diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s1')
-rw-r--r-- | vendor/github.com/golang/geo/s1/angle.go | 120 | ||||
-rw-r--r-- | vendor/github.com/golang/geo/s1/chordangle.go | 250 | ||||
-rw-r--r-- | vendor/github.com/golang/geo/s1/doc.go | 20 | ||||
-rw-r--r-- | vendor/github.com/golang/geo/s1/interval.go | 462 |
4 files changed, 0 insertions, 852 deletions
diff --git a/vendor/github.com/golang/geo/s1/angle.go b/vendor/github.com/golang/geo/s1/angle.go deleted file mode 100644 index 747b23dea..000000000 --- a/vendor/github.com/golang/geo/s1/angle.go +++ /dev/null @@ -1,120 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s1 - -import ( - "math" - "strconv" -) - -// Angle represents a 1D angle. The internal representation is a double precision -// value in radians, so conversion to and from radians is exact. -// Conversions between E5, E6, E7, and Degrees are not always -// exact. For example, Degrees(3.1) is different from E6(3100000) or E7(31000000). -// -// The following conversions between degrees and radians are exact: -// -// Degree*180 == Radian*math.Pi -// Degree*(180/n) == Radian*(math.Pi/n) for n == 0..8 -// -// These identities hold when the arguments are scaled up or down by any power -// of 2. Some similar identities are also true, for example, -// -// Degree*60 == Radian*(math.Pi/3) -// -// But be aware that this type of identity does not hold in general. For example, -// -// Degree*3 != Radian*(math.Pi/60) -// -// Similarly, the conversion to radians means that (Angle(x)*Degree).Degrees() -// does not always equal x. For example, -// -// (Angle(45*n)*Degree).Degrees() == 45*n for n == 0..8 -// -// but -// -// (60*Degree).Degrees() != 60 -// -// When testing for equality, you should allow for numerical errors (ApproxEqual) -// or convert to discrete E5/E6/E7 values first. -type Angle float64 - -// Angle units. -const ( - Radian Angle = 1 - Degree = (math.Pi / 180) * Radian - - E5 = 1e-5 * Degree - E6 = 1e-6 * Degree - E7 = 1e-7 * Degree -) - -// Radians returns the angle in radians. -func (a Angle) Radians() float64 { return float64(a) } - -// Degrees returns the angle in degrees. -func (a Angle) Degrees() float64 { return float64(a / Degree) } - -// round returns the value rounded to nearest as an int32. -// This does not match C++ exactly for the case of x.5. -func round(val float64) int32 { - if val < 0 { - return int32(val - 0.5) - } - return int32(val + 0.5) -} - -// InfAngle returns an angle larger than any finite angle. -func InfAngle() Angle { - return Angle(math.Inf(1)) -} - -// isInf reports whether this Angle is infinite. -func (a Angle) isInf() bool { - return math.IsInf(float64(a), 0) -} - -// E5 returns the angle in hundred thousandths of degrees. -func (a Angle) E5() int32 { return round(a.Degrees() * 1e5) } - -// E6 returns the angle in millionths of degrees. -func (a Angle) E6() int32 { return round(a.Degrees() * 1e6) } - -// E7 returns the angle in ten millionths of degrees. -func (a Angle) E7() int32 { return round(a.Degrees() * 1e7) } - -// Abs returns the absolute value of the angle. -func (a Angle) Abs() Angle { return Angle(math.Abs(float64(a))) } - -// Normalized returns an equivalent angle in (-π, π]. -func (a Angle) Normalized() Angle { - rad := math.Remainder(float64(a), 2*math.Pi) - if rad <= -math.Pi { - rad = math.Pi - } - return Angle(rad) -} - -func (a Angle) String() string { - return strconv.FormatFloat(a.Degrees(), 'f', 7, 64) // like "%.7f" -} - -// ApproxEqual reports whether the two angles are the same up to a small tolerance. -func (a Angle) ApproxEqual(other Angle) bool { - return math.Abs(float64(a)-float64(other)) <= epsilon -} - -// BUG(dsymonds): The major differences from the C++ version are: -// - no unsigned E5/E6/E7 methods diff --git a/vendor/github.com/golang/geo/s1/chordangle.go b/vendor/github.com/golang/geo/s1/chordangle.go