1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
|
/*
*
* Copyright 2024 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
// Package pickfirstleaf contains the pick_first load balancing policy which
// will be the universal leaf policy after dualstack changes are implemented.
//
// # Experimental
//
// Notice: This package is EXPERIMENTAL and may be changed or removed in a
// later release.
package pickfirstleaf
import (
"encoding/json"
"errors"
"fmt"
"net"
"net/netip"
"sync"
"time"
"google.golang.org/grpc/balancer"
"google.golang.org/grpc/balancer/pickfirst/internal"
"google.golang.org/grpc/connectivity"
expstats "google.golang.org/grpc/experimental/stats"
"google.golang.org/grpc/grpclog"
"google.golang.org/grpc/internal/envconfig"
internalgrpclog "google.golang.org/grpc/internal/grpclog"
"google.golang.org/grpc/internal/pretty"
"google.golang.org/grpc/resolver"
"google.golang.org/grpc/serviceconfig"
)
func init() {
if envconfig.NewPickFirstEnabled {
// Register as the default pick_first balancer.
Name = "pick_first"
}
balancer.Register(pickfirstBuilder{})
}
// enableHealthListenerKeyType is a unique key type used in resolver attributes
// to indicate whether the health listener usage is enabled.
type enableHealthListenerKeyType struct{}
var (
logger = grpclog.Component("pick-first-leaf-lb")
// Name is the name of the pick_first_leaf balancer.
// It is changed to "pick_first" in init() if this balancer is to be
// registered as the default pickfirst.
Name = "pick_first_leaf"
disconnectionsMetric = expstats.RegisterInt64Count(expstats.MetricDescriptor{
Name: "grpc.lb.pick_first.disconnections",
Description: "EXPERIMENTAL. Number of times the selected subchannel becomes disconnected.",
Unit: "disconnection",
Labels: []string{"grpc.target"},
Default: false,
})
connectionAttemptsSucceededMetric = expstats.RegisterInt64Count(expstats.MetricDescriptor{
Name: "grpc.lb.pick_first.connection_attempts_succeeded",
Description: "EXPERIMENTAL. Number of successful connection attempts.",
Unit: "attempt",
Labels: []string{"grpc.target"},
Default: false,
})
connectionAttemptsFailedMetric = expstats.RegisterInt64Count(expstats.MetricDescriptor{
Name: "grpc.lb.pick_first.connection_attempts_failed",
Description: "EXPERIMENTAL. Number of failed connection attempts.",
Unit: "attempt",
Labels: []string{"grpc.target"},
Default: false,
})
)
const (
// TODO: change to pick-first when this becomes the default pick_first policy.
logPrefix = "[pick-first-leaf-lb %p] "
// connectionDelayInterval is the time to wait for during the happy eyeballs
// pass before starting the next connection attempt.
connectionDelayInterval = 250 * time.Millisecond
)
type ipAddrFamily int
const (
// ipAddrFamilyUnknown represents strings that can't be parsed as an IP
// address.
ipAddrFamilyUnknown ipAddrFamily = iota
ipAddrFamilyV4
ipAddrFamilyV6
)
type pickfirstBuilder struct{}
func (pickfirstBuilder) Build(cc balancer.ClientConn, bo balancer.BuildOptions) balancer.Balancer {
b := &pickfirstBalancer{
cc: cc,
target: bo.Target.String(),
metricsRecorder: bo.MetricsRecorder, // ClientConn will always create a Metrics Recorder.
subConns: resolver.NewAddressMap(),
state: connectivity.Connecting,
cancelConnectionTimer: func() {},
}
b.logger = internalgrpclog.NewPrefixLogger(logger, fmt.Sprintf(logPrefix, b))
return b
}
func (b pickfirstBuilder) Name() string {
return Name
}
func (pickfirstBuilder) ParseConfig(js json.RawMessage) (serviceconfig.LoadBalancingConfig, error) {
var cfg pfConfig
if err := json.Unmarshal(js, &cfg); err != nil {
return nil, fmt.Errorf("pickfirst: unable to unmarshal LB policy config: %s, error: %v", string(js), err)
}
return cfg, nil
}
// EnableHealthListener updates the state to configure pickfirst for using a
// generic health listener.
