summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/exp
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/exp')
-rw-r--r--vendor/golang.org/x/exp/AUTHORS3
-rw-r--r--vendor/golang.org/x/exp/CONTRIBUTORS3
-rw-r--r--vendor/golang.org/x/exp/LICENSE27
-rw-r--r--vendor/golang.org/x/exp/PATENTS22
-rw-r--r--vendor/golang.org/x/exp/constraints/constraints.go50
-rw-r--r--vendor/golang.org/x/exp/slices/slices.go218
-rw-r--r--vendor/golang.org/x/exp/slices/sort.go127
-rw-r--r--vendor/golang.org/x/exp/slices/zsortfunc.go479
-rw-r--r--vendor/golang.org/x/exp/slices/zsortordered.go481
9 files changed, 0 insertions, 1410 deletions
diff --git a/vendor/golang.org/x/exp/AUTHORS b/vendor/golang.org/x/exp/AUTHORS
deleted file mode 100644
index 15167cd74..000000000
--- a/vendor/golang.org/x/exp/AUTHORS
+++ /dev/null
@@ -1,3 +0,0 @@
-# This source code refers to The Go Authors for copyright purposes.
-# The master list of authors is in the main Go distribution,
-# visible at http://tip.golang.org/AUTHORS.
diff --git a/vendor/golang.org/x/exp/CONTRIBUTORS b/vendor/golang.org/x/exp/CONTRIBUTORS
deleted file mode 100644
index 1c4577e96..000000000
--- a/vendor/golang.org/x/exp/CONTRIBUTORS
+++ /dev/null
@@ -1,3 +0,0 @@
-# This source code was written by the Go contributors.
-# The master list of contributors is in the main Go distribution,
-# visible at http://tip.golang.org/CONTRIBUTORS.
diff --git a/vendor/golang.org/x/exp/LICENSE b/vendor/golang.org/x/exp/LICENSE
deleted file mode 100644
index 6a66aea5e..000000000
--- a/vendor/golang.org/x/exp/LICENSE
+++ /dev/null
@@ -1,27 +0,0 @@
-Copyright (c) 2009 The Go Authors. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are
-met:
-
- * Redistributions of source code must retain the above copyright
-notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above
-copyright notice, this list of conditions and the following disclaimer
-in the documentation and/or other materials provided with the
-distribution.
- * Neither the name of Google Inc. nor the names of its
-contributors may be used to endorse or promote products derived from
-this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/vendor/golang.org/x/exp/PATENTS b/vendor/golang.org/x/exp/PATENTS
deleted file mode 100644
index 733099041..000000000
--- a/vendor/golang.org/x/exp/PATENTS
+++ /dev/null
@@ -1,22 +0,0 @@
-Additional IP Rights Grant (Patents)
-
-"This implementation" means the copyrightable works distributed by
-Google as part of the Go project.
-
-Google hereby grants to You a perpetual, worldwide, non-exclusive,
-no-charge, royalty-free, irrevocable (except as stated in this section)
-patent license to make, have made, use, offer to sell, sell, import,
-transfer and otherwise run, modify and propagate the contents of this
-implementation of Go, where such license applies only to those patent
-claims, both currently owned or controlled by Google and acquired in
-the future, licensable by Google that are necessarily infringed by this
-implementation of Go. This grant does not include claims that would be
-infringed only as a consequence of further modification of this
-implementation. If you or your agent or exclusive licensee institute or
-order or agree to the institution of patent litigation against any
-entity (including a cross-claim or counterclaim in a lawsuit) alleging
-that this implementation of Go or any code incorporated within this
-implementation of Go constitutes direct or contributory patent
-infringement, or inducement of patent infringement, then any patent
-rights granted to you under this License for this implementation of Go
-shall terminate as of the date such litigation is filed.
diff --git a/vendor/golang.org/x/exp/constraints/constraints.go b/vendor/golang.org/x/exp/constraints/constraints.go
deleted file mode 100644
index 2c033dff4..000000000
--- a/vendor/golang.org/x/exp/constraints/constraints.go
+++ /dev/null
@@ -1,50 +0,0 @@
-// Copyright 2021 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package constraints defines a set of useful constraints to be used
-// with type parameters.
-package constraints
-
-// Signed is a constraint that permits any signed integer type.
-// If future releases of Go add new predeclared signed integer types,
-// this constraint will be modified to include them.
