summaryrefslogtreecommitdiff
path: root/vendor/codeberg.org/gruf/go-sched/scheduler.go
blob: 537e588fea2bd9f43c290723701dbd4107950e46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
package sched

import (
	"context"
	"sort"
	"sync"
	"sync/atomic"
	"time"

	"codeberg.org/gruf/go-runners"
)

// precision is the maximum time we can offer scheduler run-time precision down to.
const precision = time.Millisecond

var (
	// neverticks is a timer channel that never ticks (it's starved).
	neverticks = make(chan time.Time)

	// alwaysticks is a timer channel that always ticks (it's closed).
	alwaysticks = func() chan time.Time {
		ch := make(chan time.Time)
		close(ch)
		return ch
	}()
)

// Scheduler provides a means of running jobs at specific times and
// regular intervals, all while sharing a single underlying timer.
type Scheduler struct {
	jobs []*Job           // jobs is a list of tracked Jobs to be executed
	jch  chan interface{} // jch accepts either Jobs or job IDs to notify new/removed jobs
	svc  runners.Service  // svc manages the main scheduler routine
	jid  atomic.Uint64    // jid is used to iteratively generate unique IDs for jobs
	rgo  func(func())     // goroutine runner, allows using goroutine pool to launch jobs
}

// Start will attempt to start the Scheduler. Immediately returns false if the Service is already running, and true after completed run.
func (sch *Scheduler) Start(gorun func(func())) bool {
	var block sync.Mutex

	// Use mutex to synchronize between started
	// goroutine and ourselves, to ensure that
	// we don't return before Scheduler init'd.
	block.Lock()
	defer block.Unlock()

	ok := sch.svc.GoRun(func(ctx context.Context) {
		// Create Scheduler job channel
		sch.jch = make(chan interface{})

		// Set goroutine runner function
		if sch.rgo = gorun; sch.rgo == nil {
			sch.rgo = func(f func()) { go f() }
		}

		// Unlock start routine
		block.Unlock()

		// Enter main loop
		sch.run(ctx)
	})

	if ok {
		// Wait on goroutine
		block.Lock()
	}

	return ok
}

// Stop will attempt to stop the Scheduler. Immediately returns false if not running, and true only after Scheduler is fully stopped.
func (sch *Scheduler) Stop() bool {
	return sch.svc.Stop()
}

// Running will return whether Scheduler is running (i.e. NOT stopped / stopping).
func (sch *Scheduler) Running() bool {
	return sch.svc.Running()
}

// Done returns a channel that's closed when Scheduler.Stop() is called.
func (sch *Scheduler) Done() <-chan struct{} {
	return sch.svc.Done()
}

// Schedule will add provided Job to the Scheduler, returning a cancel function.
func (sch *Scheduler) Schedule(job *Job) (cancel func()) {
	switch {
	// Check a job was passed
	case job == nil:
		panic("nil job")

	// Check we are running
	case !sch.Running():
		panic("scheduler not running")
	}

	// Calculate next job ID
	last := sch.jid.Load()
	next := sch.jid.Add(1)
	if next < last {
		panic("job id overflow")
	}

	// Pass job to scheduler
	job.id = next
	sch.jch <- job

	// Take ptrs to current state chs
	ctx := sch.svc.Done()
	jch := sch.jch

	// Return cancel function for job ID
	return func() {
		select {
		// Sched stopped
		case <-ctx:

		// Cancel this job
		case jch <- next:
		}
	}
}

// run is the main scheduler run routine, which runs for as long as ctx is valid.
func (sch *Scheduler) run(ctx context.Context) {
	var (
		// now stores the current time, and will only be
		// set when the timer channel is set to be the
		// 'alwaysticks' channel. this allows minimizing
		// the number of calls required to time.Now().
		now time.Time

		// timerset represents whether timer was running
		// for a particular run of the loop. false means
		// that tch == neverticks || tch == alwaysticks.
		timerset bool

		// timer tick channel (or always / never ticks).
		tch <-chan time.Time

		// timer notifies this main routine to wake when
		// the job queued needs to be checked for executions.
		timer *time.Timer

		// stopdrain will stop and drain the timer
		// if it has been running (i.e. timerset == true).
		stopdrain = func() {
			if timerset && !timer.Stop() {
				<-timer.C
			}
		}
	)

	// Create a stopped timer.
	timer = time.NewTimer(1)
	<-timer.C

	for {
		// Reset timer state.
		timerset = false

		if len(sch.jobs) > 0 {
			// Get now time.
			now = time.Now()

			// Sort jobs by next occurring.
			sort.Sort(byNext(sch.jobs))

			// Get next job time.
			next := sch.jobs[0].Next()

			// If this job is _just_ about to be ready, we don't bother
			// sleeping. It's wasted cycles only sleeping for some obscenely
			// tiny amount of time we can't guarantee precision for.
			if until := next.Sub(now); until <= precision/1e3 {
				// This job is behind,
				// set to always tick.
				tch = alwaysticks
			} else {
				// Reset timer to period.
				timer.Reset(until)
				tch = timer.C
				timerset = true
			}
		} else {
			// Unset timer
			tch = neverticks
		}

		select {
		// Scheduler stopped
		case <-ctx.Done():
			stopdrain()
			return

		// Timer ticked, run scheduled
		case t := <-tch:
			if !timerset {
				// 'alwaysticks' returns zero
				// times, BUT 'now' will have
				// been set during above sort.
				t = now
			}
			sch.schedule(t)

		// Received update, handle job/id
		case v := <-sch.jch:
			sch.handle(v)
			stopdrain()
		}
	}
}

// handle takes an interfaces received from Scheduler.jch and handles either:
// - Job --> new job to add.
// - uint64 --> job ID to remove.
func (sch *Scheduler) handle(v interface{}) {
	switch v := v.(type) {
	// New job added
	case *Job:
		// Get current time
		now := time.Now()

		// Update the next call time
		next := v.timing.Next(now)
		v.next.Store(next)

		// Append this job to queued
		sch.jobs = append(sch.jobs, v)

	// Job removed
	case uint64:
		for i := 0; i < len(sch.jobs); i++ {
			if sch.jobs[i].id == v {
				// This is the job we're looking for! Drop this
				sch.jobs = append(sch.jobs[:i], sch.jobs[i+1:]...)
				return
			}
		}
	}
}

// schedule will iterate through the scheduler jobs and execute those necessary, updating their next call time.
func (sch *Scheduler) schedule(now time.Time) {
	for i := 0; i < len(sch.jobs); {
		// Scope our own var
		job := sch.jobs[i]

		// We know these jobs are ordered by .Next(), so as soon
		// as we reach one with .Next() after now, we can return
		if job.Next().After(now) {
			return
		}

		// Pass to runner
		sch.rgo(func() {
			job.Run(now)
		})

		// Update the next call time
		next := job.timing.Next(now)
		job.next.Store(next)

		if next.IsZero() {
			// Zero time, this job is done and can be dropped
			sch.jobs = append(sch.jobs[:i], sch.jobs[i+1:]...)
			continue
		}

		// Iter
		i++
	}
}

// byNext is an implementation of sort.Interface to sort Jobs by their .Next() time.
type byNext []*Job

func (by byNext) Len() int {
	return len(by)
}

func (by byNext) Less(i int, j int) bool {
	return by[i].Next().Before(by[j].Next())
}

func (by byNext) Swap(i int, j int) {
	by[i], by[j] = by[j], by[i]
}