func EnableHealthListener(state resolver.State) resolver.State {
state.Attributes = state.Attributes.WithValue(enableHealthListenerKeyType{}, true)
return state
}
type pfConfig struct {
serviceconfig.LoadBalancingConfig `json:"-"`
// If set to true, instructs the LB policy to shuffle the order of the list
// of endpoints received from the name resolver before attempting to
// connect to them.
ShuffleAddressList bool `json:"shuffleAddressList"`
}
// scData keeps track of the current state of the subConn.
// It is not safe for concurrent access.
type scData struct {
// The following fields are initialized at build time and read-only after
// that.
subConn balancer.SubConn
addr resolver.Address
rawConnectivityState connectivity.State
// The effective connectivity state based on raw connectivity, health state
// and after following sticky TransientFailure behaviour defined in A62.
effectiveState connectivity.State
lastErr error
connectionFailedInFirstPass bool
}
func (b *pickfirstBalancer) newSCData(addr resolver.Address) (*scData, error) {
sd := &scData{
rawConnectivityState: connectivity.Idle,
effectiveState: connectivity.Idle,
addr: addr,
}
sc, err := b.cc.NewSubConn([]resolver.Address{addr}, balancer.NewSubConnOptions{
StateListener: func(state balancer.SubConnState) {
b.updateSubConnState(sd, state)
},
})
if err != nil {
return nil, err
}
sd.subConn = sc
return sd, nil
}
type pickfirstBalancer struct {
// The following fields are initialized at build time and read-only after
// that and therefore do not need to be guarded by a mutex.
logger *internalgrpclog.PrefixLogger
cc balancer.ClientConn
target string
metricsRecorder expstats.MetricsRecorder // guaranteed to be non nil
// The mutex is used to ensure synchronization of updates triggered
// from the idle picker and the already serialized resolver,
// SubConn state updates.
mu sync.Mutex
// State reported to the channel based on SubConn states and resolver
// updates.
state connectivity.State
// scData for active subonns mapped by address.
subConns *resolver.AddressMap
addressList addressList
firstPass bool
numTF int
cancelConnectionTimer func()
healthCheckingEnabled bool
}
// ResolverError is called by the ClientConn when the name resolver produces
// an error or when pickfirst determined the resolver update to be invalid.
func (b *pickfirstBalancer) ResolverError(err error) {
b.mu.Lock()
defer b.mu.Unlock()
b.resolverErrorLocked(err)
}
func (b *pickfirstBalancer) resolverErrorLocked(err error) {
if b.logger.V(2) {
b.logger.Infof("Received error from the name resolver: %v", err)
}
// The picker will not change since the balancer does not currently
// report an error. If the balancer hasn't received a single good resolver
// update yet, transition to TRANSIENT_FAILURE.
if b.state != connectivity.TransientFailure && b.addressList.size() > 0 {
if b.logger.V(2) {
b.logger.Infof("Ignoring resolver error because balancer is using a previous good update.")
}
return
}
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.TransientFailure,
Picker: &picker{err: fmt.Errorf("name resolver error: %v", err)},
})
}
func (b *pickfirstBalancer) UpdateClientConnState(state balancer.ClientConnState) error {
b.mu.Lock()
defer b.mu.Unlock()
b.cancelConnectionTimer()
if len(state.ResolverState.Addresses) == 0 && len(state.ResolverState.Endpoints) == 0 {
// Cleanup state pertaining to the previous resolver state.