-type Signed interface {
- ~int | ~int8 | ~int16 | ~int32 | ~int64
-}
-
-// Unsigned is a constraint that permits any unsigned integer type.
-// If future releases of Go add new predeclared unsigned integer types,
-// this constraint will be modified to include them.
-type Unsigned interface {
- ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr
-}
-
-// Integer is a constraint that permits any integer type.
-// If future releases of Go add new predeclared integer types,
-// this constraint will be modified to include them.
-type Integer interface {
- Signed | Unsigned
-}
-
-// Float is a constraint that permits any floating-point type.
-// If future releases of Go add new predeclared floating-point types,
-// this constraint will be modified to include them.
-type Float interface {
- ~float32 | ~float64
-}
-
-// Complex is a constraint that permits any complex numeric type.
-// If future releases of Go add new predeclared complex numeric types,
-// this constraint will be modified to include them.
-type Complex interface {
- ~complex64 | ~complex128
-}
-
-// Ordered is a constraint that permits any ordered type: any type
-// that supports the operators < <= >= >.
-// If future releases of Go add new ordered types,
-// this constraint will be modified to include them.
-type Ordered interface {
- Integer | Float | ~string
-}
diff --git a/vendor/golang.org/x/exp/slices/slices.go b/vendor/golang.org/x/exp/slices/slices.go
deleted file mode 100644
index 8a237c5d6..000000000
--- a/vendor/golang.org/x/exp/slices/slices.go
+++ /dev/null
@@ -1,218 +0,0 @@
-// Copyright 2021 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package slices defines various functions useful with slices of any type.
-// Unless otherwise specified, these functions all apply to the elements
-// of a slice at index 0 <= i < len(s).
-//
-// Note that the less function in IsSortedFunc, SortFunc, SortStableFunc requires a
-// strict weak ordering (https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings),
-// or the sorting may fail to sort correctly. A common case is when sorting slices of
-// floating-point numbers containing NaN values.
-package slices
-
-import "golang.org/x/exp/constraints"
-
-// Equal reports whether two slices are equal: the same length and all
-// elements equal. If the lengths are different, Equal returns false.
-// Otherwise, the elements are compared in increasing index order, and the
-// comparison stops at the first unequal pair.
-// Floating point NaNs are not considered equal.
-func Equal[E comparable](s1, s2 []E) bool {
- if len(s1) != len(s2) {
- return false
- }
- for i := range s1 {
- if s1[i] != s2[i] {
- return false
- }
- }
- return true
-}
-
-// EqualFunc reports whether two slices are equal using a comparison
-// function on each pair of elements. If the lengths are different,
-// EqualFunc returns false. Otherwise, the elements are compared in
-// increasing index order, and the comparison stops at the first index
-// for which eq returns false.
-func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
- if len(s1) != len(s2) {
- return false
- }
- for i, v1 := range s1 {
- v2 := s2[i]
- if !eq(v1, v2) {
- return false
- }
- }
- return true
-}
-
-// Compare compares the elements of s1 and s2.
-// The elements are compared sequentially, starting at index 0,
-// until one element is not equal to the other.
-// The result of comparing the first non-matching elements is returned.
-// If both slices are equal until one of them ends, the shorter slice is
-// considered less than the longer one.
-// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
-// Comparisons involving floating point NaNs are ignored.
-func Compare[E constraints.Ordered](s1, s2 []E) int {
- s2len := len(s2)
- for i, v1 := range s1 {
- if i >= s2len {
- return +1
- }
- v2 := s2[i]
- switch {
- case v1 < v2:
- return -1
- case v1 > v2:
- return +1
- }
- }
- if len(s1) < s2len {
- return -1
- }
- return 0
-}
-
-// CompareFunc is like Compare but uses a comparison function
-// on each pair of elements. The elements are compared in increasing
-// index order, and the comparisons stop after the first time cmp
-// returns non-zero.
-// The result is the first non-zero result of cmp; if cmp always
-// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
-// and +1 if len(s1) > len(s2).
-func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
- s2len := len(s2)
- for i, v1 := range s1 {
- if i >= s2len {
- return +1
- }
- v2 := s2[i]
- if c := cmp(v1, v2); c != 0 {
- return c
- }
- }
- if len(s1) < s2len {
- return -1
- }
- return 0
-}
-
-// Index returns the index of the first occurrence of v in s,
-// or -1 if not present.
