support single key files, and so does OpenSSH. - // https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171 - return nil, errors.New("ssh: multi-key files are not supported") - } - - privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock) - if err != nil { - if err, ok := err.(*PassphraseMissingError); ok { - pub, errPub := ParsePublicKey(w.PubKey) - if errPub != nil { - return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub) - } - err.PublicKey = pub - } - return nil, err - } - - var pk1 openSSHPrivateKey - if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 { - if w.CipherName != "none" { - return nil, x509.IncorrectPasswordError - } - return nil, errors.New("ssh: malformed OpenSSH key") - } - - switch pk1.Keytype { - case KeyAlgoRSA: - var key openSSHRSAPrivateKey - if err := Unmarshal(pk1.Rest, &key); err != nil { - return nil, err - } - - if err := checkOpenSSHKeyPadding(key.Pad); err != nil { - return nil, err - } - - pk := &rsa.PrivateKey{ - PublicKey: rsa.PublicKey{ - N: key.N, - E: int(key.E.Int64()), - }, - D: key.D, - Primes: []*big.Int{key.P, key.Q}, - } - - if err := pk.Validate(); err != nil { - return nil, err - } - - pk.Precompute() - - return pk, nil - case KeyAlgoED25519: - var key openSSHEd25519PrivateKey - if err := Unmarshal(pk1.Rest, &key); err != nil { - return nil, err - } - - if len(key.Priv) != ed25519.PrivateKeySize { - return nil, errors.New("ssh: private key unexpected length") - } - - if err := checkOpenSSHKeyPadding(key.Pad); err != nil { - return nil, err - } - - pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize)) - copy(pk, key.Priv) - return &pk, nil - case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521: - var key openSSHECDSAPrivateKey - if err := Unmarshal(pk1.Rest, &key); err != nil { - return nil, err - } - - if err := checkOpenSSHKeyPadding(key.Pad); err != nil { - return nil, err - } - - var curve elliptic.Curve - switch key.Curve { - case "nistp256": - curve = elliptic.P256() - case "nistp384": - curve = elliptic.P384() - case "nistp521": - curve = elliptic.P521() - default: - return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve) - } - - X, Y := elliptic.Unmarshal(curve, key.Pub) - if X == nil || Y == nil { - return nil, errors.New("ssh: failed to unmarshal public key") - } - - if key.D.Cmp(curve.Params().N) >= 0 { - return nil, errors.New("ssh: scalar is out of range") - } - - x, y := curve.ScalarBaseMult(key.D.Bytes()) - if x.Cmp(X) != 0 || y.Cmp(Y) != 0 { - return nil, errors.New("ssh: public key does not match private key") - } - - return &ecdsa.PrivateKey{ - PublicKey: ecdsa.PublicKey{ - Curve: curve, - X: X, - Y: Y, - }, - D: key.D, - }, nil - default: - return nil, errors.New("ssh: unhandled key type") - } -} - -func marshalOpenSSHPrivateKey(key crypto.PrivateKey, comment string, encrypt openSSHEncryptFunc) (*pem.Block, error) { - var w openSSHEncryptedPrivateKey - var pk1 openSSHPrivateKey - - // Random check bytes. - var check uint32 - if err := binary.Read(rand.Reader, binary.BigEndian, &check); err != nil { - return nil, err - } - - pk1.Check1 = check - pk1.Check2 = check - w.NumKeys = 1 - - // Use a []byte directly on ed25519 keys. - if k, ok := key.(*ed25519.PrivateKey); ok { - key = *k - } - - switch k := key.(type) { - case *rsa.PrivateKey: - E := new(big.Int).SetInt64(int64(k.PublicKey.E)) - // Marshal public key: - // E and N are in reversed order in the public and private key. - pubKey := struct { - KeyType string - E *big.Int - N *big.Int - }{ - KeyAlgoRSA, - E, k.PublicKey.N, - } - w.PubKey = Marshal(pubKey) - - // Marshal private key. - key := openSSHRSAPrivateKey{ - N: k.PublicKey.N, - E: E, - D: k.D, - Iqmp: k.Precomputed.Qinv, - P: k.Primes[0], - Q: k.Primes[1], - Comment: comment, - } - pk1.Keytype = KeyAlgoRSA - pk1.Rest = Marshal(key) - case ed25519.PrivateKey: - pub := make([]byte, ed25519.PublicKeySize) - priv := make([]byte, ed25519.PrivateKeySize) - copy(pub, k[32:]) - copy(priv, k) - - // Marshal public key. - pubKey := struct { - KeyType string - Pub []byte - }{ - KeyAlgoED25519, pub, - } - w.PubKey = Marshal(pubKey) - - // Marshal private key. - key := openSSHEd25519PrivateKey{ - Pub: pub, - Priv: priv, - Comment: comment, - } - pk1.Keytype = KeyAlgoED25519 - pk1.Rest = Marshal(key) - case *ecdsa.PrivateKey: - var curve, keyType string - switch name := k.Curve.Params().Name; name { - case "P-256": - curve = "nistp256" - keyType = KeyAlgoECDSA256 - case "P-384": - curve = "nistp384" - keyType = KeyAlgoECDSA384 - case "P-521": - curve = "nistp521" - keyType = KeyAlgoECDSA521 - default: - return nil, errors.New("ssh: unhandled elliptic curve " + name) - } - - pub := elliptic.Marshal(k.Curve, k.PublicKey.X, k.PublicKey.Y) - - // Marshal public key. - pubKey := struct { - KeyType string - Curve string - Pub []byte - }{ - keyType, curve, pub, - } - w.PubKey = Marshal(pubKey) - - // Marshal private key. - key := openSSHECDSAPrivateKey{ - Curve: curve, - Pub: pub, - D: k.D, - Comment: comment, - } - pk1.Keytype = keyType - pk1.Rest = Marshal(key) - default: - return nil, fmt.Errorf("ssh: unsupported key type %T", k) - } - - var err error - // Add padding and encrypt the key if necessary. - w.PrivKeyBlock, w.CipherName, w.KdfName, w.KdfOpts, err = encrypt(Marshal(pk1)) - if err != nil { - return nil, err - } - - b := Marshal(w) - block := &pem.Block{ - Type: "OPENSSH PRIVATE KEY", - Bytes: append([]byte(privateKeyAuthMagic), b...), - } - return block, nil -} - -func checkOpenSSHKeyPadding(pad []byte) error { - for i, b := range pad { - if int(b) != i+1 { - return errors.New("ssh: padding not as expected") - } - } - return nil -} - -func generateOpenSSHPadding(block []byte, blockSize int) []byte { - for i, l := 0, len(block); (l+i)%blockSize != 0; i++ { - block = append(block, byte(i+1)) - } - return block -} - -// FingerprintLegacyMD5 returns the user presentation of the key's -// fingerprint as described by RFC 4716 section 4. -func FingerprintLegacyMD5(pubKey PublicKey) string { - md5sum := md5.Sum(pubKey.Marshal()) - hexarray := make([]string, len(md5sum)) - for i, c := range md5sum { - hexarray[i] = hex.EncodeToString([]byte{c}) - } - return strings.Join(hexarray, ":") -} - -// FingerprintSHA256 returns the user presentation of the key's -// fingerprint as unpadded base64 encoded sha256 hash. -// This format was introduced from OpenSSH 6.8. -// https://www.openssh.com/txt/release-6.8 -// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding) -func FingerprintSHA256(pubKey PublicKey) string { - sha256sum := sha256.Sum256(pubKey.Marshal()) - hash := base64.RawStdEncoding.EncodeToString(sha256sum[:]) - return "SHA256:" + hash -} |