summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s1
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s1')
-rw-r--r--vendor/github.com/golang/geo/s1/angle.go120
-rw-r--r--vendor/github.com/golang/geo/s1/chordangle.go250
-rw-r--r--vendor/github.com/golang/geo/s1/doc.go20
-rw-r--r--vendor/github.com/golang/geo/s1/interval.go462
4 files changed, 0 insertions, 852 deletions
diff --git a/vendor/github.com/golang/geo/s1/angle.go b/vendor/github.com/golang/geo/s1/angle.go
deleted file mode 100644
index 747b23dea..000000000
--- a/vendor/github.com/golang/geo/s1/angle.go
+++ /dev/null
@@ -1,120 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s1
-
-import (
- "math"
- "strconv"
-)
-
-// Angle represents a 1D angle. The internal representation is a double precision
-// value in radians, so conversion to and from radians is exact.
-// Conversions between E5, E6, E7, and Degrees are not always
-// exact. For example, Degrees(3.1) is different from E6(3100000) or E7(31000000).
-//
-// The following conversions between degrees and radians are exact:
-//
-// Degree*180 == Radian*math.Pi
-// Degree*(180/n) == Radian*(math.Pi/n) for n == 0..8
-//
-// These identities hold when the arguments are scaled up or down by any power
-// of 2. Some similar identities are also true, for example,
-//
-// Degree*60 == Radian*(math.Pi/3)
-//
-// But be aware that this type of identity does not hold in general. For example,
-//
-// Degree*3 != Radian*(math.Pi/60)
-//
-// Similarly, the conversion to radians means that (Angle(x)*Degree).Degrees()
-// does not always equal x. For example,
-//
-// (Angle(45*n)*Degree).Degrees() == 45*n for n == 0..8
-//
-// but
-//
-// (60*Degree).Degrees() != 60
-//
-// When testing for equality, you should allow for numerical errors (ApproxEqual)
-// or convert to discrete E5/E6/E7 values first.
-type Angle float64
-
-// Angle units.
-const (
- Radian Angle = 1
- Degree = (math.Pi / 180) * Radian
-
- E5 = 1e-5 * Degree
- E6 = 1e-6 * Degree
- E7 = 1e-7 * Degree
-)
-
-// Radians returns the angle in radians.
-func (a Angle) Radians() float64 { return float64(a) }
-
-// Degrees returns the angle in degrees.
-func (a Angle) Degrees() float64 { return float64(a / Degree) }
-
-// round returns the value rounded to nearest as an int32.
-// This does not match C++ exactly for the case of x.5.
-func round(val float64) int32 {
- if val < 0 {
- return int32(val - 0.5)
- }
- return int32(val + 0.5)
-}
-
-// InfAngle returns an angle larger than any finite angle.
-func InfAngle() Angle {
- return Angle(math.Inf(1))
-}
-
-// isInf reports whether this Angle is infinite.
-func (a Angle) isInf() bool {
- return math.IsInf(float64(a), 0)
-}
-
-// E5 returns the angle in hundred thousandths of degrees.
-func (a Angle) E5() int32 { return round(a.Degrees() * 1e5) }
-
-// E6 returns the angle in millionths of degrees.
-func (a Angle) E6() int32 { return round(a.Degrees() * 1e6) }
-
-// E7 returns the angle in ten millionths of degrees.
-func (a Angle) E7() int32 { return round(a.Degrees() * 1e7) }
-
-// Abs returns the absolute value of the angle.
-func (a Angle) Abs() Angle { return Angle(math.Abs(float64(a))) }
-
-// Normalized returns an equivalent angle in (-π, π].
-func (a Angle) Normalized() Angle {
- rad := math.Remainder(float64(a), 2*math.Pi)
- if rad <= -math.Pi {
- rad = math.Pi
- }
- return Angle(rad)
-}
-
-func (a Angle) String() string {
- return strconv.FormatFloat(a.Degrees(), 'f', 7, 64) // like "%.7f"
-}
-
-// ApproxEqual reports whether the two angles are the same up to a small tolerance.