-func Index[E comparable](s []E, v E) int {
- for i, vs := range s {
- if v == vs {
- return i
- }
- }
- return -1
-}
-
-// IndexFunc returns the first index i satisfying f(s[i]),
-// or -1 if none do.
-func IndexFunc[E any](s []E, f func(E) bool) int {
- for i, v := range s {
- if f(v) {
- return i
- }
- }
- return -1
-}
-
-// Contains reports whether v is present in s.
-func Contains[E comparable](s []E, v E) bool {
- return Index(s, v) >= 0
-}
-
-// Insert inserts the values v... into s at index i,
-// returning the modified slice.
-// In the returned slice r, r[i] == v[0].
-// Insert panics if i is out of range.
-// This function is O(len(s) + len(v)).
-func Insert[S ~[]E, E any](s S, i int, v ...E) S {
- tot := len(s) + len(v)
- if tot <= cap(s) {
- s2 := s[:tot]
- copy(s2[i+len(v):], s[i:])
- copy(s2[i:], v)
- return s2
- }
- s2 := make(S, tot)
- copy(s2, s[:i])
- copy(s2[i:], v)
- copy(s2[i+len(v):], s[i:])
- return s2
-}
-
-// Delete removes the elements s[i:j] from s, returning the modified slice.
-// Delete panics if s[i:j] is not a valid slice of s.
-// Delete modifies the contents of the slice s; it does not create a new slice.
-// Delete is O(len(s)-(j-i)), so if many items must be deleted, it is better to
-// make a single call deleting them all together than to delete one at a time.
-func Delete[S ~[]E, E any](s S, i, j int) S {
- return append(s[:i], s[j:]...)
-}
-
-// Clone returns a copy of the slice.
-// The elements are copied using assignment, so this is a shallow clone.
-func Clone[S ~[]E, E any](s S) S {
- // Preserve nil in case it matters.
- if s == nil {
- return nil
- }
- return append(S([]E{}), s...)
-}
-
-// Compact replaces consecutive runs of equal elements with a single copy.
-// This is like the uniq command found on Unix.
-// Compact modifies the contents of the slice s; it does not create a new slice.
-func Compact[S ~[]E, E comparable](s S) S {
- if len(s) == 0 {
- return s
- }
- i := 1
- last := s[0]
- for _, v := range s[1:] {
- if v != last {
- s[i] = v
- i++
- last = v
- }
- }
- return s[:i]
-}
-
-// CompactFunc is like Compact but uses a comparison function.
-func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
- if len(s) == 0 {
- return s
- }
- i := 1
- last := s[0]
- for _, v := range s[1:] {
- if !eq(v, last) {
- s[i] = v
- i++
- last = v
- }
- }
- return s[:i]
-}
-
-// Grow increases the slice's capacity, if necessary, to guarantee space for
-// another n elements. After Grow(n), at least n elements can be appended
-// to the slice without another allocation. Grow may modify elements of the
-// slice between the length and the capacity. If n is negative or too large to
-// allocate the memory, Grow panics.
-func Grow[S ~[]E, E any](s S, n int) S {
- return append(s, make(S, n)...)[:len(s)]
-}
-
-// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
-func Clip[S ~[]E, E any](s S) S {
- return s[:len(s):len(s)]
-}
diff --git a/vendor/golang.org/x/exp/slices/sort.go b/vendor/golang.org/x/exp/slices/sort.go
deleted file mode 100644
index c22e74bd1..000000000
--- a/vendor/golang.org/x/exp/slices/sort.go
+++ /dev/null
@@ -1,127 +0,0 @@
-// Copyright 2022 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package slices
-
-import (
- "math/bits"
-
- "golang.org/x/exp/constraints"
-)
-
-// Sort sorts a slice of any ordered type in ascending order.
-// Sort may fail to sort correctly when sorting slices of floating-point
-// numbers containing Not-a-number (NaN) values.
-// Use slices.SortFunc(x, func(a, b float64) bool {return a < b || (math.IsNaN(a) && !math.IsNaN(b))})
-// instead if the input may contain NaNs.
-func Sort[E constraints.Ordered](x []E) {
- n := len(x)
- pdqsortOrdered(x, 0, n, bits.Len(uint(n)))
-}
-
-// SortFunc sorts the slice x in ascending order as determined by the less function.
