summaryrefslogtreecommitdiff
path: root/vendor/github.com/cloudwego/iasm/x86_64/encodings.go
blob: a0d96db924ef0dcefadd3532bccfc133e9b645b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
//
// Copyright 2024 CloudWeGo Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

package x86_64

import (
    `encoding/binary`
    `math`
)

/** Operand Encoding Helpers **/

func imml(v interface{}) byte {
    return byte(toImmAny(v) & 0x0f)
}

func relv(v interface{}) int64 {
    switch r := v.(type) {
        case *Label         : return 0
        case RelativeOffset : return int64(r)
        default             : panic("invalid relative offset")
    }
}

func addr(v interface{}) interface{} {
    switch a := v.(*MemoryOperand).Addr; a.Type {
        case Memory    : return a.Memory
        case Offset    : return a.Offset
        case Reference : return a.Reference
        default        : panic("invalid memory operand type")
    }
}

func bcode(v interface{}) byte {
    if m, ok := v.(*MemoryOperand); !ok {
        panic("v is not a memory operand")
    } else if m.Broadcast == 0 {
        return 0
    } else {
        return 1
    }
}

func vcode(v interface{}) byte {
    switch r := v.(type) {
        case XMMRegister    : return byte(r)
        case YMMRegister    : return byte(r)
        case ZMMRegister    : return byte(r)
        case MaskedRegister : return vcode(r.Reg)
        default             : panic("v is not a vector register")
    }
}

func kcode(v interface{}) byte {
    switch r := v.(type) {
        case KRegister      : return byte(r)
        case XMMRegister    : return 0
        case YMMRegister    : return 0
        case ZMMRegister    : return 0
        case RegisterMask   : return byte(r.K)
        case MaskedRegister : return byte(r.Mask.K)
        case *MemoryOperand : return toKcodeMem(r)
        default             : panic("v is not a maskable operand")
    }
}

func zcode(v interface{}) byte {
    switch r := v.(type) {
        case KRegister      : return 0
        case XMMRegister    : return 0
        case YMMRegister    : return 0
        case ZMMRegister    : return 0
        case RegisterMask   : return toZcodeRegM(r)
        case MaskedRegister : return toZcodeRegM(r.Mask)
        case *MemoryOperand : return toZcodeMem(r)
        default             : panic("v is not a maskable operand")
    }
}

func lcode(v interface{}) byte {
    switch r := v.(type) {
        case Register8      : return byte(r & 0x07)
        case Register16     : return byte(r & 0x07)
        case Register32     : return byte(r & 0x07)
        case Register64     : return byte(r & 0x07)
        case KRegister      : return byte(r & 0x07)
        case MMRegister     : return byte(r & 0x07)
        case XMMRegister    : return byte(r & 0x07)
        case YMMRegister    : return byte(r & 0x07)
        case ZMMRegister    : return byte(r & 0x07)
        case MaskedRegister : return lcode(r.Reg)
        default             : panic("v is not a register")
    }
}

func hcode(v interface{}) byte {
    switch r := v.(type) {
        case Register8      : return byte(r >> 3) & 1
        case Register16     : return byte(r >> 3) & 1
        case Register32     : return byte(r >> 3) & 1
        case Register64     : return byte(r >> 3) & 1
        case KRegister      : return byte(r >> 3) & 1
        case MMRegister     : return byte(r >> 3) & 1
        case XMMRegister    : return byte(r >> 3) & 1
        case YMMRegister    : return byte(r >> 3) & 1
        case ZMMRegister    : return byte(r >> 3) & 1
        case MaskedRegister : return hcode(r.Reg)
        default             : panic("v is not a register")
    }
}

func ecode(v interface{}) byte {
    switch r := v.(type) {
        case Register8      : return byte(r >> 4) & 1
        case Register16     : return byte(r >> 4) & 1
        case Register32     : return byte(r >> 4) & 1
        case Register64     : return byte(r >> 4) & 1
        case KRegister      : return byte(r >> 4) & 1
        case MMRegister     : return byte(r >> 4) & 1
        case XMMRegister    : return byte(r >> 4) & 1
        case YMMRegister    : return byte(r >> 4) & 1
        case ZMMRegister    : return byte(r >> 4) & 1
        case MaskedRegister : return ecode(r.Reg)
        default             : panic("v is not a register")
    }
}