-func (a Angle) ApproxEqual(other Angle) bool {
- return math.Abs(float64(a)-float64(other)) <= epsilon
-}
-
-// BUG(dsymonds): The major differences from the C++ version are:
-// - no unsigned E5/E6/E7 methods
diff --git a/vendor/github.com/golang/geo/s1/chordangle.go b/vendor/github.com/golang/geo/s1/chordangle.go
deleted file mode 100644
index 406c69ef1..000000000
--- a/vendor/github.com/golang/geo/s1/chordangle.go
+++ /dev/null
@@ -1,250 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s1
-
-import (
- "math"
-)
-
-// ChordAngle represents the angle subtended by a chord (i.e., the straight
-// line segment connecting two points on the sphere). Its representation
-// makes it very efficient for computing and comparing distances, but unlike
-// Angle it is only capable of representing angles between 0 and π radians.
-// Generally, ChordAngle should only be used in loops where many angles need
-// to be calculated and compared. Otherwise it is simpler to use Angle.
-//
-// ChordAngle loses some accuracy as the angle approaches π radians.
-// Specifically, the representation of (π - x) radians has an error of about
-// (1e-15 / x), with a maximum error of about 2e-8 radians (about 13cm on the
-// Earth's surface). For comparison, for angles up to π/2 radians (10000km)
-// the worst-case representation error is about 2e-16 radians (1 nanonmeter),
-// which is about the same as Angle.
-//
-// ChordAngles are represented by the squared chord length, which can
-// range from 0 to 4. Positive infinity represents an infinite squared length.
-type ChordAngle float64
-
-const (
- // NegativeChordAngle represents a chord angle smaller than the zero angle.
- // The only valid operations on a NegativeChordAngle are comparisons,
- // Angle conversions, and Successor/Predecessor.
- NegativeChordAngle = ChordAngle(-1)
-
- // RightChordAngle represents a chord angle of 90 degrees (a "right angle").
- RightChordAngle = ChordAngle(2)
-
- // StraightChordAngle represents a chord angle of 180 degrees (a "straight angle").
- // This is the maximum finite chord angle.
- StraightChordAngle = ChordAngle(4)
-
- // maxLength2 is the square of the maximum length allowed in a ChordAngle.
- maxLength2 = 4.0
-)
-
-// ChordAngleFromAngle returns a ChordAngle from the given Angle.
-func ChordAngleFromAngle(a Angle) ChordAngle {
- if a < 0 {
- return NegativeChordAngle
- }
- if a.isInf() {
- return InfChordAngle()
- }
- l := 2 * math.Sin(0.5*math.Min(math.Pi, a.Radians()))
- return ChordAngle(l * l)
-}
-
-// ChordAngleFromSquaredLength returns a ChordAngle from the squared chord length.
-// Note that the argument is automatically clamped to a maximum of 4 to
-// handle possible roundoff errors. The argument must be non-negative.
-func ChordAngleFromSquaredLength(length2 float64) ChordAngle {
- if length2 > maxLength2 {
- return StraightChordAngle
- }
- return ChordAngle(length2)
-}
-
-// Expanded returns a new ChordAngle that has been adjusted by the given error
-// bound (which can be positive or negative). Error should be the value
-// returned by either MaxPointError or MaxAngleError. For example:
-// a := ChordAngleFromPoints(x, y)
-// a1 := a.Expanded(a.MaxPointError())
-func (c ChordAngle) Expanded(e float64) ChordAngle {
- // If the angle is special, don't change it. Otherwise clamp it to the valid range.
- if c.isSpecial() {
- return c
- }
- return ChordAngle(math.Max(0.0, math.Min(maxLength2, float64(c)+e)))
-}
-
-// Angle converts this ChordAngle to an Angle.
-func (c ChordAngle) Angle() Angle {
- if c < 0 {
- return -1 * Radian
- }
- if c.isInf() {
- return InfAngle()
- }
- return Angle(2 * math.Asin(0.5*math.Sqrt(float64(c))))
-}
-
-// InfChordAngle returns a chord angle larger than any finite chord angle.
-// The only valid operations on an InfChordAngle are comparisons, Angle
-// conversions, and Successor/Predecessor.
-func InfChordAngle() ChordAngle {
- return ChordAngle(math.Inf(1))
-}
-
-// isInf reports whether this ChordAngle is infinite.
-func (c ChordAngle) isInf() bool {
- return math.IsInf(float64(c), 1)
-}
-
-// isSpecial reports whether this ChordAngle is one of the special cases.
-func (c ChordAngle) isSpecial() bool {
- return c < 0 || c.isInf()
-}
-
-// isValid reports whether this ChordAngle is valid or not.