-// This sort is not guaranteed to be stable.
-//
-// SortFunc requires that less is a strict weak ordering.
-// See https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings.
-func SortFunc[E any](x []E, less func(a, b E) bool) {
- n := len(x)
- pdqsortLessFunc(x, 0, n, bits.Len(uint(n)), less)
-}
-
-// SortStable sorts the slice x while keeping the original order of equal
-// elements, using less to compare elements.
-func SortStableFunc[E any](x []E, less func(a, b E) bool) {
- stableLessFunc(x, len(x), less)
-}
-
-// IsSorted reports whether x is sorted in ascending order.
-func IsSorted[E constraints.Ordered](x []E) bool {
- for i := len(x) - 1; i > 0; i-- {
- if x[i] < x[i-1] {
- return false
- }
- }
- return true
-}
-
-// IsSortedFunc reports whether x is sorted in ascending order, with less as the
-// comparison function.
-func IsSortedFunc[E any](x []E, less func(a, b E) bool) bool {
- for i := len(x) - 1; i > 0; i-- {
- if less(x[i], x[i-1]) {
- return false
- }
- }
- return true
-}
-
-// BinarySearch searches for target in a sorted slice and returns the position
-// where target is found, or the position where target would appear in the
-// sort order; it also returns a bool saying whether the target is really found
-// in the slice. The slice must be sorted in increasing order.
-func BinarySearch[E constraints.Ordered](x []E, target E) (int, bool) {
- // search returns the leftmost position where f returns true, or len(x) if f
- // returns false for all x. This is the insertion position for target in x,
- // and could point to an element that's either == target or not.
- pos := search(len(x), func(i int) bool { return x[i] >= target })
- if pos >= len(x) || x[pos] != target {
- return pos, false
- } else {
- return pos, true
- }
-}
-
-// BinarySearchFunc works like BinarySearch, but uses a custom comparison
-// function. The slice must be sorted in increasing order, where "increasing" is
-// defined by cmp. cmp(a, b) is expected to return an integer comparing the two
-// parameters: 0 if a == b, a negative number if a < b and a positive number if
-// a > b.
-func BinarySearchFunc[E any](x []E, target E, cmp func(E, E) int) (int, bool) {
- pos := search(len(x), func(i int) bool { return cmp(x[i], target) >= 0 })
- if pos >= len(x) || cmp(x[pos], target) != 0 {
- return pos, false
- } else {
- return pos, true
- }
-}
-
-func search(n int, f func(int) bool) int {
- // Define f(-1) == false and f(n) == true.
- // Invariant: f(i-1) == false, f(j) == true.
- i, j := 0, n
- for i < j {
- h := int(uint(i+j) >> 1) // avoid overflow when computing h
- // i ≤ h < j
- if !f(h) {
- i = h + 1 // preserves f(i-1) == false
- } else {
- j = h // preserves f(j) == true
- }
- }
- // i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i.
- return i
-}
-
-type sortedHint int // hint for pdqsort when choosing the pivot
-
-const (
- unknownHint sortedHint = iota
- increasingHint
- decreasingHint
-)
-
-// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
-type xorshift uint64
-
-func (r *xorshift) Next() uint64 {
- *r ^= *r << 13
- *r ^= *r >> 17
- *r ^= *r << 5
- return uint64(*r)
-}
-
-func nextPowerOfTwo(length int) uint {
- return 1 << bits.Len(uint(length))
-}
diff --git a/vendor/golang.org/x/exp/slices/zsortfunc.go b/vendor/golang.org/x/exp/slices/zsortfunc.go
deleted file mode 100644
index 2a632476c..000000000
--- a/vendor/golang.org/x/exp/slices/zsortfunc.go
+++ /dev/null
@@ -1,479 +0,0 @@
-// Code generated by gen_sort_variants.go; DO NOT EDIT.
-
-// Copyright 2022 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package slices
-
-// insertionSortLessFunc sorts data[a:b] using insertion sort.
-func insertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
- for i := a + 1; i < b; i++ {
- for j := i; j > a && less(data[j], data[j-1]); j-- {
- data[j], data[j-1] = data[j-1], data[j]
- }
- }
-}
-
-// siftDownLessFunc implements the heap property on data[lo:hi].
-// first is an offset into the array where the root of the heap lies.
