summaryrefslogtreecommitdiff
path: root/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
blob: 1e52ff0d1e556870f004bcdbe5682c3e2bfb41e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"

import (
	"context"
	"sync"
	"time"

	"go.opentelemetry.io/otel/attribute"
	"go.opentelemetry.io/otel/sdk/metric/metricdata"
)

// valueMap is the storage for sums.
type valueMap[N int64 | float64] struct {
	sync.Mutex
	values map[attribute.Set]N
}

func newValueMap[N int64 | float64]() *valueMap[N] {
	return &valueMap[N]{values: make(map[attribute.Set]N)}
}

func (s *valueMap[N]) measure(_ context.Context, value N, attr attribute.Set) {
	s.Lock()
	s.values[attr] += value
	s.Unlock()
}

// newSum returns an aggregator that summarizes a set of measurements as their
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
// the measurements were made in.
func newSum[N int64 | float64](monotonic bool) *sum[N] {
	return &sum[N]{
		valueMap:  newValueMap[N](),
		monotonic: monotonic,
		start:     now(),
	}
}

// sum summarizes a set of measurements made as their arithmetic sum.
type sum[N int64 | float64] struct {
	*valueMap[N]

	monotonic bool
	start     time.Time
}

func (s *sum[N]) delta(dest *metricdata.Aggregation) int {
	t := now()

	// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
	// use the zero-value sData and hope for better alignment next cycle.
	sData, _ := (*dest).(metricdata.Sum[N])
	sData.Temporality = metricdata.DeltaTemporality
	sData.IsMonotonic = s.monotonic

	s.Lock()
	defer s.Unlock()

	n := len(s.values)
	dPts := reset(sData.DataPoints, n, n)

	var i int
	for attr, value := range s.values {
		dPts[i].Attributes = attr
		dPts[i].StartTime = s.start
		dPts[i].Time = t
		dPts[i].Value = value
		// Do not report stale values.
		delete(s.values, attr)
		i++
	}
	// The delta collection cycle resets.
	s.start = t

	sData.DataPoints = dPts
	*dest = sData

	return n
}

func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
	t := now()

	// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
	// use the zero-value sData and hope for better alignment next cycle.
	sData, _ := (*dest).(metricdata.Sum[N])
	sData.Temporality = metricdata.CumulativeTemporality
	sData.IsMonotonic = s.monotonic

	s.Lock()
	defer s.Unlock()

	n := len(s.values)
	dPts := reset(sData.DataPoints, n, n)

	var i int
	for attr, value := range s.values {
		dPts[i].Attributes = attr
		dPts[i].StartTime = s.start
		dPts[i].Time = t
		dPts[i].Value = value
		// TODO (#3006): This will use an unbounded amount of memory if there
		// are unbounded number of attribute sets being aggregated. Attribute
		// sets that become "stale" need to be forgotten so this will not
		// overload the system.
		i++
	}

	sData.DataPoints = dPts
	*dest = sData

	return n
}

// newPrecomputedSum returns an aggregator that summarizes a set of
// observatrions as their arithmetic sum. Each sum is scoped by attributes and
// the aggregation cycle the measurements were made in.
func newPrecomputedSum[N int64 | float64](monotonic bool) *precomputedSum[N] {
	return &precomputedSum[N]{
		valueMap:  newValueMap[N](),
		monotonic: monotonic,
		start:     now(),
	}
}

// precomputedSum summarizes a set of observatrions as their arithmetic sum.
type precomputedSum[N int64 | float64] struct {
	*valueMap[N]

	monotonic bool
	start     time.Time

	reported map[attribute.Set]N
}

func (s *precomputedSum[N]) delta(dest *metricdata.Aggregation) int {
	t := now()
	newReported := make(map[attribute.Set]N)

	// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
	// use the zero-value sData and hope for better alignment next cycle.
	sData, _ := (*dest).(metricdata.Sum[N])
	sData.Temporality = metricdata.DeltaTemporality
	sData.IsMonotonic = s.monotonic

	s.Lock()
	defer s.Unlock()

	n := len(s.values)
	dPts := reset(sData.DataPoints, n, n)

	var i int
	for attr, value := range s.values {
		delta := value - s.reported[attr]

		dPts[i].Attributes = attr
		dPts[i].StartTime = s.start
		dPts[i].Time = t
		dPts[i].Value = delta

		newReported[attr] = value
		// Unused attribute sets do not report.
		delete(s.values, attr)
		i++
	}
	// Unused attribute sets are forgotten.
	s.reported = newReported
	// The delta collection cycle resets.
	s.start = t

	sData.DataPoints = dPts
	*dest = sData

	return n
}

func (s *precomputedSum[N]) cumulative(dest *metricdata.Aggregation) int {
	t := now()

	// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
	// use the zero-value sData and hope for better alignment next cycle.
	sData, _ := (*dest).(metricdata.Sum[N])
	sData.Temporality = metricdata.CumulativeTemporality
	sData.IsMonotonic = s.monotonic

	s.Lock()
	defer s.Unlock()

	n := len(s.values)
	dPts := reset(sData.DataPoints, n, n)

	var i int
	for attr, value := range s.values {
		dPts[i].Attributes = attr
		dPts[i].StartTime = s.start
		dPts[i].Time = t
		dPts[i].Value = value

		// Unused attribute sets do not report.
		delete(s.values, attr)
		i++
	}

	sData.DataPoints = dPts
	*dest = sData

	return n
}