-func (c ChordAngle) isValid() bool {
- return (c >= 0 && c <= maxLength2) || c.isSpecial()
-}
-
-// Successor returns the smallest representable ChordAngle larger than this one.
-// This can be used to convert a "<" comparison to a "<=" comparison.
-//
-// Note the following special cases:
-// NegativeChordAngle.Successor == 0
-// StraightChordAngle.Successor == InfChordAngle
-// InfChordAngle.Successor == InfChordAngle
-func (c ChordAngle) Successor() ChordAngle {
- if c >= maxLength2 {
- return InfChordAngle()
- }
- if c < 0 {
- return 0
- }
- return ChordAngle(math.Nextafter(float64(c), 10.0))
-}
-
-// Predecessor returns the largest representable ChordAngle less than this one.
-//
-// Note the following special cases:
-// InfChordAngle.Predecessor == StraightChordAngle
-// ChordAngle(0).Predecessor == NegativeChordAngle
-// NegativeChordAngle.Predecessor == NegativeChordAngle
-func (c ChordAngle) Predecessor() ChordAngle {
- if c <= 0 {
- return NegativeChordAngle
- }
- if c > maxLength2 {
- return StraightChordAngle
- }
-
- return ChordAngle(math.Nextafter(float64(c), -10.0))
-}
-
-// MaxPointError returns the maximum error size for a ChordAngle constructed
-// from 2 Points x and y, assuming that x and y are normalized to within the
-// bounds guaranteed by s2.Point.Normalize. The error is defined with respect to
-// the true distance after the points are projected to lie exactly on the sphere.
-func (c ChordAngle) MaxPointError() float64 {
- // There is a relative error of (2.5*dblEpsilon) when computing the squared
- // distance, plus a relative error of 2 * dblEpsilon, plus an absolute error
- // of (16 * dblEpsilon**2) because the lengths of the input points may differ
- // from 1 by up to (2*dblEpsilon) each. (This is the maximum error in Normalize).
- return 4.5*dblEpsilon*float64(c) + 16*dblEpsilon*dblEpsilon
-}
-
-// MaxAngleError returns the maximum error for a ChordAngle constructed
-// as an Angle distance.
-func (c ChordAngle) MaxAngleError() float64 {
- return dblEpsilon * float64(c)
-}
-
-// Add adds the other ChordAngle to this one and returns the resulting value.
-// This method assumes the ChordAngles are not special.
-func (c ChordAngle) Add(other ChordAngle) ChordAngle {
- // Note that this method (and Sub) is much more efficient than converting
- // the ChordAngle to an Angle and adding those and converting back. It
- // requires only one square root plus a few additions and multiplications.
-
- // Optimization for the common case where b is an error tolerance
- // parameter that happens to be set to zero.
- if other == 0 {
- return c
- }
-
- // Clamp the angle sum to at most 180 degrees.
- if c+other >= maxLength2 {
- return StraightChordAngle
- }
-
- // Let a and b be the (non-squared) chord lengths, and let c = a+b.
- // Let A, B, and C be the corresponding half-angles (a = 2*sin(A), etc).
- // Then the formula below can be derived from c = 2 * sin(A+B) and the
- // relationships sin(A+B) = sin(A)*cos(B) + sin(B)*cos(A)
- // cos(X) = sqrt(1 - sin^2(X))
- x := float64(c * (1 - 0.25*other))
- y := float64(other * (1 - 0.25*c))
- return ChordAngle(math.Min(maxLength2, x+y+2*math.Sqrt(x*y)))
-}
-
-// Sub subtracts the other ChordAngle from this one and returns the resulting
-// value. This method assumes the ChordAngles are not special.
-func (c ChordAngle) Sub(other ChordAngle) ChordAngle {
- if other == 0 {
- return c
- }
- if c <= other {
- return 0
- }
- x := float64(c * (1 - 0.25*other))
- y := float64(other * (1 - 0.25*c))
- return ChordAngle(math.Max(0.0, x+y-2*math.Sqrt(x*y)))
-}
-
-// Sin returns the sine of this chord angle. This method is more efficient
-// than converting to Angle and performing the computation.
-func (c ChordAngle) Sin() float64 {
- return math.Sqrt(c.Sin2())
-}
-
-// Sin2 returns the square of the sine of this chord angle.
-// It is more efficient than Sin.