-func siftDownLessFunc[E any](data []E, lo, hi, first int, less func(a, b E) bool) {
- root := lo
- for {
- child := 2*root + 1
- if child >= hi {
- break
- }
- if child+1 < hi && less(data[first+child], data[first+child+1]) {
- child++
- }
- if !less(data[first+root], data[first+child]) {
- return
- }
- data[first+root], data[first+child] = data[first+child], data[first+root]
- root = child
- }
-}
-
-func heapSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
- first := a
- lo := 0
- hi := b - a
-
- // Build heap with greatest element at top.
- for i := (hi - 1) / 2; i >= 0; i-- {
- siftDownLessFunc(data, i, hi, first, less)
- }
-
- // Pop elements, largest first, into end of data.
- for i := hi - 1; i >= 0; i-- {
- data[first], data[first+i] = data[first+i], data[first]
- siftDownLessFunc(data, lo, i, first, less)
- }
-}
-
-// pdqsortLessFunc sorts data[a:b].
-// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
-// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
-// C++ implementation: https://github.com/orlp/pdqsort
-// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
-// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
-func pdqsortLessFunc[E any](data []E, a, b, limit int, less func(a, b E) bool) {
- const maxInsertion = 12
-
- var (
- wasBalanced = true // whether the last partitioning was reasonably balanced
- wasPartitioned = true // whether the slice was already partitioned
- )
-
- for {
- length := b - a
-
- if length <= maxInsertion {
- insertionSortLessFunc(data, a, b, less)
- return
- }
-
- // Fall back to heapsort if too many bad choices were made.
- if limit == 0 {
- heapSortLessFunc(data, a, b, less)
- return
- }
-
- // If the last partitioning was imbalanced, we need to breaking patterns.
- if !wasBalanced {
- breakPatternsLessFunc(data, a, b, less)
- limit--
- }
-
- pivot, hint := choosePivotLessFunc(data, a, b, less)
- if hint == decreasingHint {
- reverseRangeLessFunc(data, a, b, less)
- // The chosen pivot was pivot-a elements after the start of the array.
- // After reversing it is pivot-a elements before the end of the array.
- // The idea came from Rust's implementation.
- pivot = (b - 1) - (pivot - a)
- hint = increasingHint
- }
-
- // The slice is likely already sorted.
- if wasBalanced && wasPartitioned && hint == increasingHint {
- if partialInsertionSortLessFunc(data, a, b, less) {
- return
- }
- }
-
- // Probably the slice contains many duplicate elements, partition the slice into
- // elements equal to and elements greater than the pivot.
- if a > 0 && !less(data[a-1], data[pivot]) {
- mid := partitionEqualLessFunc(data, a, b, pivot, less)
- a = mid
- continue
- }
-
- mid, alreadyPartitioned := partitionLessFunc(data, a, b, pivot, less)
- wasPartitioned = alreadyPartitioned
-
- leftLen, rightLen := mid-a, b-mid
- balanceThreshold := length / 8
- if leftLen < rightLen {
- wasBalanced = leftLen >= balanceThreshold
- pdqsortLessFunc(data, a, mid, limit, less)
- a = mid + 1
- } else {
- wasBalanced = rightLen >= balanceThreshold
- pdqsortLessFunc(data, mid+1, b, limit, less)
- b = mid
- }
- }
-}
-
-// partitionLessFunc does one quicksort partition.
-// Let p = data[pivot]
-// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
-// On return, data[newpivot] = p
-func partitionLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool) (newpivot int, alreadyPartitioned bool) {
- data[a], data[pivot] = data[pivot], data[a]
- i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
-
- for i <= j && less(data[i], data[a]) {
- i++
- }
- for i <= j && !less(data[j], data[a]) {
- j--
- }
- if i > j {
- data[j], data[a] = data[a], data[j]
- return j, true
- }
- data[i], data[j] = data[j], data[i]
- i++
- j--
-
- for {
- for i <= j && less(data[i], data[a]) {
- i++
- }
- for i <= j && !less(data[j], data[a]) {
- j--
- }
- if i > j {
- break
- }
- data[i], data[j] = data[j], data[i]
- i++
- j--
- }
- data[j], data[a] = data[a], data[j]
- return j, false
-}
-
-// partitionEqualLessFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
-// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
-func partitionEqualLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool) (newpivot int) {
- data[a], data[pivot] = data[pivot], data[a]
- i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
-
- for {
- for i <= j && !less(data[a], data[i]) {
- i++
- }
- for i <= j && less(data[a], data[j]) {
- j--
- }
- if i > j {
- break
- }
- data[i], data[j] = data[j], data[i]
- i++
- j--
- }
- return i
-}
-
-// partialInsertionSortLessFunc partially sorts a slice, returns true if the slice is sorted at the end.