// Treat an empty address list like an error by calling b.ResolverError.
b.closeSubConnsLocked()
b.addressList.updateAddrs(nil)
b.resolverErrorLocked(errors.New("produced zero addresses"))
return balancer.ErrBadResolverState
}
b.healthCheckingEnabled = state.ResolverState.Attributes.Value(enableHealthListenerKeyType{}) != nil
cfg, ok := state.BalancerConfig.(pfConfig)
if state.BalancerConfig != nil && !ok {
return fmt.Errorf("pickfirst: received illegal BalancerConfig (type %T): %v: %w", state.BalancerConfig, state.BalancerConfig, balancer.ErrBadResolverState)
}
if b.logger.V(2) {
b.logger.Infof("Received new config %s, resolver state %s", pretty.ToJSON(cfg), pretty.ToJSON(state.ResolverState))
}
var newAddrs []resolver.Address
if endpoints := state.ResolverState.Endpoints; len(endpoints) != 0 {
// Perform the optional shuffling described in gRFC A62. The shuffling
// will change the order of endpoints but not touch the order of the
// addresses within each endpoint. - A61
if cfg.ShuffleAddressList {
endpoints = append([]resolver.Endpoint{}, endpoints...)
internal.RandShuffle(len(endpoints), func(i, j int) { endpoints[i], endpoints[j] = endpoints[j], endpoints[i] })
}
// "Flatten the list by concatenating the ordered list of addresses for
// each of the endpoints, in order." - A61
for _, endpoint := range endpoints {
newAddrs = append(newAddrs, endpoint.Addresses...)
}
} else {
// Endpoints not set, process addresses until we migrate resolver
// emissions fully to Endpoints. The top channel does wrap emitted
// addresses with endpoints, however some balancers such as weighted
// target do not forward the corresponding correct endpoints down/split
// endpoints properly. Once all balancers correctly forward endpoints
// down, can delete this else conditional.
newAddrs = state.ResolverState.Addresses
if cfg.ShuffleAddressList {
newAddrs = append([]resolver.Address{}, newAddrs...)
internal.RandShuffle(len(endpoints), func(i, j int) { endpoints[i], endpoints[j] = endpoints[j], endpoints[i] })
}
}
// If an address appears in multiple endpoints or in the same endpoint
// multiple times, we keep it only once. We will create only one SubConn
// for the address because an AddressMap is used to store SubConns.
// Not de-duplicating would result in attempting to connect to the same
// SubConn multiple times in the same pass. We don't want this.
newAddrs = deDupAddresses(newAddrs)
newAddrs = interleaveAddresses(newAddrs)
prevAddr := b.addressList.currentAddress()
prevSCData, found := b.subConns.Get(prevAddr)
prevAddrsCount := b.addressList.size()
isPrevRawConnectivityStateReady := found && prevSCData.(*scData).rawConnectivityState == connectivity.Ready
b.addressList.updateAddrs(newAddrs)
// If the previous ready SubConn exists in new address list,
// keep this connection and don't create new SubConns.
if isPrevRawConnectivityStateReady && b.addressList.seekTo(prevAddr) {
return nil
}
b.reconcileSubConnsLocked(newAddrs)
// If it's the first resolver update or the balancer was already READY
// (but the new address list does not contain the ready SubConn) or
// CONNECTING, enter CONNECTING.
// We may be in TRANSIENT_FAILURE due to a previous empty address list,
// we should still enter CONNECTING because the sticky TF behaviour
// mentioned in A62 applies only when the TRANSIENT_FAILURE is reported
// due to connectivity failures.
if isPrevRawConnectivityStateReady || b.state == connectivity.Connecting || prevAddrsCount == 0 {
// Start connection attempt at first address.
b.forceUpdateConcludedStateLocked(balancer.State{
ConnectivityState: connectivity.Connecting,
Picker: &picker{err: balancer.ErrNoSubConnAvailable},
})
b.startFirstPassLocked()
} else if b.state == connectivity.TransientFailure {
// If we're in TRANSIENT_FAILURE, we stay in TRANSIENT_FAILURE until
// we're READY. See A62.
b.startFirstPassLocked()
}
return nil
}
// UpdateSubConnState is unused as a StateListener is always registered when
// creating SubConns.