-func (c ChordAngle) Sin2() float64 {
- // Let a be the (non-squared) chord length, and let A be the corresponding
- // half-angle (a = 2*sin(A)). The formula below can be derived from:
- // sin(2*A) = 2 * sin(A) * cos(A)
- // cos^2(A) = 1 - sin^2(A)
- // This is much faster than converting to an angle and computing its sine.
- return float64(c * (1 - 0.25*c))
-}
-
-// Cos returns the cosine of this chord angle. This method is more efficient
-// than converting to Angle and performing the computation.
-func (c ChordAngle) Cos() float64 {
- // cos(2*A) = cos^2(A) - sin^2(A) = 1 - 2*sin^2(A)
- return float64(1 - 0.5*c)
-}
-
-// Tan returns the tangent of this chord angle.
-func (c ChordAngle) Tan() float64 {
- return c.Sin() / c.Cos()
-}
-
-// TODO(roberts): Differences from C++:
-// Helpers to/from E5/E6/E7
-// Helpers to/from degrees and radians directly.
-// FastUpperBoundFrom(angle Angle)
diff --git a/vendor/github.com/golang/geo/s1/doc.go b/vendor/github.com/golang/geo/s1/doc.go
deleted file mode 100644
index 52a2c526d..000000000
--- a/vendor/github.com/golang/geo/s1/doc.go
+++ /dev/null
@@ -1,20 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/*
-Package s1 implements types and functions for working with geometry in S¹ (circular geometry).
-
-See ../s2 for a more detailed overview.
-*/
-package s1
diff --git a/vendor/github.com/golang/geo/s1/interval.go b/vendor/github.com/golang/geo/s1/interval.go
deleted file mode 100644
index 6fea5221f..000000000
--- a/vendor/github.com/golang/geo/s1/interval.go
+++ /dev/null
@@ -1,462 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s1
-
-import (
- "math"
- "strconv"
-)
-
-// An Interval represents a closed interval on a unit circle (also known
-// as a 1-dimensional sphere). It is capable of representing the empty
-// interval (containing no points), the full interval (containing all
-// points), and zero-length intervals (containing a single point).
-//
-// Points are represented by the angle they make with the positive x-axis in
-// the range [-π, π]. An interval is represented by its lower and upper
-// bounds (both inclusive, since the interval is closed). The lower bound may
-// be greater than the upper bound, in which case the interval is "inverted"
-// (i.e. it passes through the point (-1, 0)).
-//
-// The point (-1, 0) has two valid representations, π and -π. The
-// normalized representation of this point is π, so that endpoints
-// of normal intervals are in the range (-π, π]. We normalize the latter to
-// the former in IntervalFromEndpoints. However, we take advantage of the point
-// -π to construct two special intervals:
-// The full interval is [-π, π]
-// The empty interval is [π, -π].
-//
-// Treat the exported fields as read-only.
-type Interval struct {
- Lo, Hi float64
-}
-
-// IntervalFromEndpoints constructs a new interval from endpoints.
-// Both arguments must be in the range [-π,π]. This function allows inverted intervals
-// to be created.
-func IntervalFromEndpoints(lo, hi float64) Interval {
- i := Interval{lo, hi}
- if lo == -math.Pi && hi != math.Pi {
- i.Lo = math.Pi
- }
- if hi == -math.Pi && lo != math.Pi {
- i.Hi = math.Pi
- }
- return i
-}
-
-// IntervalFromPointPair returns the minimal interval containing the two given points.
-// Both arguments must be in [-π,π].
-func IntervalFromPointPair(a, b float64) Interval {
- if a == -math.Pi {
- a = math.Pi
- }
- if b == -math.Pi {
- b = math.Pi
- }
- if positiveDistance(a, b) <= math.Pi {
- return Interval{a, b}
- }
- return Interval{b, a}
-}
-
-// EmptyInterval returns an empty interval.
-func EmptyInterval() Interval { return Interval{math.Pi, -math.Pi} }
-
-// FullInterval returns a full interval.
-func FullInterval() Interval { return Interval{-math.Pi, math.Pi} }
-
-// IsValid reports whether the interval is valid.
-func (i Interval) IsValid() bool {
- return (math.Abs(i.Lo) <= math.Pi && math.Abs(i.Hi) <= math.Pi &&
- !(i.Lo == -math.Pi && i.Hi != math.Pi) &&
- !(i.Hi == -math.Pi && i.Lo != math.Pi))
-}
-
-// IsFull reports whether the interval is full.
-func (i Interval) IsFull() bool { return i.Lo == -math.Pi && i.Hi == math.Pi }
-
-// IsEmpty reports whether the interval is empty.