func hlcode(v interface{}) byte {
    switch r := v.(type) {
        case Register8      : return toHLcodeReg8(r)
        case Register16     : return byte(r & 0x0f)
        case Register32     : return byte(r & 0x0f)
        case Register64     : return byte(r & 0x0f)
        case KRegister      : return byte(r & 0x0f)
        case MMRegister     : return byte(r & 0x0f)
        case XMMRegister    : return byte(r & 0x0f)
        case YMMRegister    : return byte(r & 0x0f)
        case ZMMRegister    : return byte(r & 0x0f)
        case MaskedRegister : return hlcode(r.Reg)
        default             : panic("v is not a register")
    }
}

func ehcode(v interface{}) byte {
    switch r := v.(type) {
        case Register8      : return byte(r >> 3) & 0x03
        case Register16     : return byte(r >> 3) & 0x03
        case Register32     : return byte(r >> 3) & 0x03
        case Register64     : return byte(r >> 3) & 0x03
        case KRegister      : return byte(r >> 3) & 0x03
        case MMRegister     : return byte(r >> 3) & 0x03
        case XMMRegister    : return byte(r >> 3) & 0x03
        case YMMRegister    : return byte(r >> 3) & 0x03
        case ZMMRegister    : return byte(r >> 3) & 0x03
        case MaskedRegister : return ehcode(r.Reg)
        default             : panic("v is not a register")
    }
}

func toImmAny(v interface{}) int64 {
    if x, ok := asInt64(v); ok {
        return x
    } else {
        panic("value is not an integer")
    }
}

func toHcodeOpt(v interface{}) byte {
    if v == nil {
        return 0
    } else {
        return hcode(v)
    }
}

func toEcodeVMM(v interface{}, x byte) byte {
    switch r := v.(type) {
        case XMMRegister : return ecode(r)
        case YMMRegister : return ecode(r)
        case ZMMRegister : return ecode(r)
        default          : return x
    }
}

func toKcodeMem(v *MemoryOperand) byte {
    if !v.Masked {
        return 0
    } else {
        return byte(v.Mask.K)
    }
}

func toZcodeMem(v *MemoryOperand) byte {
    if !v.Masked || v.Mask.Z {
        return 0
    } else {
        return 1
    }
}

func toZcodeRegM(v RegisterMask) byte {
    if v.Z {
        return 1
    } else {
        return 0
    }
}

func toHLcodeReg8(v Register8) byte {
    switch v {
        case AH: fallthrough
        case BH: fallthrough
        case CH: fallthrough
        case DH: panic("ah/bh/ch/dh registers never use 4-bit encoding")
        default: return byte(v & 0x0f)
    }
}

/** Instruction Encoding Helpers **/

const (
    _N_inst = 16
)

const (
    _F_rel1 = 1 << iota
    _F_rel4
)

type _Encoding struct {
    len     int
    flags   int
    bytes   [_N_inst]byte
    encoder func(m *_Encoding, v []interface{})
}

// buf ensures len + n <= len(bytes).
func (self *_Encoding) buf(n int) []byte {
    if i := self.len; i + n > _N_inst {
        panic("instruction too long")
    } else {
        return self.bytes[i:]
    }
}

// emit encodes a single byte.
func (self *_Encoding) emit(v byte) {
    self.buf(1)[0] = v
    self.len++
}

// imm1 encodes a single byte immediate value.
func (self *_Encoding) imm1(v int64) {
    self.emit(byte(v))
}

// imm2 encodes a two-byte immediate value in little-endian.
func (self *_Encoding) imm2(v int64) {
    binary.LittleEndian.PutUint16(self.buf(2), uint16(v))
    self.len += 2
}

// imm4 encodes a 4-byte immediate value in little-endian.
func (self *_Encoding) imm4(v int64) {
    binary.LittleEndian.PutUint32(self.buf(4), uint32(v))
    self.len += 4
}

// imm8 encodes an 8-byte immediate value in little-endian.
func (self *_Encoding) imm8(v int64) {
    binary.LittleEndian.PutUint64(self.buf(8), uint64(v))
    self.len += 8
}

// vex2 encodes a 2-byte or 3-byte VEX prefix.
//
//                          2-byte VEX prefix:
// Requires: VEX.W = 0, VEX.mmmmm = 0b00001 and VEX.B = VEX.X = 0
//         +----------------+
// Byte 0: | Bits 0-7: 0xc5 |
//         +----------------+
//
//         +-----------+----------------+----------+--------------+
// Byte 1: | Bit 7: ~R | Bits 3-6 ~vvvv | Bit 2: L | Bits 0-1: pp |
//         +-----------+----------------+----------+--------------+
//
//                          3-byte VEX prefix:
//         +----------------+
// Byte 0: | Bits 0-7: 0xc4 |
//         +----------------+
//
//         +-----------+-----------+-----------+-------------------+
// Byte 1: | Bit 7: ~R | Bit 6: ~X | Bit 5: ~B | Bits 0-4: 0b00001 |
//         +-----------+-----------+-----------+-------------------+
//
//         +----------+-----------------+----------+--------------+
// Byte 2: | Bit 7: 0 | Bits 3-6: ~vvvv | Bit 2: L | Bits 0-1: pp |
//         +----------+-----------------+----------+--------------+
//
func (self *_Encoding) vex2(lpp byte, r byte, rm interface{}, vvvv byte) {
    var b byte
    var x byte