func (b *pickfirstBalancer) UpdateSubConnState(subConn balancer.SubConn, state balancer.SubConnState) {
b.logger.Errorf("UpdateSubConnState(%v, %+v) called unexpectedly", subConn, state)
}
func (b *pickfirstBalancer) Close() {
b.mu.Lock()
defer b.mu.Unlock()
b.closeSubConnsLocked()
b.cancelConnectionTimer()
b.state = connectivity.Shutdown
}
// ExitIdle moves the balancer out of idle state. It can be called concurrently
// by the idlePicker and clientConn so access to variables should be
// synchronized.
func (b *pickfirstBalancer) ExitIdle() {
b.mu.Lock()
defer b.mu.Unlock()
if b.state == connectivity.Idle {
b.startFirstPassLocked()
}
}
func (b *pickfirstBalancer) startFirstPassLocked() {
b.firstPass = true
b.numTF = 0
// Reset the connection attempt record for existing SubConns.
for _, sd := range b.subConns.Values() {
sd.(*scData).connectionFailedInFirstPass = false
}
b.requestConnectionLocked()
}
func (b *pickfirstBalancer) closeSubConnsLocked() {
for _, sd := range b.subConns.Values() {
sd.(*scData).subConn.Shutdown()
}
b.subConns = resolver.NewAddressMap()
}
// deDupAddresses ensures that each address appears only once in the slice.
func deDupAddresses(addrs []resolver.Address) []resolver.Address {
seenAddrs := resolver.NewAddressMap()
retAddrs := []resolver.Address{}
for _, addr := range addrs {
if _, ok := seenAddrs.Get(addr); ok {
continue
}
retAddrs = append(retAddrs, addr)
}
return retAddrs
}
// interleaveAddresses interleaves addresses of both families (IPv4 and IPv6)
// as per RFC-8305 section 4.
// Whichever address family is first in the list is followed by an address of
// the other address family; that is, if the first address in the list is IPv6,
// then the first IPv4 address should be moved up in the list to be second in
// the list. It doesn't support configuring "First Address Family Count", i.e.
// there will always be a single member of the first address family at the
// beginning of the interleaved list.
// Addresses that are neither IPv4 nor IPv6 are treated as part of a third
// "unknown" family for interleaving.
// See: https://datatracker.ietf.org/doc/html/rfc8305#autoid-6
func interleaveAddresses(addrs []resolver.Address) []resolver.Address {
familyAddrsMap := map[ipAddrFamily][]resolver.Address{}
interleavingOrder := []ipAddrFamily{}
for _, addr := range addrs {
family := addressFamily(addr.Addr)
if _, found := familyAddrsMap[family]; !found {
interleavingOrder = append(interleavingOrder, family)
}
familyAddrsMap[family] = append(familyAddrsMap[family], addr)
}
interleavedAddrs := make([]resolver.Address, 0, len(addrs))
for curFamilyIdx := 0; len(interleavedAddrs) < len(addrs); curFamilyIdx = (curFamilyIdx + 1) % len(interleavingOrder) {
// Some IP types may have fewer addresses than others, so we look for
// the next type that has a remaining member to add to the interleaved
// list.
family := interleavingOrder[curFamilyIdx]
remainingMembers := familyAddrsMap[family]
if len(remainingMembers) > 0 {
interleavedAddrs = append(interleavedAddrs, remainingMembers[0])
familyAddrsMap[family] = remainingMembers[1:]
}
}
return interleavedAddrs
}
// addressFamily returns the ipAddrFamily after parsing the address string.