-func (i Interval) IsEmpty() bool { return i.Lo == math.Pi && i.Hi == -math.Pi }
-
-// IsInverted reports whether the interval is inverted; that is, whether Lo > Hi.
-func (i Interval) IsInverted() bool { return i.Lo > i.Hi }
-
-// Invert returns the interval with endpoints swapped.
-func (i Interval) Invert() Interval {
- return Interval{i.Hi, i.Lo}
-}
-
-// Center returns the midpoint of the interval.
-// It is undefined for full and empty intervals.
-func (i Interval) Center() float64 {
- c := 0.5 * (i.Lo + i.Hi)
- if !i.IsInverted() {
- return c
- }
- if c <= 0 {
- return c + math.Pi
- }
- return c - math.Pi
-}
-
-// Length returns the length of the interval.
-// The length of an empty interval is negative.
-func (i Interval) Length() float64 {
- l := i.Hi - i.Lo
- if l >= 0 {
- return l
- }
- l += 2 * math.Pi
- if l > 0 {
- return l
- }
- return -1
-}
-
-// Assumes p ∈ (-π,π].
-func (i Interval) fastContains(p float64) bool {
- if i.IsInverted() {
- return (p >= i.Lo || p <= i.Hi) && !i.IsEmpty()
- }
- return p >= i.Lo && p <= i.Hi
-}
-
-// Contains returns true iff the interval contains p.
-// Assumes p ∈ [-π,π].
-func (i Interval) Contains(p float64) bool {
- if p == -math.Pi {
- p = math.Pi
- }
- return i.fastContains(p)
-}
-
-// ContainsInterval returns true iff the interval contains oi.
-func (i Interval) ContainsInterval(oi Interval) bool {
- if i.IsInverted() {
- if oi.IsInverted() {
- return oi.Lo >= i.Lo && oi.Hi <= i.Hi
- }
- return (oi.Lo >= i.Lo || oi.Hi <= i.Hi) && !i.IsEmpty()
- }
- if oi.IsInverted() {
- return i.IsFull() || oi.IsEmpty()
- }
- return oi.Lo >= i.Lo && oi.Hi <= i.Hi
-}
-
-// InteriorContains returns true iff the interior of the interval contains p.
-// Assumes p ∈ [-π,π].
-func (i Interval) InteriorContains(p float64) bool {
- if p == -math.Pi {
- p = math.Pi
- }
- if i.IsInverted() {
- return p > i.Lo || p < i.Hi
- }
- return (p > i.Lo && p < i.Hi) || i.IsFull()
-}
-
-// InteriorContainsInterval returns true iff the interior of the interval contains oi.
-func (i Interval) InteriorContainsInterval(oi Interval) bool {
- if i.IsInverted() {
- if oi.IsInverted() {
- return (oi.Lo > i.Lo && oi.Hi < i.Hi) || oi.IsEmpty()
- }
- return oi.Lo > i.Lo || oi.Hi < i.Hi
- }
- if oi.IsInverted() {
- return i.IsFull() || oi.IsEmpty()
- }
- return (oi.Lo > i.Lo && oi.Hi < i.Hi) || i.IsFull()
-}
-
-// Intersects returns true iff the interval contains any points in common with oi.
-func (i Interval) Intersects(oi Interval) bool {
- if i.IsEmpty() || oi.IsEmpty() {
- return false
- }
- if i.IsInverted() {
- return oi.IsInverted() || oi.Lo <= i.Hi || oi.Hi >= i.Lo
- }
- if oi.IsInverted() {
- return oi.Lo <= i.Hi || oi.Hi >= i.Lo
- }
- return oi.Lo <= i.Hi && oi.Hi >= i.Lo
-}
-
-// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary.
-func (i Interval) InteriorIntersects(oi Interval) bool {
- if i.IsEmpty() || oi.IsEmpty() || i.Lo == i.Hi {
- return false
- }
- if i.IsInverted() {
- return oi.IsInverted() || oi.Lo < i.Hi || oi.Hi > i.Lo
- }
- if oi.IsInverted() {
- return oi.Lo < i.Hi || oi.Hi > i.Lo
- }
- return (oi.Lo < i.Hi && oi.Hi > i.Lo) || i.IsFull()
-}
-
-// Compute distance from a to b in [0,2π], in a numerically stable way.