deleted file mode 100644 index 406c69ef1..000000000 --- a/vendor/github.com/golang/geo/s1/chordangle.go +++ /dev/null @@ -1,250 +0,0 @@ -// Copyright 2015 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s1 - -import ( - "math" -) - -// ChordAngle represents the angle subtended by a chord (i.e., the straight -// line segment connecting two points on the sphere). Its representation -// makes it very efficient for computing and comparing distances, but unlike -// Angle it is only capable of representing angles between 0 and π radians. -// Generally, ChordAngle should only be used in loops where many angles need -// to be calculated and compared. Otherwise it is simpler to use Angle. -// -// ChordAngle loses some accuracy as the angle approaches π radians. -// Specifically, the representation of (π - x) radians has an error of about -// (1e-15 / x), with a maximum error of about 2e-8 radians (about 13cm on the -// Earth's surface). For comparison, for angles up to π/2 radians (10000km) -// the worst-case representation error is about 2e-16 radians (1 nanonmeter), -// which is about the same as Angle. -// -// ChordAngles are represented by the squared chord length, which can -// range from 0 to 4. Positive infinity represents an infinite squared length. -type ChordAngle float64 - -const ( - // NegativeChordAngle represents a chord angle smaller than the zero angle. - // The only valid operations on a NegativeChordAngle are comparisons, - // Angle conversions, and Successor/Predecessor. - NegativeChordAngle = ChordAngle(-1) - - // RightChordAngle represents a chord angle of 90 degrees (a "right angle"). - RightChordAngle = ChordAngle(2) - - // StraightChordAngle represents a chord angle of 180 degrees (a "straight angle"). - // This is the maximum finite chord angle. - StraightChordAngle = ChordAngle(4) - - // maxLength2 is the square of the maximum length allowed in a ChordAngle. - maxLength2 = 4.0 -) - -// ChordAngleFromAngle returns a ChordAngle from the given Angle. -func ChordAngleFromAngle(a Angle) ChordAngle { - if a < 0 { - return NegativeChordAngle - } - if a.isInf() { - return InfChordAngle() - } - l := 2 * math.Sin(0.5*math.Min(math.Pi, a.Radians())) - return ChordAngle(l * l) -} - -// ChordAngleFromSquaredLength returns a ChordAngle from the squared chord length. -// Note that the argument is automatically clamped to a maximum of 4 to -// handle possible roundoff errors. The argument must be non-negative. -func ChordAngleFromSquaredLength(length2 float64) ChordAngle { - if length2 > maxLength2 { - return StraightChordAngle - } - return ChordAngle(length2) -} - -// Expanded returns a new ChordAngle that has been adjusted by the given error -// bound (which can be positive or negative). Error should be the value -// returned by either MaxPointError or MaxAngleError. For example: -// a := ChordAngleFromPoints(x, y) -// a1 := a.Expanded(a.MaxPointError()) -func (c ChordAngle) Expanded(e float64) ChordAngle { - // If the angle is special, don't change it. Otherwise clamp it to the valid range. - if c.isSpecial() { - return c - } - return ChordAngle(math.Max(0.0, math.Min(maxLength2, float64(c)+e))) -} - -// Angle converts this ChordAngle to an Angle. -func (c ChordAngle) Angle() Angle { - if c < 0 { - return -1 * Radian - } - if c.isInf() { - return InfAngle() - } - return Angle(2 * math.Asin(0.5*math.Sqrt(float64(c)))) -} - -// InfChordAngle returns a chord angle larger than any finite chord angle. -// The only valid operations on an InfChordAngle are comparisons, Angle -// conversions, and Successor/Predecessor. -func InfChordAngle() ChordAngle { - return ChordAngle(math.Inf(1)) -} - -// isInf reports whether this ChordAngle is infinite. -func (c ChordAngle) isInf() bool { - return math.IsInf(float64(c), 1) -} - -// isSpecial reports whether this ChordAngle is one of the special cases. -func (c ChordAngle) isSpecial() bool { - return c < 0 || c.isInf() -} - -// isValid reports whether this ChordAngle is valid or not. -func (c ChordAngle) isValid() bool { - return (c >= 0 && c <= maxLength2) || c.isSpecial() -} - -// Successor returns the smallest representable ChordAngle larger than this one. -// This can be used to convert a "<" comparison to a "<=" comparison. -// -// Note the following special cases: -// NegativeChordAngle.Successor == 0 -// StraightChordAngle.Successor == InfChordAngle -// InfChordAngle.Successor == InfChordAngle -func (c ChordAngle) Successor() ChordAngle { - if c >= maxLength2 { - return InfChordAngle() - } - if c < 0 { - return 0 - } - return ChordAngle(math.Nextafter(float64(c), 10.0)) -} - -// Predecessor returns the largest representable ChordAngle less than this one. -// -// Note the following special cases: -// InfChordAngle.Predecessor == StraightChordAngle -// ChordAngle(0).Predecessor == NegativeChordAngle -// NegativeChordAngle.Predecessor == NegativeChordAngle -func (c ChordAngle) Predecessor() ChordAngle { - if c <= 0 { - return NegativeChordAngle - } - if c > maxLength2 { - return StraightChordAngle - } - - return ChordAngle(math.Nextafter(float64(c), -10.0)) -} - -// MaxPointError returns the maximum error size for a ChordAngle constructed -// from 2 Points x and y, assuming that x and y are normalized to within the -// bounds guaranteed by s2.Point.Normalize. The error is defined with respect to -// the true distance after the points are projected to lie exactly on the sphere. -func (c ChordAngle) MaxPointError() float64 { - // There is a relative error of (2.5*dblEpsilon) when computing the squared - // distance, plus a relative error of 2 * dblEpsilon, plus an absolute error - // of (16 * dblEpsilon**2) because the lengths of the input points may differ - // from 1 by up to (2*dblEpsilon) each. (This is the maximum error in Normalize). - return 4.5*dblEpsilon*float64(c) + 16*dblEpsilon*dblEpsilon -} - -// MaxAngleError returns the maximum error for a ChordAngle constructed -// as an Angle distance. -func (c ChordAngle) MaxAngleError() float64 { - return dblEpsilon * float64(c) -} - -// Add adds the other ChordAngle to this one and returns the resulting value. -// This method assumes the ChordAngles are not special. -func (c ChordAngle) Add(other ChordAngle) ChordAngle { - // Note that this method (and Sub) is much more efficient than converting - // the ChordAngle to an Angle and adding those and converting back. It - // requires only one square root plus a few additions and multiplications. - - // Optimization for the common case where b is an error tolerance - // parameter that happens to be set to zero. - if other == 0 { - return c - } - - // Clamp the angle sum to at most 180 degrees. - if c+other >= maxLength2 { - return StraightChordAngle - } - - // Let a and b be the (non-squared) chord lengths, and let c = a+b. - // Let A, B, and C be the corresponding half-angles (a = 2*sin(A), etc). - // Then the formula below can be derived from c = 2 * sin(A+B) and the - // relationships sin(A+B) = sin(A)*cos(B) + sin(B)*cos(A) - // cos(X) = sqrt(1 - sin^2(X)) - x := float64(c * (1 - 0.25*other)) - y := float64(other * (1 - 0.25*c)) - return ChordAngle(math.Min(maxLength2, x+y+2*math.Sqrt(x*y))) -} - -// Sub subtracts the other ChordAngle from this one and returns the resulting -// value. This method assumes the ChordAngles are not special. -func (c ChordAngle) Sub(other ChordAngle) ChordAngle { - if other == 0 { - return c - } - if c <= other { - return 0 - } - x := float64(c * (1 - 0.25*other)) - y := float64(other * (1 - 0.25*c)) - return ChordAngle(math.Max(0.0, x+y-2*math.Sqrt(x*y))) -} - -// Sin returns the sine of this chord angle. This method is more efficient -// than converting to Angle and performing the computation. -func (c ChordAngle) Sin() float64 { - return math.Sqrt(c.Sin2()) -} - -// Sin2 returns the square of the sine of this chord angle. -// It is more efficient than Sin. -func (c ChordAngle) Sin2() float64 { - // Let a be the (non-squared) chord length, and let A be the corresponding - // half-angle (a = 2*sin(A)). The formula below can be derived from: - // sin(2*A) = 2 * sin(A) * cos(A) - // cos^2(A) = 1 - sin^2(A) - // This is much faster than converting to an angle and computing its sine. - return float64(c * (1 - 0.25*c)) -} - -// Cos returns the cosine of this chord angle. This method is more efficient -// than converting to Angle and performing the computation. -func (c ChordAngle) Cos() float64 { - // cos(2*A) = cos^2(A) - sin^2(A) = 1 - 2*sin^2(A) - return float64(1 - 0.5*c) -} - -// Tan returns the tangent of this chord angle. -func (c ChordAngle) Tan() float64 { - return c.Sin() / c.Cos() -} - -// TODO(roberts): Differences from C++: -// Helpers to/from E5/E6/E7 -// Helpers to/from degrees and radians directly. -// FastUpperBoundFrom(angle Angle) diff --git a/vendor/github.com/golang/geo/s1/doc.go b/vendor/github.com/golang/geo/s1/doc.go deleted file mode 100644 index 52a2c526d..000000000 --- a/vendor/github.com/golang/geo/s1/doc.go +++ /dev/null @@ -1,20 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/* -Package s1 implements types and functions for working with geometry in S¹ (circular geometry). - -See ../s2 for a more detailed overview. -*/ -package s1 diff --git a/vendor/github.com/golang/geo/s1/interval.go b/vendor/github.com/golang/geo/s1/interval.go deleted file mode 100644 index 6fea5221f..000000000 --- a/vendor/github.com/golang/geo/s1/interval.go +++ /dev/null @@ -1,462 +0,0 @@ -// Copyright 2014 Google Inc. All rights reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -package s1 - -import ( - "math" - "strconv" -) - -// An Interval represents a closed interval on a unit circle (also known -// as a 1-dimensional sphere). It is capable of representing the empty -// interval (containing no points), the full interval (containing all -// points), and zero-length intervals (containing a single point). -// -// Points are represented by the angle they make with the positive x-axis in -// the range [-π, π]. An interval is represented by its lower and upper -// bounds (both inclusive, since the interval is closed). The lower bound may -// be greater than the upper bound, in which case the interval is "inverted" -// (i.e. it passes through the point (-1, 0)). -// -// The point (-1, 0) has two valid representations, π and -π. The -// normalized representation of this point is π, so that endpoints -// of normal intervals are in the range (-π, π]. We normalize the latter to -// the former in IntervalFromEndpoints. However, we take advantage of the point -// -π to construct two special intervals: -// The full interval is [-π, π] -// The empty interval is [π, -π]. -// -// Treat the exported fields as read-only. -type Interval struct { - Lo, Hi float64 -} - -// IntervalFromEndpoints constructs a new interval from endpoints. -// Both arguments must be in the range [-π,π]. This function allows inverted intervals -// to be created. -func IntervalFromEndpoints(lo, hi float64) Interval { - i := Interval{lo, hi} - if lo == -math.Pi && hi != math.Pi { - i.Lo = math.Pi - } - if hi == -math.Pi && lo != math.Pi { - i.Hi = math.Pi - } - return i -} - -// IntervalFromPointPair returns the minimal interval containing the two given points. -// Both arguments must be in [-π,π]. -func IntervalFromPointPair(a, b float64) Interval { - if a == -math.Pi { - a = math.Pi - } - if b == -math.Pi { - b = math.Pi - } - if positiveDistance(a, b) <= math.Pi { - return Interval{a, b} - } - return Interval{b, a} -} - -// EmptyInterval returns an empty interval. -func EmptyInterval() Interval { return Interval{math.Pi, -math.Pi} } - -// FullInterval returns a full interval. -func FullInterval() Interval { return Interval{-math.Pi, math.Pi} } - -// IsValid reports whether the interval is valid. -func (i Interval) IsValid() bool { - return (math.Abs(i.Lo) <= math.Pi && math.Abs(i.Hi) <= math.Pi && - !