    /* VEX.R must be a single-bit mask */
    if r > 1 {
        panic("VEX.R must be a 1-bit mask")
    }

    /* VEX.Lpp must be a 3-bit mask */
    if lpp &^ 0b111 != 0 {
        panic("VEX.Lpp must be a 3-bit mask")
    }

    /* VEX.vvvv must be a 4-bit mask */
    if vvvv &^ 0b1111 != 0 {
        panic("VEX.vvvv must be a 4-bit mask")
    }

    /* encode the RM bits if any */
    if rm != nil {
        switch v := rm.(type) {
            case *Label         : break
            case Register       : b = hcode(v)
            case MemoryAddress  : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
            case RelativeOffset : break
            default             : panic("rm is expected to be a register or a memory address")
        }
    }

    /* if VEX.B and VEX.X are zeroes, 2-byte VEX prefix can be used */
    if x == 0 && b == 0 {
        self.emit(0xc5)
        self.emit(0xf8 ^ (r << 7) ^ (vvvv << 3) ^ lpp)
    } else {
        self.emit(0xc4)
        self.emit(0xe1 ^ (r << 7) ^ (x << 6) ^ (b << 5))
        self.emit(0x78 ^ (vvvv << 3) ^ lpp)
    }
}

// vex3 encodes a 3-byte VEX or XOP prefix.
//
//                         3-byte VEX/XOP prefix
//         +-----------------------------------+
// Byte 0: | Bits 0-7: 0xc4 (VEX) / 0x8f (XOP) |
//         +-----------------------------------+
//
//         +-----------+-----------+-----------+-----------------+
// Byte 1: | Bit 7: ~R | Bit 6: ~X | Bit 5: ~B | Bits 0-4: mmmmm |
//         +-----------+-----------+-----------+-----------------+
//
//         +----------+-----------------+----------+--------------+
// Byte 2: | Bit 7: W | Bits 3-6: ~vvvv | Bit 2: L | Bits 0-1: pp |
//         +----------+-----------------+----------+--------------+
//
func (self *_Encoding) vex3(esc byte, mmmmm byte, wlpp byte, r byte, rm interface{}, vvvv byte) {
    var b byte
    var x byte

    /* VEX.R must be a single-bit mask */
    if r > 1 {
        panic("VEX.R must be a 1-bit mask")
    }

    /* VEX.vvvv must be a 4-bit mask */
    if vvvv &^ 0b1111 != 0 {
        panic("VEX.vvvv must be a 4-bit mask")
    }

    /* escape must be a 3-byte VEX (0xc4) or XOP (0x8f) prefix */
    if esc != 0xc4 && esc != 0x8f {
        panic("escape must be a 3-byte VEX (0xc4) or XOP (0x8f) prefix")
    }

    /* VEX.W____Lpp is expected to have no bits set except 0, 1, 2 and 7 */
    if wlpp &^ 0b10000111 != 0 {
        panic("VEX.W____Lpp is expected to have no bits set except 0, 1, 2 and 7")
    }

    /* VEX.m-mmmm is expected to be a 5-bit mask */
    if mmmmm &^ 0b11111 != 0 {
        panic("VEX.m-mmmm is expected to be a 5-bit mask")
    }

    /* encode the RM bits */
    switch v := rm.(type) {
        case *Label         : break
        case MemoryAddress  : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
        case RelativeOffset : break
        default             : panic("rm is expected to be a register or a memory address")
    }

    /* encode the 3-byte VEX or XOP prefix */
    self.emit(esc)
    self.emit(0xe0 ^ (r << 7) ^ (x << 6) ^ (b << 5) ^ mmmmm)
    self.emit(0x78 ^ (vvvv << 3) ^ wlpp)
}

// evex encodes a 4-byte EVEX prefix.
func (self *_Encoding) evex(mm byte, w1pp byte, ll byte, rr byte, rm interface{}, vvvvv byte, aaa byte, zz byte, bb byte) {
    var b byte
    var x byte

