1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
// now is used to return the current local time while allowing tests to
// override the default time.Now function.
var now = time.Now
// Measure receives measurements to be aggregated.
type Measure[N int64 | float64] func(context.Context, N, attribute.Set)
// ComputeAggregation stores the aggregate of measurements into dest and
// returns the number of aggregate data-points output.
type ComputeAggregation func(dest *metricdata.Aggregation) int
// Builder builds an aggregate function.
type Builder[N int64 | float64] struct {
// Temporality is the temporality used for the returned aggregate function.
//
// If this is not provided a default of cumulative will be used (except for
// the last-value aggregate function where delta is the only appropriate
// temporality).
Temporality metricdata.Temporality
// Filter is the attribute filter the aggregate function will use on the
// input of measurements.
Filter attribute.Filter
// ReservoirFunc is the factory function used by aggregate functions to
// create new exemplar reservoirs for a new seen attribute set.
//
// If this is not provided a default factory function that returns an
// dropReservoir reservoir will be used.
ReservoirFunc func(attribute.Set) FilteredExemplarReservoir[N]
// AggregationLimit is the cardinality limit of measurement attributes. Any
// measurement for new attributes once the limit has been reached will be
// aggregated into a single aggregate for the "otel.metric.overflow"
// attribute.
//
// If AggregationLimit is less than or equal to zero there will not be an
// aggregation limit imposed (i.e. unlimited attribute sets).
AggregationLimit int
}
func (b Builder[N]) resFunc() func(attribute.Set) FilteredExemplarReservoir[N] {
if b.ReservoirFunc != nil {
return b.ReservoirFunc
}
return dropReservoir
}
type fltrMeasure[N int64 | float64] func(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue)
func (b Builder[N]) filter(f fltrMeasure[N]) Measure[N] {
if b.Filter != nil {
fltr := b.Filter // Copy to make it immutable after assignment.
return func(ctx context.Context, n N, a attribute.Set) {
fAttr, dropped := a.Filter(fltr)
f(ctx, n, fAttr, dropped)
}
}
return func(ctx context.Context, n N, a attribute.Set) {
f(ctx, n, a, nil)
}
}
// LastValue returns a last-value aggregate function input and output.
func (b Builder[N]) LastValue() (Measure[N], ComputeAggregation) {
lv := newLastValue[N](b.AggregationLimit, b.resFunc())
switch b.Temporality {
case metricdata.DeltaTemporality:
return b.filter(lv.measure), lv.delta
default:
return b.filter(lv.measure), lv.cumulative
}
}
// PrecomputedLastValue returns a last-value aggregate function input and
// output. The aggregation returned from the returned ComputeAggregation
// function will always only return values from the previous collection cycle.
func (b Builder[N]) PrecomputedLastValue() (Measure[N], ComputeAggregation) {
lv := newPrecomputedLastValue[N](b.AggregationLimit, b.resFunc())
switch b.Temporality {
case metricdata.DeltaTemporality:
return b.filter(lv.measure), lv.delta
default:
return b.filter(lv.measure), lv.cumulative
}
}
// PrecomputedSum returns a sum aggregate function input and output. The
// arguments passed to the input are expected to be the precomputed sum values.
func (b Builder[N]) PrecomputedSum(monotonic bool) (Measure[N], ComputeAggregation) {
s := newPrecomputedSum[N](monotonic, b.AggregationLimit, b.resFunc())
switch b.Temporality {
case metricdata.DeltaTemporality:
return b.filter(s.measure), s.delta
default:
return b.filter(s.measure), s.cumulative
}
}
// Sum returns a sum aggregate function input and output.
func (b Builder[N]) Sum(monotonic bool) (Measure[N], ComputeAggregation) {
s := newSum[N](monotonic, b.AggregationLimit, b.resFunc())
switch b.Temporality {
case metricdata.DeltaTemporality:
return b.filter(s.measure), s.delta
default:
return b.filter(s.measure), s.cumulative
}
}
// ExplicitBucketHistogram returns a histogram aggregate function input and
// output.
func (b Builder[N]) ExplicitBucketHistogram(boundaries []float64, noMinMax, noSum bool) (Measure[N], ComputeAggregation) {
h := newHistogram[N](boundaries, noMinMax, noSum, b.AggregationLimit, b.resFunc())
switch b.Temporality {
case metricdata.DeltaTemporality:
return b.filter(h.measure), h.delta
default:
return b.filter(h.measure), h.cumulative
}
}
// ExponentialBucketHistogram returns a histogram aggregate function input and
// output.
func (b Builder[N]) ExponentialBucketHistogram(maxSize, maxScale int32, noMinMax, noSum bool) (Measure[N], ComputeAggregation) {
h := newExponentialHistogram[N](maxSize, maxScale, noMinMax, noSum, b.AggregationLimit, b.resFunc())
switch b.Temporality {
case metricdata.DeltaTemporality:
return b.filter(h.measure), h.delta
default:
return b.filter(h.measure), h.cumulative
}
}
// reset ensures s has capacity and sets it length. If the capacity of s too
// small, a new slice is returned with the specified capacity and length.
func reset[T any](s []T, length, capacity int) []T {
if cap(s) < capacity {
return make([]T, length, capacity)
}
return s[:length]
}
|