// If the address isn't of the format "ip-address:port", it returns
// ipAddrFamilyUnknown. The address may be valid even if it's not an IP when
// using a resolver like passthrough where the address may be a hostname in
// some format that the dialer can resolve.
func addressFamily(address string) ipAddrFamily {
// Parse the IP after removing the port.
host, _, err := net.SplitHostPort(address)
if err != nil {
return ipAddrFamilyUnknown
}
ip, err := netip.ParseAddr(host)
if err != nil {
return ipAddrFamilyUnknown
}
switch {
case ip.Is4() || ip.Is4In6():
return ipAddrFamilyV4
case ip.Is6():
return ipAddrFamilyV6
default:
return ipAddrFamilyUnknown
}
}
// reconcileSubConnsLocked updates the active subchannels based on a new address
// list from the resolver. It does this by:
// - closing subchannels: any existing subchannels associated with addresses
// that are no longer in the updated list are shut down.
// - removing subchannels: entries for these closed subchannels are removed
// from the subchannel map.
//
// This ensures that the subchannel map accurately reflects the current set of
// addresses received from the name resolver.
func (b *pickfirstBalancer) reconcileSubConnsLocked(newAddrs []resolver.Address) {
newAddrsMap := resolver.NewAddressMap()
for _, addr := range newAddrs {
newAddrsMap.Set(addr, true)
}
for _, oldAddr := range b.subConns.Keys() {
if _, ok := newAddrsMap.Get(oldAddr); ok {
continue
}
val, _ := b.subConns.Get(oldAddr)
val.(*scData).subConn.Shutdown()
b.subConns.Delete(oldAddr)
}
}
// shutdownRemainingLocked shuts down remaining subConns. Called when a subConn
// becomes ready, which means that all other subConn must be shutdown.
func (b *pickfirstBalancer) shutdownRemainingLocked(selected *scData) {
b.cancelConnectionTimer()
for _, v := range b.subConns.Values() {
sd := v.(*scData)
if sd.subConn != selected.subConn {
sd.subConn.Shutdown()
}
}
b.subConns = resolver.NewAddressMap()
b.subConns.Set(selected.addr, selected)
}
// requestConnectionLocked starts connecting on the subchannel corresponding to
// the current address. If no subchannel exists, one is created. If the current
// subchannel is in TransientFailure, a connection to the next address is
// attempted until a subchannel is found.
func (b *pickfirstBalancer) requestConnectionLocked() {
if !b.addressList.isValid() {
return
}
var lastErr error
for valid := true; valid; valid = b.addressList.increment() {
curAddr := b.addressList.currentAddress()
sd, ok := b.subConns.Get(curAddr)
if !ok {
var err error
// We want to assign the new scData to sd from the outer scope,
// hence we can't use := below.
sd, err = b.newSCData(curAddr)
if err != nil {
// This should never happen, unless the clientConn is being shut
// down.
if b.logger.V(2) {
b.logger.Infof("Failed to create a subConn for address %v: %v", curAddr.String(), err)
}
// Do nothing, the LB policy will be closed soon.
return
}
b.subConns.Set(curAddr, sd)
}
scd := sd.(*scData)
switch scd.rawConnectivityState {
case connectivity.Idle:
scd.subConn.Connect()
b.scheduleNextConnectionLocked()
return
case connectivity.TransientFailure:
// The SubConn is being re-used and failed during a previous pass
// over the addressList. It has not completed backoff yet.
// Mark it as having failed and try the next address.
scd.connectionFailedInFirstPass = true
lastErr = scd.lastErr
continue
case connectivity.Connecting:
// Wait for the connection attempt to complete or the timer to fire
// before attempting the next address.
b.scheduleNextConnectionLocked()
return
default:
b.logger.Errorf("SubConn with unexpected state %v present in SubConns map.", scd.rawConnectivityState)
return
}
}
// All the remaining addresses in the list are in TRANSIENT_FAILURE, end the
// first pass if possible.
b.endFirstPassIfPossibleLocked(lastErr)
}
func (b *pickfirstBalancer) scheduleNextConnectionLocked() {
b.cancelConnectionTimer()
if !b.addressList.hasNext() {
return
}
curAddr := b.addressList.currentAddress()
cancelled := false // Access to this is protected by the balancer's mutex.