    /* EVEX.b must be a single-bit mask */
    if bb > 1 {
        panic("EVEX.b must be a 1-bit mask")
    }

    /* EVEX.z must be a single-bit mask */
    if zz > 1 {
        panic("EVEX.z must be a 1-bit mask")
    }

    /* EVEX.mm must be a 2-bit mask */
    if mm &^ 0b11 != 0 {
        panic("EVEX.mm must be a 2-bit mask")
    }

    /* EVEX.L'L must be a 2-bit mask */
    if ll &^ 0b11 != 0 {
        panic("EVEX.L'L must be a 2-bit mask")
    }

    /* EVEX.R'R must be a 2-bit mask */
    if rr &^ 0b11 != 0 {
        panic("EVEX.R'R must be a 2-bit mask")
    }

    /* EVEX.aaa must be a 3-bit mask */
    if aaa &^ 0b111 != 0 {
        panic("EVEX.aaa must be a 3-bit mask")
    }

    /* EVEX.v'vvvv must be a 5-bit mask */
    if vvvvv &^ 0b11111 != 0 {
        panic("EVEX.v'vvvv must be a 5-bit mask")
    }

    /* EVEX.W____1pp is expected to have no bits set except 0, 1, 2, and 7 */
    if w1pp &^ 0b10000011 != 0b100 {
        panic("EVEX.W____1pp is expected to have no bits set except 0, 1, 2, and 7")
    }

    /* extract bits from EVEX.R'R and EVEX.v'vvvv */
    r1, r0 := rr >> 1, rr & 1
    v1, v0 := vvvvv >> 4, vvvvv & 0b1111

    /* encode the RM bits if any */
    if rm != nil {
        switch m := rm.(type) {
            case *Label         : break
            case Register       : b, x = hcode(m), ecode(m)
            case MemoryAddress  : b, x, v1 = toHcodeOpt(m.Base), toHcodeOpt(m.Index), toEcodeVMM(m.Index, v1)
            case RelativeOffset : break
            default             : panic("rm is expected to be a register or a memory address")
        }
    }

    /* EVEX prefix bytes */
    p0 := (r0 << 7) | (x << 6) | (b << 5) | (r1 << 4) | mm
    p1 := (v0 << 3) | w1pp
    p2 := (zz << 7) | (ll << 5) | (b << 4) | (v1 << 3) | aaa

    /* p0: invert RXBR' (bits 4-7)
     * p1: invert vvvv  (bits 3-6)
     * p2: invert V'    (bit  3) */
    self.emit(0x62)
    self.emit(p0 ^ 0xf0)
    self.emit(p1 ^ 0x78)
    self.emit(p2 ^ 0x08)
}

// rexm encodes a mandatory REX prefix.
func (self *_Encoding) rexm(w byte, r byte, rm interface{}) {
    var b byte
    var x byte

    /* REX.R must be 0 or 1 */
    if r != 0 && r != 1 {
        panic("REX.R must be 0 or 1")
    }

    /* REX.W must be 0 or 1 */
    if w != 0 && w != 1 {
        panic("REX.W must be 0 or 1")
    }

    /* encode the RM bits */
    switch v := rm.(type) {
        case *Label         : break
        case MemoryAddress  : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
        case RelativeOffset : break
        default             : panic("rm is expected to be a register or a memory address")
    }

    /* encode the REX prefix */
    self.emit(0x40 | (w << 3) | (r << 2) | (x << 1) | b)
}

// rexo encodes an optional REX prefix.
func (self *_Encoding) rexo(r byte, rm interface{}, force bool) {
    var b byte
    var x byte

    /* REX.R must be 0 or 1 */
    if r != 0 && r != 1 {
        panic("REX.R must be 0 or 1")
    }

    /* encode the RM bits */
    switch v := rm.(type) {
        case *Label         : break
        case Register       : b = hcode(v)
        case MemoryAddress  : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
        case RelativeOffset : break
        default             : panic("rm is expected to be a register or a memory address")
    }

    /* if REX.R, REX.X, and REX.B are all zeroes, REX prefix can be omitted */
    if force || r != 0 || x != 0 || b != 0 {
        self.emit(0x40 | (r << 2) | (x << 1) | b)
    }
}

// mrsd encodes ModR/M, SIB and Displacement.
//
//                    ModR/M byte
// +----------------+---------------+---------------+
// | Bits 6-7: Mode | Bits 3-5: Reg | Bits 0-2: R/M |
// +----------------+---------------+---------------+
//
//                         SIB byte
// +-----------------+-----------------+----------------+
// | Bits 6-7: Scale | Bits 3-5: Index | Bits 0-2: Base |
// +-----------------+-----------------+----------------+
//
func (self *_Encoding) mrsd(reg byte, rm interface{}, disp8v int32) {
    var ok bool
    var mm MemoryAddress
    var ro RelativeOffset

