summaryrefslogtreecommitdiff
path: root/vendor/codeberg.org/gruf/go-structr/key.go
blob: 557a5f0333e5578f8174ed7e4e1216e75392f11f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
package structr

import (
	"reflect"
	"strings"

	"codeberg.org/gruf/go-byteutil"
	"codeberg.org/gruf/go-mangler"
)

// KeyGen is the underlying index key generator
// used within Index, and therefore Cache itself.
type KeyGen[StructType any] struct {

	// fields contains our representation of
	// the struct fields contained in the
	// creation of keys by this generator.
	fields []structfield

	// zero specifies whether zero
	// value fields are permitted.
	zero bool
}

// NewKeyGen returns a new initialized KeyGen for the receiving generic
// parameter type, comprising of the given field strings, and whether to
// allow zero values to be included within generated output strings.
func NewKeyGen[T any](fields []string, allowZero bool) KeyGen[T] {
	var kgen KeyGen[T]

	// Preallocate expected struct field slice.
	kgen.fields = make([]structfield, len(fields))

	// Get the reflected struct ptr type.
	t := reflect.TypeOf((*T)(nil)).Elem()

	for i, fieldName := range fields {
		// Split name to account for nesting.
		names := strings.Split(fieldName, ".")

		// Look for a usable struct field from type.
		sfield, ok := findField(t, names, allowZero)
		if !ok {
			panicf("failed finding field: %s", fieldName)
		}

		// Set parsed struct field.
		kgen.fields[i] = sfield
	}

	// Set config flags.
	kgen.zero = allowZero

	return kgen
}

// FromParts generates key string from individual key parts.
func (kgen *KeyGen[T]) FromParts(parts ...any) (key string, ok bool) {
	buf := getBuf()
	if ok = kgen.AppendFromParts(buf, parts...); ok {
		key = string(buf.B)
	}
	putBuf(buf)
	return
}

// FromValue generates key string from a value, via reflection.
func (kgen *KeyGen[T]) FromValue(value T) (key string, ok bool) {
	buf := getBuf()
	rvalue := reflect.ValueOf(value)
	if ok = kgen.appendFromRValue(buf, rvalue); ok {
		key = string(buf.B)
	}
	putBuf(buf)
	return
}

// AppendFromParts generates key string into provided buffer, from individual key parts.
func (kgen *KeyGen[T]) AppendFromParts(buf *byteutil.Buffer, parts ...any) bool {
	if len(parts) != len(kgen.fields) {
		// User must provide correct number of parts for key.
		panicf("incorrect number key parts: want=%d received=%d",
			len(parts),
			len(kgen.fields),
		)
	}

	if kgen.zero {
		// Zero values are permitted,
		// mangle all values and ignore
		// zero value return booleans.
		for i, part := range parts {

			// Mangle this value into buffer.
			_ = kgen.fields[i].Mangle(buf, part)

			// Append part separator.
			buf.B = append(buf.B, '.')
		}
	} else {
		// Zero values are NOT permitted.
		for i, part := range parts {

			// Mangle this value into buffer.
			z := kgen.fields[i].Mangle(buf, part)

			if z {
				// The value was zero for
				// this type, return early.
				return false
			}

			// Append part separator.
			buf.B = append(buf.B, '.')
		}
	}

	// Drop the last separator.
	buf.B = buf.B[:len(buf.B)-1]

	return true
}

// AppendFromValue generates key string into provided buffer, from a value via reflection.
func (kgen *KeyGen[T]) AppendFromValue(buf *byteutil.Buffer, value T) bool {
	return kgen.appendFromRValue(buf, reflect.ValueOf(value))
}

// appendFromRValue is the underlying generator function for the exported ___FromValue() functions,
// accepting a reflected input. We do not expose this as the reflected value is EXPECTED to be right.
func (kgen *KeyGen[T]) appendFromRValue(buf *byteutil.Buffer, rvalue reflect.Value) bool {
	// Follow any ptrs leading to value.
	for rvalue.Kind() == reflect.Pointer {
		rvalue = rvalue.Elem()
	}

	if kgen.zero {
		// Zero values are permitted,
		// mangle all values and ignore
		// zero value return booleans.
		for i := range kgen.fields {

			// Get the reflect value's field at idx.
			fv := rvalue.FieldByIndex(kgen.fields[i].index)
			fi := fv.Interface()

			// Mangle this value into buffer.
			_ = kgen.fields[i].Mangle(buf, fi)

			// Append part separator.
			buf.B = append(buf.B, '.')
		}
	} else {
		// Zero values are NOT permitted.
		for i := range kgen.fields {

			// Get the reflect value's field at idx.
			fv := rvalue.FieldByIndex(kgen.fields[i].index)
			fi := fv.Interface()

			// Mangle this value into buffer.
			z := kgen.fields[i].Mangle(buf, fi)

			if z {
				// The value was zero for
				// this type, return early.
				return false
			}

			// Append part separator.
			buf.B = append(buf.B, '.')
		}
	}

	// Drop the last separator.
	buf.B = buf.B[:len(buf.B)-1]

	return true
}

type structfield struct {
	// index is the reflected index
	// of this field (this takes into
	// account struct nesting).
	index []int

	// zero is the possible mangled
	// zero value for this field.
	zero string

	// mangler is the mangler function for
	// serializing values of this field.
	mangler mangler.Mangler
}

// Mangle mangles the given value, using the determined type-appropriate
// field's type. The returned boolean indicates whether this is a zero value.
func (f *structfield) Mangle(buf *byteutil.Buffer, value any) (isZero bool) {
	s := len(buf.B) // start pos.
	buf.B = f.mangler(buf.B, value)
	e := len(buf.B) // end pos.
	isZero = (f.zero == string(buf.B[s:e]))
	return
}