closeFn := internal.TimeAfterFunc(connectionDelayInterval, func() {
b.mu.Lock()
defer b.mu.Unlock()
// If the scheduled task is cancelled while acquiring the mutex, return.
if cancelled {
return
}
if b.logger.V(2) {
b.logger.Infof("Happy Eyeballs timer expired while waiting for connection to %q.", curAddr.Addr)
}
if b.addressList.increment() {
b.requestConnectionLocked()
}
})
// Access to the cancellation callback held by the balancer is guarded by
// the balancer's mutex, so it's safe to set the boolean from the callback.
b.cancelConnectionTimer = sync.OnceFunc(func() {
cancelled = true
closeFn()
})
}
func (b *pickfirstBalancer) updateSubConnState(sd *scData, newState balancer.SubConnState) {
b.mu.Lock()
defer b.mu.Unlock()
oldState := sd.rawConnectivityState
sd.rawConnectivityState = newState.ConnectivityState
// Previously relevant SubConns can still callback with state updates.
// To prevent pickers from returning these obsolete SubConns, this logic
// is included to check if the current list of active SubConns includes this
// SubConn.
if !b.isActiveSCData(sd) {
return
}
if newState.ConnectivityState == connectivity.Shutdown {
sd.effectiveState = connectivity.Shutdown
return
}
// Record a connection attempt when exiting CONNECTING.
if newState.ConnectivityState == connectivity.TransientFailure {
sd.connectionFailedInFirstPass = true
connectionAttemptsFailedMetric.Record(b.metricsRecorder, 1, b.target)
}
if newState.ConnectivityState == connectivity.Ready {
connectionAttemptsSucceededMetric.Record(b.metricsRecorder, 1, b.target)
b.shutdownRemainingLocked(sd)
if !b.addressList.seekTo(sd.addr) {
// This should not fail as we should have only one SubConn after
// entering READY. The SubConn should be present in the addressList.
b.logger.Errorf("Address %q not found address list in %v", sd.addr, b.addressList.addresses)
return
}
if !b.healthCheckingEnabled {
if b.logger.V(2) {
b.logger.Infof("SubConn %p reported connectivity state READY and the health listener is disabled. Transitioning SubConn to READY.", sd.subConn)
}
sd.effectiveState = connectivity.Ready
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.Ready,
Picker: &picker{result: balancer.PickResult{SubConn: sd.subConn}},
})
return
}
if b.logger.V(2) {
b.logger.Infof("SubConn %p reported connectivity state READY. Registering health listener.", sd.subConn)
}
// Send a CONNECTING update to take the SubConn out of sticky-TF if
// required.
sd.effectiveState = connectivity.Connecting
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.Connecting,
Picker: &picker{err: balancer.ErrNoSubConnAvailable},
})
sd.subConn.RegisterHealthListener(func(scs balancer.SubConnState) {
b.updateSubConnHealthState(sd, scs)
})
return
}
// If the LB policy is READY, and it receives a subchannel state change,
// it means that the READY subchannel has failed.
// A SubConn can also transition from CONNECTING directly to IDLE when
// a transport is successfully created, but the connection fails
// before the SubConn can send the notification for READY. We treat
// this as a successful connection and transition to IDLE.
// TODO: https://github.com/grpc/grpc-go/issues/7862 - Remove the second
// part of the if condition below once the issue is fixed.
if oldState == connectivity.Ready || (oldState == connectivity.Connecting && newState.ConnectivityState == connectivity.Idle) {
// Once a transport fails, the balancer enters IDLE and starts from
// the first address when the picker is used.
b.shutdownRemainingLocked(sd)
sd.effectiveState = newState.ConnectivityState
// READY SubConn interspliced in between CONNECTING and IDLE, need to
// account for that.
if oldState == connectivity.Connecting {
// A known issue (https://github.com/grpc/grpc-go/issues/7862)
// causes a race that prevents the READY state change notification.