-func partialInsertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) bool {
- const (
- maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
- shortestShifting = 50 // don't shift any elements on short arrays
- )
- i := a + 1
- for j := 0; j < maxSteps; j++ {
- for i < b && !less(data[i], data[i-1]) {
- i++
- }
-
- if i == b {
- return true
- }
-
- if b-a < shortestShifting {
- return false
- }
-
- data[i], data[i-1] = data[i-1], data[i]
-
- // Shift the smaller one to the left.
- if i-a >= 2 {
- for j := i - 1; j >= 1; j-- {
- if !less(data[j], data[j-1]) {
- break
- }
- data[j], data[j-1] = data[j-1], data[j]
- }
- }
- // Shift the greater one to the right.
- if b-i >= 2 {
- for j := i + 1; j < b; j++ {
- if !less(data[j], data[j-1]) {
- break
- }
- data[j], data[j-1] = data[j-1], data[j]
- }
- }
- }
- return false
-}
-
-// breakPatternsLessFunc scatters some elements around in an attempt to break some patterns
-// that might cause imbalanced partitions in quicksort.
-func breakPatternsLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
- length := b - a
- if length >= 8 {
- random := xorshift(length)
- modulus := nextPowerOfTwo(length)
-
- for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
- other := int(uint(random.Next()) & (modulus - 1))
- if other >= length {
- other -= length
- }
- data[idx], data[a+other] = data[a+other], data[idx]
- }
- }
-}
-
-// choosePivotLessFunc chooses a pivot in data[a:b].
-//
-// [0,8): chooses a static pivot.
-// [8,shortestNinther): uses the simple median-of-three method.
-// [shortestNinther,∞): uses the Tukey ninther method.
-func choosePivotLessFunc[E any](data []E, a, b int, less func(a, b E) bool) (pivot int, hint sortedHint) {
- const (
- shortestNinther = 50
- maxSwaps = 4 * 3
- )
-
- l := b - a
-
- var (
- swaps int
- i = a + l/4*1
- j = a + l/4*2
- k = a + l/4*3
- )
-
- if l >= 8 {
- if l >= shortestNinther {
- // Tukey ninther method, the idea came from Rust's implementation.
- i = medianAdjacentLessFunc(data, i, &swaps, less)
- j = medianAdjacentLessFunc(data, j, &swaps, less)
- k = medianAdjacentLessFunc(data, k, &swaps, less)
- }
- // Find the median among i, j, k and stores it into j.
- j = medianLessFunc(data, i, j, k, &swaps, less)
- }
-
- switch swaps {
- case 0:
- return j, increasingHint
- case maxSwaps:
- return j, decreasingHint
- default:
- return j, unknownHint
- }
-}
-
-// order2LessFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
-func order2LessFunc[E any](data []E, a, b int, swaps *int, less func(a, b E) bool) (int, int) {
- if less(data[b], data[a]) {
- *swaps++
- return b, a
- }
- return a, b
-}
-
-// medianLessFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
-func medianLessFunc[E any](data []E, a, b, c int, swaps *int, less func(a, b E) bool) int {
- a, b = order2LessFunc(data, a, b, swaps, less)
- b, c = order2LessFunc(data, b, c, swaps, less)
- a, b = order2LessFunc(data, a, b, swaps, less)
- return b
-}
-
-// medianAdjacentLessFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
-func medianAdjacentLessFunc[E any](data []E, a int, swaps *int, less func(a, b E) bool) int {
- return medianLessFunc(data, a-1, a, a+1, swaps, less)
-}
-
-func reverseRangeLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
- i := a
- j := b - 1
- for i < j {
- data[i], data[j] = data[j], data[i]
- i++
- j--
- }
-}
-
-func swapRangeLessFunc[E any](data []E, a, b, n int, less func(a, b E) bool) {
- for i := 0; i < n; i++ {
- data[a+i], data[b+i] = data[b+i], data[a+i]
- }
-}
-
-func stableLessFunc[E any](data []E, n int, less func(a, b E) bool) {
- blockSize := 20 // must be > 0
- a, b := 0, blockSize
- for b <= n {
- insertionSortLessFunc(data, a, b, less)
- a = b
- b += blockSize
- }
- insertionSortLessFunc(data, a, n, less)
-
- for blockSize < n {
- a, b = 0, 2*blockSize
- for b <= n {
- symMergeLessFunc(data, a, a+blockSize, b, less)
- a = b
- b += 2 * blockSize
- }
- if m := a + blockSize; m < n {
- symMergeLessFunc(data, a, m, n, less)
- }
- blockSize *= 2
- }
-}
-
-// symMergeLessFunc merges the two sorted subsequences data[a:m] and data[m:b] using
-// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
-// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
-// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
-// Computer Science, pages 714-723. Springer, 2004.