-func positiveDistance(a, b float64) float64 {
- d := b - a
- if d >= 0 {
- return d
- }
- return (b + math.Pi) - (a - math.Pi)
-}
-
-// Union returns the smallest interval that contains both the interval and oi.
-func (i Interval) Union(oi Interval) Interval {
- if oi.IsEmpty() {
- return i
- }
- if i.fastContains(oi.Lo) {
- if i.fastContains(oi.Hi) {
- // Either oi ⊂ i, or i ∪ oi is the full interval.
- if i.ContainsInterval(oi) {
- return i
- }
- return FullInterval()
- }
- return Interval{i.Lo, oi.Hi}
- }
- if i.fastContains(oi.Hi) {
- return Interval{oi.Lo, i.Hi}
- }
-
- // Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
- if i.IsEmpty() || oi.fastContains(i.Lo) {
- return oi
- }
-
- // This is the only hard case where we need to find the closest pair of endpoints.
- if positiveDistance(oi.Hi, i.Lo) < positiveDistance(i.Hi, oi.Lo) {
- return Interval{oi.Lo, i.Hi}
- }
- return Interval{i.Lo, oi.Hi}
-}
-
-// Intersection returns the smallest interval that contains the intersection of the interval and oi.
-func (i Interval) Intersection(oi Interval) Interval {
- if oi.IsEmpty() {
- return EmptyInterval()
- }
- if i.fastContains(oi.Lo) {
- if i.fastContains(oi.Hi) {
- // Either oi ⊂ i, or i and oi intersect twice. Neither are empty.
- // In the first case we want to return i (which is shorter than oi).
- // In the second case one of them is inverted, and the smallest interval
- // that covers the two disjoint pieces is the shorter of i and oi.
- // We thus want to pick the shorter of i and oi in both cases.
- if oi.Length() < i.Length() {
- return oi
- }
- return i
- }
- return Interval{oi.Lo, i.Hi}
- }
- if i.fastContains(oi.Hi) {
- return Interval{i.Lo, oi.Hi}
- }
-
- // Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
- if oi.fastContains(i.Lo) {
- return i
- }
- return EmptyInterval()
-}
-
-// AddPoint returns the interval expanded by the minimum amount necessary such
-// that it contains the given point "p" (an angle in the range [-π, π]).
-func (i Interval) AddPoint(p float64) Interval {
- if math.Abs(p) > math.Pi {
- return i
- }
- if p == -math.Pi {
- p = math.Pi
- }
- if i.fastContains(p) {
- return i
- }
- if i.IsEmpty() {
- return Interval{p, p}
- }
- if positiveDistance(p, i.Lo) < positiveDistance(i.Hi, p) {
- return Interval{p, i.Hi}
- }
- return Interval{i.Lo, p}
-}
-
-// Define the maximum rounding error for arithmetic operations. Depending on the
-// platform the mantissa precision may be different than others, so we choose to
-// use specific values to be consistent across all.
-// The values come from the C++ implementation.
-var (
- // epsilon is a small number that represents a reasonable level of noise between two
- // values that can be considered to be equal.
- epsilon = 1e-15
- // dblEpsilon is a smaller number for values that require more precision.
- dblEpsilon = 2.220446049e-16
-)
-
-// Expanded returns an interval that has been expanded on each side by margin.
-// If margin is negative, then the function shrinks the interval on
-// each side by margin instead. The resulting interval may be empty or
-// full. Any expansion (positive or negative) of a full interval remains
-// full, and any expansion of an empty interval remains empty.
-func (i Interval) Expanded(margin float64) Interval {
- if margin >= 0 {
- if i.IsEmpty() {
- return i
- }
- // Check whether this interval will be full after expansion, allowing
- // for a rounding error when computing each endpoint.
- if i.Length()+2*margin+2*dblEpsilon >= 2*math.Pi {
- return FullInterval()
- }
- } else {
- if i.IsFull() {
- return i
- }
- // Check whether this interval will be empty after expansion, allowing
- // for a rounding error when computing each endpoint.
- if i.Length()+2*margin-2*dblEpsilon <= 0 {
- return EmptyInterval()
- }
- }
- result := IntervalFromEndpoints(
- math.Remainder(i.Lo-margin, 2*math.Pi),
- math.Remainder(i.Hi+margin, 2*math.Pi),
- )
- if result.Lo <= -math.Pi {
- result.Lo = math.Pi
- }
- return result
-}
-
-// ApproxEqual reports whether this interval can be transformed into the given
-// interval by moving each endpoint by at most ε, without the
-// endpoints crossing (which would invert the interval). Empty and full
-// intervals are considered to start at an arbitrary point on the unit circle,
-// so any interval with (length <= 2*ε) matches the empty interval, and
-// any interval with (length >= 2*π - 2*ε) matches the full interval.