(i.Lo == -math.Pi && i.Hi != math.Pi) && - !(i.Hi == -math.Pi && i.Lo != math.Pi)) -} - -// IsFull reports whether the interval is full. -func (i Interval) IsFull() bool { return i.Lo == -math.Pi && i.Hi == math.Pi } - -// IsEmpty reports whether the interval is empty. -func (i Interval) IsEmpty() bool { return i.Lo == math.Pi && i.Hi == -math.Pi } - -// IsInverted reports whether the interval is inverted; that is, whether Lo > Hi. -func (i Interval) IsInverted() bool { return i.Lo > i.Hi } - -// Invert returns the interval with endpoints swapped. -func (i Interval) Invert() Interval { - return Interval{i.Hi, i.Lo} -} - -// Center returns the midpoint of the interval. -// It is undefined for full and empty intervals. -func (i Interval) Center() float64 { - c := 0.5 * (i.Lo + i.Hi) - if !i.IsInverted() { - return c - } - if c <= 0 { - return c + math.Pi - } - return c - math.Pi -} - -// Length returns the length of the interval. -// The length of an empty interval is negative. -func (i Interval) Length() float64 { - l := i.Hi - i.Lo - if l >= 0 { - return l - } - l += 2 * math.Pi - if l > 0 { - return l - } - return -1 -} - -// Assumes p ∈ (-π,π]. -func (i Interval) fastContains(p float64) bool { - if i.IsInverted() { - return (p >= i.Lo || p <= i.Hi) && !i.IsEmpty() - } - return p >= i.Lo && p <= i.Hi -} - -// Contains returns true iff the interval contains p. -// Assumes p ∈ [-π,π]. -func (i Interval) Contains(p float64) bool { - if p == -math.Pi { - p = math.Pi - } - return i.fastContains(p) -} - -// ContainsInterval returns true iff the interval contains oi. -func (i Interval) ContainsInterval(oi Interval) bool { - if i.IsInverted() { - if oi.IsInverted() { - return oi.Lo >= i.Lo && oi.Hi <= i.Hi - } - return (oi.Lo >= i.Lo || oi.Hi <= i.Hi) && !i.IsEmpty() - } - if oi.IsInverted() { - return i.IsFull() || oi.IsEmpty() - } - return oi.Lo >= i.Lo && oi.Hi <= i.Hi -} - -// InteriorContains returns true iff the interior of the interval contains p. -// Assumes p ∈ [-π,π]. -func (i Interval) InteriorContains(p float64) bool { - if p == -math.Pi { - p = math.Pi - } - if i.IsInverted() { - return p > i.Lo || p < i.Hi - } - return (p > i.Lo && p < i.Hi) || i.IsFull() -} - -// InteriorContainsInterval returns true iff the interior of the interval contains oi. -func (i Interval) InteriorContainsInterval(oi Interval) bool { - if i.IsInverted() { - if oi.IsInverted() { - return (oi.Lo > i.Lo && oi.Hi < i.Hi) || oi.IsEmpty() - } - return oi.Lo > i.Lo || oi.Hi < i.Hi - } - if oi.IsInverted() { - return i.IsFull() || oi.IsEmpty() - } - return (oi.Lo > i.Lo && oi.Hi < i.Hi) || i.IsFull() -} - -// Intersects returns true iff the interval contains any points in common with oi. -func (i Interval) Intersects(oi Interval) bool { - if i.IsEmpty() || oi.IsEmpty() { - return false - } - if i.IsInverted() { - return oi.IsInverted() || oi.Lo <= i.Hi || oi.Hi >= i.Lo - } - if oi.IsInverted() { - return oi.Lo <= i.Hi || oi.Hi >= i.Lo - } - return oi.Lo <= i.Hi && oi.Hi >= i.Lo -} - -// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary. -func (i Interval) InteriorIntersects(oi Interval) bool { - if i.IsEmpty() || oi.IsEmpty() || i.Lo == i.Hi { - return false - } - if i.IsInverted() { - return oi.IsInverted() || oi.Lo < i.Hi || oi.Hi > i.Lo - } - if oi.IsInverted() { - return oi.Lo < i.Hi || oi.Hi > i.Lo - } - return (oi.Lo < i.Hi && oi.Hi > i.Lo) || i.IsFull() -} - -// Compute distance from a to b in [0,2π], in a numerically stable way. -func positiveDistance(a, b float64) float64 { - d := b - a - if d >= 0 { - return d - } - return (b + math.Pi) - (a - math.Pi) -} - -// Union