// This works around it.
connectionAttemptsSucceededMetric.Record(b.metricsRecorder, 1, b.target)
}
disconnectionsMetric.Record(b.metricsRecorder, 1, b.target)
b.addressList.reset()
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.Idle,
Picker: &idlePicker{exitIdle: sync.OnceFunc(b.ExitIdle)},
})
return
}
if b.firstPass {
switch newState.ConnectivityState {
case connectivity.Connecting:
// The effective state can be in either IDLE, CONNECTING or
// TRANSIENT_FAILURE. If it's TRANSIENT_FAILURE, stay in
// TRANSIENT_FAILURE until it's READY. See A62.
if sd.effectiveState != connectivity.TransientFailure {
sd.effectiveState = connectivity.Connecting
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.Connecting,
Picker: &picker{err: balancer.ErrNoSubConnAvailable},
})
}
case connectivity.TransientFailure:
sd.lastErr = newState.ConnectionError
sd.effectiveState = connectivity.TransientFailure
// Since we're re-using common SubConns while handling resolver
// updates, we could receive an out of turn TRANSIENT_FAILURE from
// a pass over the previous address list. Happy Eyeballs will also
// cause out of order updates to arrive.
if curAddr := b.addressList.currentAddress(); equalAddressIgnoringBalAttributes(&curAddr, &sd.addr) {
b.cancelConnectionTimer()
if b.addressList.increment() {
b.requestConnectionLocked()
return
}
}
// End the first pass if we've seen a TRANSIENT_FAILURE from all
// SubConns once.
b.endFirstPassIfPossibleLocked(newState.ConnectionError)
}
return
}
// We have finished the first pass, keep re-connecting failing SubConns.
switch newState.ConnectivityState {
case connectivity.TransientFailure:
b.numTF = (b.numTF + 1) % b.subConns.Len()
sd.lastErr = newState.ConnectionError
if b.numTF%b.subConns.Len() == 0 {
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.TransientFailure,
Picker: &picker{err: newState.ConnectionError},
})
}
// We don't need to request re-resolution since the SubConn already
// does that before reporting TRANSIENT_FAILURE.
// TODO: #7534 - Move re-resolution requests from SubConn into
// pick_first.
case connectivity.Idle:
sd.subConn.Connect()
}
}
// endFirstPassIfPossibleLocked ends the first happy-eyeballs pass if all the
// addresses are tried and their SubConns have reported a failure.
func (b *pickfirstBalancer) endFirstPassIfPossibleLocked(lastErr error) {
// An optimization to avoid iterating over the entire SubConn map.
if b.addressList.isValid() {
return
}
// Connect() has been called on all the SubConns. The first pass can be
// ended if all the SubConns have reported a failure.
for _, v := range b.subConns.Values() {
sd := v.(*scData)
if !sd.connectionFailedInFirstPass {
return
}
}
b.firstPass = false
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.TransientFailure,
Picker: &picker{err: lastErr},
})
// Start re-connecting all the SubConns that are already in IDLE.
for _, v := range b.subConns.Values() {
sd := v.(*scData)
if sd.rawConnectivityState == connectivity.Idle {
sd.subConn.Connect()
}
}
}
func (b *pickfirstBalancer) isActiveSCData(sd *scData) bool {
activeSD, found := b.subConns.Get(sd.addr)
return found && activeSD == sd
}
func (b *pickfirstBalancer) updateSubConnHealthState(sd *scData, state balancer.SubConnState) {
b.mu.Lock()
defer b.mu.Unlock()
// Previously relevant SubConns can still callback with state updates.