    /* ModRM encodes the lower 3-bit of the register */
    if reg > 7 {
        panic("invalid register bits")
    }

    /* check the displacement scale */
    switch disp8v {
        case  1: break
        case  2: break
        case  4: break
        case  8: break
        case 16: break
        case 32: break
        case 64: break
        default: panic("invalid displacement size")
    }

    /* special case: unresolved labels, assuming a zero offset */
    if _, ok = rm.(*Label); ok {
        self.emit(0x05 | (reg << 3))
        self.imm4(0)
        return
    }

    /* special case: RIP-relative offset
     * ModRM.Mode == 0 and ModeRM.R/M == 5 indicates (rip + disp32) addressing */
    if ro, ok = rm.(RelativeOffset); ok {
        self.emit(0x05 | (reg << 3))
        self.imm4(int64(ro))
        return
    }

    /* must be a generic memory address */
    if mm, ok = rm.(MemoryAddress); !ok {
        panic("rm must be a memory address")
    }

    /* absolute addressing, encoded as disp(%rbp,%rsp,1) */
    if mm.Base == nil && mm.Index == nil {
        self.emit(0x04 | (reg << 3))
        self.emit(0x25)
        self.imm4(int64(mm.Displacement))
        return
    }

    /* no SIB byte */
    if mm.Index == nil && lcode(mm.Base) != 0b100 {
        cc := lcode(mm.Base)
        dv := mm.Displacement

        /* ModRM.Mode == 0 (no displacement) */
        if dv == 0 && mm.Base != RBP && mm.Base != R13 {
            if cc == 0b101 {
                panic("rbp/r13 is not encodable as a base register (interpreted as disp32 address)")
            } else {
                self.emit((reg << 3) | cc)
                return
            }
        }

        /* ModRM.Mode == 1 (8-bit displacement) */
        if dq := dv / disp8v; dq >= math.MinInt8 && dq <= math.MaxInt8 && dv % disp8v == 0 {
            self.emit(0x40 | (reg << 3) | cc)
            self.imm1(int64(dq))
            return
        }

        /* ModRM.Mode == 2 (32-bit displacement) */
        self.emit(0x80 | (reg << 3) | cc)
        self.imm4(int64(mm.Displacement))
        return
    }

    /* all encodings below use ModRM.R/M = 4 (0b100) to indicate the presence of SIB */
    if mm.Index == RSP {
        panic("rsp is not encodable as an index register (interpreted as no index)")
    }

    /* index = 4 (0b100) denotes no-index encoding */
    var scale byte
    var index byte = 0x04

    /* encode the scale byte */
    if mm.Scale != 0 {
        switch mm.Scale {
            case 1  : scale = 0
            case 2  : scale = 1
            case 4  : scale = 2
            case 8  : scale = 3
            default : panic("invalid scale value")
        }
    }

    /* encode the index byte */
    if mm.Index != nil {
        index = lcode(mm.Index)
    }

    /* SIB.Base = 5 (0b101) and ModRM.Mode = 0 indicates no-base encoding with disp32 */
    if mm.Base == nil {
        self.emit((reg << 3) | 0b100)
        self.emit((scale << 6) | (index << 3) | 0b101)
        self.imm4(int64(mm.Displacement))
        return
    }

    /* base L-code & displacement value */
    cc := lcode(mm.Base)
    dv := mm.Displacement

    /* ModRM.Mode == 0 (no displacement) */
    if dv == 0 && cc != 0b101 {
        self.emit((reg << 3) | 0b100)
        self.emit((scale << 6) | (index << 3) | cc)
        return
    }

    /* ModRM.Mode == 1 (8-bit displacement) */
    if dq := dv / disp8v; dq >= math.MinInt8 && dq <= math.MaxInt8 && dv % disp8v == 0 {
        self.emit(0x44 | (reg << 3))
        self.emit((scale << 6) | (index << 3) | cc)
        self.imm1(int64(dq))
        return
    }

    /* ModRM.Mode == 2 (32-bit displacement) */
    self.emit(0x84 | (reg << 3))
    self.emit((scale << 6) | (index << 3) | cc)
    self.imm4(int64(mm.Displacement))
}

// encode invokes the encoder to encode this instruction.
func (self *_Encoding) encode(v []interface{}) int {
    self.len = 0
    self.encoder(self, v)
    return self.len
}