-//
-// Let M = m-a and N = b-n. Wolog M < N.
-// The recursion depth is bound by ceil(log(N+M)).
-// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
-// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
-//
-// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
-// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
-// in the paper carries through for Swap operations, especially as the block
-// swapping rotate uses only O(M+N) Swaps.
-//
-// symMerge assumes non-degenerate arguments: a < m && m < b.
-// Having the caller check this condition eliminates many leaf recursion calls,
-// which improves performance.
-func symMergeLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
- // Avoid unnecessary recursions of symMerge
- // by direct insertion of data[a] into data[m:b]
- // if data[a:m] only contains one element.
- if m-a == 1 {
- // Use binary search to find the lowest index i
- // such that data[i] >= data[a] for m <= i < b.
- // Exit the search loop with i == b in case no such index exists.
- i := m
- j := b
- for i < j {
- h := int(uint(i+j) >> 1)
- if less(data[h], data[a]) {
- i = h + 1
- } else {
- j = h
- }
- }
- // Swap values until data[a] reaches the position before i.
- for k := a; k < i-1; k++ {
- data[k], data[k+1] = data[k+1], data[k]
- }
- return
- }
-
- // Avoid unnecessary recursions of symMerge
- // by direct insertion of data[m] into data[a:m]
- // if data[m:b] only contains one element.
- if b-m == 1 {
- // Use binary search to find the lowest index i
- // such that data[i] > data[m] for a <= i < m.
- // Exit the search loop with i == m in case no such index exists.
- i := a
- j := m
- for i < j {
- h := int(uint(i+j) >> 1)
- if !less(data[m], data[h]) {
- i = h + 1
- } else {
- j = h
- }
- }
- // Swap values until data[m] reaches the position i.
- for k := m; k > i; k-- {
- data[k], data[k-1] = data[k-1], data[k]
- }
- return
- }
-
- mid := int(uint(a+b) >> 1)
- n := mid + m
- var start, r int
- if m > mid {
- start = n - b
- r = mid
- } else {
- start = a
- r = m
- }
- p := n - 1
-
- for start < r {
- c := int(uint(start+r) >> 1)
- if !less(data[p-c], data[c]) {
- start = c + 1
- } else {
- r = c
- }
- }
-
- end := n - start
- if start < m && m < end {
- rotateLessFunc(data, start, m, end, less)
- }
- if a < start && start < mid {
- symMergeLessFunc(data, a, start, mid, less)
- }
- if mid < end && end < b {
- symMergeLessFunc(data, mid, end, b, less)
- }
-}
-
-// rotateLessFunc rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
-// Data of the form 'x u v y' is changed to 'x v u y'.
-// rotate performs at most b-a many calls to data.Swap,
-// and it assumes non-degenerate arguments: a < m && m < b.
-func rotateLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
- i := m - a
- j := b - m
-
- for i != j {
- if i > j {
- swapRangeLessFunc(data, m-i, m, j, less)
- i -= j
- } else {
- swapRangeLessFunc(data, m-i, m+j-i, i, less)
- j -= i
- }
- }
- // i == j
- swapRangeLessFunc(data, m-i, m, i, less)
-}
diff --git a/vendor/golang.org/x/exp/slices/zsortordered.go b/vendor/golang.org/x/exp/slices/zsortordered.go
deleted file mode 100644
index efaa1c8b7..000000000
--- a/vendor/golang.org/x/exp/slices/zsortordered.go
+++ /dev/null
@@ -1,481 +0,0 @@
-// Code generated by gen_sort_variants.go; DO NOT EDIT.