// To prevent pickers from returning these obsolete SubConns, this logic
// is included to check if the current list of active SubConns includes
// this SubConn.
if !b.isActiveSCData(sd) {
return
}
sd.effectiveState = state.ConnectivityState
switch state.ConnectivityState {
case connectivity.Ready:
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.Ready,
Picker: &picker{result: balancer.PickResult{SubConn: sd.subConn}},
})
case connectivity.TransientFailure:
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.TransientFailure,
Picker: &picker{err: fmt.Errorf("pickfirst: health check failure: %v", state.ConnectionError)},
})
case connectivity.Connecting:
b.updateBalancerState(balancer.State{
ConnectivityState: connectivity.Connecting,
Picker: &picker{err: balancer.ErrNoSubConnAvailable},
})
default:
b.logger.Errorf("Got unexpected health update for SubConn %p: %v", state)
}
}
// updateBalancerState stores the state reported to the channel and calls
// ClientConn.UpdateState(). As an optimization, it avoids sending duplicate
// updates to the channel.
func (b *pickfirstBalancer) updateBalancerState(newState balancer.State) {
// In case of TransientFailures allow the picker to be updated to update
// the connectivity error, in all other cases don't send duplicate state
// updates.
if newState.ConnectivityState == b.state && b.state != connectivity.TransientFailure {
return
}
b.forceUpdateConcludedStateLocked(newState)
}
// forceUpdateConcludedStateLocked stores the state reported to the channel and
// calls ClientConn.UpdateState().
// A separate function is defined to force update the ClientConn state since the
// channel doesn't correctly assume that LB policies start in CONNECTING and
// relies on LB policy to send an initial CONNECTING update.
func (b *pickfirstBalancer) forceUpdateConcludedStateLocked(newState balancer.State) {
b.state = newState.ConnectivityState
b.cc.UpdateState(newState)
}
type picker struct {
result balancer.PickResult
err error
}
func (p *picker) Pick(balancer.PickInfo) (balancer.PickResult, error) {
return p.result, p.err
}
// idlePicker is used when the SubConn is IDLE and kicks the SubConn into
// CONNECTING when Pick is called.
type idlePicker struct {
exitIdle func()
}
func (i *idlePicker) Pick(balancer.PickInfo) (balancer.PickResult, error) {
i.exitIdle()
return balancer.PickResult{}, balancer.ErrNoSubConnAvailable
}
// addressList manages sequentially iterating over addresses present in a list
// of endpoints. It provides a 1 dimensional view of the addresses present in
// the endpoints.
// This type is not safe for concurrent access.
type addressList struct {
addresses []resolver.Address
idx int
}
func (al *addressList) isValid() bool {
return al.idx < len(al.addresses)
}
func (al *addressList) size() int {
return len(al.addresses)
}
// increment moves to the next index in the address list.
// This method returns false if it went off the list, true otherwise.
func (al *addressList) increment() bool {
if !al.isValid() {
return false
}
al.idx++
return al.idx < len(al.addresses)
}
// currentAddress returns the current address pointed to in the addressList.
// If the list is in an invalid state, it returns an empty address instead.
func (al *addressList) currentAddress() resolver.Address {
if !al.isValid() {
return resolver.Address{}
}
return al.addresses[al.idx]
}
func (al *addressList) reset() {
al.idx = 0
}
func (al *addressList) updateAddrs(addrs []resolver.Address) {
al.addresses = addrs
al.reset()
}
// seekTo returns false if the needle was not found and the current index was
// left unchanged.
func (al *addressList) seekTo(needle resolver.Address) bool {
for ai, addr := range al.addresses {
if !equalAddressIgnoringBalAttributes(&addr, &needle) {
continue
}
al.idx = ai
return true
}
return false
}
// hasNext returns whether incrementing the addressList will result in moving
// past the end of the list. If the list has already moved past the end, it
// returns false.
func (al *addressList) hasNext() bool {
if !al.isValid() {
return false
}
return al.idx+1 < len(al.addresses)
}
// equalAddressIgnoringBalAttributes returns true is a and b are considered
// equal. This is different from the Equal method on the resolver.Address type
// which considers all fields to determine equality. Here, we only consider
// fields that are meaningful to the SubConn.
func equalAddressIgnoringBalAttributes(a, b *resolver.Address) bool {
return a.Addr == b.Addr && a.ServerName == b.ServerName &&
a.Attributes.Equal(b.Attributes) &&
a.Metadata == b.Metadata
}
|