returns the smallest interval that contains both the interval and oi. -func (i Interval) Union(oi Interval) Interval { - if oi.IsEmpty() { - return i - } - if i.fastContains(oi.Lo) { - if i.fastContains(oi.Hi) { - // Either oi ⊂ i, or i ∪ oi is the full interval. - if i.ContainsInterval(oi) { - return i - } - return FullInterval() - } - return Interval{i.Lo, oi.Hi} - } - if i.fastContains(oi.Hi) { - return Interval{oi.Lo, i.Hi} - } - - // Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint. - if i.IsEmpty() || oi.fastContains(i.Lo) { - return oi - } - - // This is the only hard case where we need to find the closest pair of endpoints. - if positiveDistance(oi.Hi, i.Lo) < positiveDistance(i.Hi, oi.Lo) { - return Interval{oi.Lo, i.Hi} - } - return Interval{i.Lo, oi.Hi} -} - -// Intersection returns the smallest interval that contains the intersection of the interval and oi. -func (i Interval) Intersection(oi Interval) Interval { - if oi.IsEmpty() { - return EmptyInterval() - } - if i.fastContains(oi.Lo) { - if i.fastContains(oi.Hi) { - // Either oi ⊂ i, or i and oi intersect twice. Neither are empty. - // In the first case we want to return i (which is shorter than oi). - // In the second case one of them is inverted, and the smallest interval - // that covers the two disjoint pieces is the shorter of i and oi. - // We thus want to pick the shorter of i and oi in both cases. - if oi.Length() < i.Length() { - return oi - } - return i - } - return Interval{oi.Lo, i.Hi} - } - if i.fastContains(oi.Hi) { - return Interval{i.Lo, oi.Hi} - } - - // Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint. - if oi.fastContains(i.Lo) { - return i - } - return EmptyInterval() -} - -// AddPoint returns the interval expanded by the minimum amount necessary such -// that it contains the given point "p" (an angle in the range [-π, π]). -func (i Interval) AddPoint(p float64) Interval { - if math.Abs(p) > math.Pi { - return i - } - if p == -math.Pi { - p = math.Pi - } - if i.fastContains(p) { - return i - } - if i.IsEmpty() { - return Interval{p, p} - } - if positiveDistance(p, i.Lo) < positiveDistance(i.Hi, p) { - return Interval{p, i.Hi} - } - return Interval{i.Lo, p} -} - -// Define the maximum rounding error for arithmetic operations. Depending on the -// platform the mantissa precision may be different than others, so we choose to -// use specific values to be consistent across all. -// The values come from the C++ implementation. -var ( - // epsilon is a small number that represents a reasonable level of noise between two - // values that can be considered to be equal. - epsilon = 1e-15 - // dblEpsilon is a smaller number for values that require more precision. - dblEpsilon = 2.220446049e-16 -) - -// Expanded returns an interval that has been expanded on each side by margin. -// If margin is negative, then the function shrinks the interval on -// each side by margin instead. The resulting interval may be empty or -// full. Any expansion (positive or negative) of a full interval remains -// full, and any expansion of an empty interval remains empty. -func (i Interval) Expanded(margin float64) Interval { - if margin >= 0 { - if i.IsEmpty() { - return i - } - // Check whether this interval will be full after expansion, allowing - // for a rounding error when computing each endpoint. - if i.Length()+2*margin+2*dblEpsilon >= 2*math.Pi { - return FullInterval() - } - } else { - if i.IsFull() { - return i - } - // Check whether this interval will be empty after expansion, allowing - // for a rounding error when computing each endpoint. - if i.Length()+2*margin-2*dblEpsilon <= 0 { - return EmptyInterval() - } - } - result := IntervalFromEndpoints( - math.Remainder(i.Lo-margin, 2*math.Pi), - math.Remainder(i.Hi+margin, 2*math.Pi), - ) - if result.Lo <= -math.Pi { - result.Lo = math.Pi - } - return result -} - -// ApproxEqual reports whether this interval can be transformed into the given -// interval by moving each endpoint by at most ε, without the -// endpoints crossing (which would invert the interval). Empty and full -// intervals are considered to start at an arbitrary point on the unit circle, -// so any interval with (length <= 2*ε) matches the empty interval, and -// any interval with (length >= 2*π - 2*ε) matches the full interval. -func (i Interval) ApproxEqual(other Interval) bool { - // Full and empty intervals require special cases because the endpoints - // are considered to be positioned arbitrarily. - if i.IsEmpty() { - return other.Length() <= 2*epsilon - } - if other.IsEmpty() { - return i.Length() <= 2*epsilon - } - if i.IsFull() { - return other.Length() >= 2*(math.Pi-epsilon) - } - if other.IsFull() { - return i.Length() >= 2*(math.Pi-epsilon) - } - - // The purpose of the last test below is to verify that moving the endpoints - // does not invert the interval, e.g. [-1e20, 1e20] vs. [1e20, -1e20]. - return (math.Abs(math.Remainder(other.Lo-i.Lo, 2*math.Pi)) <= epsilon && - math.Abs(math.Remainder(other.Hi-i.Hi, 2*math.Pi)) <= epsilon && - math.Abs(i.Length()-other.Length()) <= 2*epsilon) - -} - -func (i Interval) String() string { - // like "[%.7f, %.7f]" - return "[" + strconv.FormatFloat(i.Lo, 'f', 7, 64) + ", " + strconv.FormatFloat(i.Hi, 'f', 7, 64) + "]" -} - -// Complement returns the complement of the interior of the interval. An interval and -// its complement have the same boundary but do not share any interior -// values. The complement operator is not a bijection, since the complement -// of a singleton interval (containing a single value) is the same as the -// complement of an empty interval. -func (i Interval) Complement() Interval { - if i.Lo == i.Hi { - // Singleton. The interval just contains a single point. - return FullInterval() - } - // Handles empty and full. - return Interval{i.Hi, i.Lo} -} - -// ComplementCenter returns the midpoint of the complement of the interval. For full and empty -// intervals, the result is arbitrary. For a singleton interval (containing a -// single point), the result is its antipodal point on S1. -func (i Interval) ComplementCenter() float64 { - if i.Lo != i.Hi { - return i.Complement().Center() - } - // Singleton. The interval just contains a single point. - if i.Hi <= 0 { - return i.Hi + math.Pi - } - return i.Hi - math.Pi -} - -// DirectedHausdorffDistance returns the Hausdorff distance to the given interval. -// For two intervals i and y, this distance is defined by -// h(i, y) = max_{p in i} min_{q in y} d(p, q), -// where d(.,.) is measured along S1. -func (i Interval) DirectedHausdorffDistance(y Interval) Angle { - if y.ContainsInterval(i) { - return 0 // This includes the case i is empty. - } - if y.IsEmpty() { - return Angle(math.Pi) // maximum possible distance on s1. - } - yComplementCenter := y.ComplementCenter() - if i.Contains(yComplementCenter) { - return Angle(positiveDistance(y.Hi, yComplementCenter)) - } - - // The Hausdorff distance is realized by either two i.Hi endpoints or two - // i.Lo endpoints, whichever is farther apart. - hiHi := 0.0 - if IntervalFromEndpoints(y.Hi, yComplementCenter).Contains(i.Hi) { - hiHi = positiveDistance(y.Hi, i.Hi) - } - - loLo := 0.0 - if IntervalFromEndpoints(yComplementCenter, y.Lo).Contains(i.Lo) { - loLo = positiveDistance(i.Lo, y.Lo) - } - - return Angle(math.Max(hiHi, loLo)) -} - -// Project returns the closest point in the interval to the given point p. -// The interval must be non-empty. -func (i Interval) Project(p float64) float64 { - if p == -math.Pi { - p = math.Pi - } - if i.fastContains(p) { - return p - } - // Compute distance from p to each endpoint. - dlo := positiveDistance(p, i.Lo) - dhi := positiveDistance(i.Hi, p) - if dlo < dhi { - return i.Lo - } - return i.Hi -} |