-func (i Interval) ApproxEqual(other Interval) bool {
- // Full and empty intervals require special cases because the endpoints
- // are considered to be positioned arbitrarily.
- if i.IsEmpty() {
- return other.Length() <= 2*epsilon
- }
- if other.IsEmpty() {
- return i.Length() <= 2*epsilon
- }
- if i.IsFull() {
- return other.Length() >= 2*(math.Pi-epsilon)
- }
- if other.IsFull() {
- return i.Length() >= 2*(math.Pi-epsilon)
- }
-
- // The purpose of the last test below is to verify that moving the endpoints
- // does not invert the interval, e.g. [-1e20, 1e20] vs. [1e20, -1e20].
- return (math.Abs(math.Remainder(other.Lo-i.Lo, 2*math.Pi)) <= epsilon &&
- math.Abs(math.Remainder(other.Hi-i.Hi, 2*math.Pi)) <= epsilon &&
- math.Abs(i.Length()-other.Length()) <= 2*epsilon)
-
-}
-
-func (i Interval) String() string {
- // like "[%.7f, %.7f]"
- return "[" + strconv.FormatFloat(i.Lo, 'f', 7, 64) + ", " + strconv.FormatFloat(i.Hi, 'f', 7, 64) + "]"
-}
-
-// Complement returns the complement of the interior of the interval. An interval and
-// its complement have the same boundary but do not share any interior
-// values. The complement operator is not a bijection, since the complement
-// of a singleton interval (containing a single value) is the same as the
-// complement of an empty interval.
-func (i Interval) Complement() Interval {
- if i.Lo == i.Hi {
- // Singleton. The interval just contains a single point.
- return FullInterval()
- }
- // Handles empty and full.
- return Interval{i.Hi, i.Lo}
-}
-
-// ComplementCenter returns the midpoint of the complement of the interval. For full and empty
-// intervals, the result is arbitrary. For a singleton interval (containing a
-// single point), the result is its antipodal point on S1.
-func (i Interval) ComplementCenter() float64 {
- if i.Lo != i.Hi {
- return i.Complement().Center()
- }
- // Singleton. The interval just contains a single point.
- if i.Hi <= 0 {
- return i.Hi + math.Pi
- }
- return i.Hi - math.Pi
-}
-
-// DirectedHausdorffDistance returns the Hausdorff distance to the given interval.
-// For two intervals i and y, this distance is defined by
-// h(i, y) = max_{p in i} min_{q in y} d(p, q),
-// where d(.,.) is measured along S1.
-func (i Interval) DirectedHausdorffDistance(y Interval) Angle {
- if y.ContainsInterval(i) {
- return 0 // This includes the case i is empty.
- }
- if y.IsEmpty() {
- return Angle(math.Pi) // maximum possible distance on s1.
- }
- yComplementCenter := y.ComplementCenter()
- if i.Contains(yComplementCenter) {
- return Angle(positiveDistance(y.Hi, yComplementCenter))
- }
-
- // The Hausdorff distance is realized by either two i.Hi endpoints or two
- // i.Lo endpoints, whichever is farther apart.
- hiHi := 0.0
- if IntervalFromEndpoints(y.Hi, yComplementCenter).Contains(i.Hi) {
- hiHi = positiveDistance(y.Hi, i.Hi)
- }
-
- loLo := 0.0
- if IntervalFromEndpoints(yComplementCenter, y.Lo).Contains(i.Lo) {
- loLo = positiveDistance(i.Lo, y.Lo)
- }
-
- return Angle(math.Max(hiHi, loLo))
-}
-
-// Project returns the closest point in the interval to the given point p.
-// The interval must be non-empty.
-func (i Interval) Project(p float64) float64 {
- if p == -math.Pi {
- p = math.Pi
- }
- if i.fastContains(p) {
- return p
- }
- // Compute distance from p to each endpoint.
- dlo := positiveDistance(p, i.Lo)
- dhi := positiveDistance(i.Hi, p)
- if dlo < dhi {
- return i.Lo
- }
- return i.Hi
-}