-
-// Copyright 2022 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package slices
-
-import "golang.org/x/exp/constraints"
-
-// insertionSortOrdered sorts data[a:b] using insertion sort.
-func insertionSortOrdered[E constraints.Ordered](data []E, a, b int) {
- for i := a + 1; i < b; i++ {
- for j := i; j > a && (data[j] < data[j-1]); j-- {
- data[j], data[j-1] = data[j-1], data[j]
- }
- }
-}
-
-// siftDownOrdered implements the heap property on data[lo:hi].
-// first is an offset into the array where the root of the heap lies.
-func siftDownOrdered[E constraints.Ordered](data []E, lo, hi, first int) {
- root := lo
- for {
- child := 2*root + 1
- if child >= hi {
- break
- }
- if child+1 < hi && (data[first+child] < data[first+child+1]) {
- child++
- }
- if !(data[first+root] < data[first+child]) {
- return
- }
- data[first+root], data[first+child] = data[first+child], data[first+root]
- root = child
- }
-}
-
-func heapSortOrdered[E constraints.Ordered](data []E, a, b int) {
- first := a
- lo := 0
- hi := b - a
-
- // Build heap with greatest element at top.
- for i := (hi - 1) / 2; i >= 0; i-- {
- siftDownOrdered(data, i, hi, first)
- }
-
- // Pop elements, largest first, into end of data.
- for i := hi - 1; i >= 0; i-- {
- data[first], data[first+i] = data[first+i], data[first]
- siftDownOrdered(data, lo, i, first)
- }
-}
-
-// pdqsortOrdered sorts data[a:b].
-// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
-// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
-// C++ implementation: https://github.com/orlp/pdqsort
-// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
-// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
-func pdqsortOrdered[E constraints.Ordered](data []E, a, b, limit int) {
- const maxInsertion = 12
-
- var (
- wasBalanced = true // whether the last partitioning was reasonably balanced
- wasPartitioned = true // whether the slice was already partitioned
- )
-
- for {
- length := b - a
-
- if length <= maxInsertion {
- insertionSortOrdered(data, a, b)
- return
- }
-
- // Fall back to heapsort if too many bad choices were made.
- if limit == 0 {
- heapSortOrdered(data, a, b)
- return
- }
-
- // If the last partitioning was imbalanced, we need to breaking patterns.
- if !wasBalanced {
- breakPatternsOrdered(data, a, b)
- limit--
- }
-
- pivot, hint := choosePivotOrdered(data, a, b)
- if hint == decreasingHint {
- reverseRangeOrdered(data, a, b)
- // The chosen pivot was pivot-a elements after the start of the array.
- // After reversing it is pivot-a elements before the end of the array.
- // The idea came from Rust's implementation.
- pivot = (b - 1) - (pivot - a)
- hint = increasingHint
- }
-
- // The slice is likely already sorted.
- if wasBalanced && wasPartitioned && hint == increasingHint {
- if partialInsertionSortOrdered(data, a, b) {
- return
- }
- }
-
- // Probably the slice contains many duplicate elements, partition the slice into
- // elements equal to and elements greater than the pivot.
- if a > 0 && !(data[a-1] < data[pivot]) {
- mid := partitionEqualOrdered(data, a, b, pivot)
- a = mid
- continue
- }
-
- mid, alreadyPartitioned := partitionOrdered(data, a, b, pivot)
- wasPartitioned = alreadyPartitioned
-
- leftLen, rightLen := mid-a, b-mid
- balanceThreshold := length / 8
- if leftLen < rightLen {
- wasBalanced = leftLen >= balanceThreshold
- pdqsortOrdered(data, a, mid, limit)
- a = mid + 1
- } else {
- wasBalanced = rightLen >= balanceThreshold
- pdqsortOrdered(data, mid+1, b, limit)
- b = mid
- }
- }
-}
-
-// partitionOrdered does one quicksort partition.
-// Let p = data[pivot]
-// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
-// On return, data[newpivot] = p
-func partitionOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivot int, alreadyPartitioned bool) {
- data[a], data[pivot] = data[pivot], data[a]
- i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
-
- for i <= j && (data[i] < data[a]) {
- i++
- }
- for i <= j && !(data[j] < data[a]) {
- j--
- }
- if i > j {
- data[j], data[a] = data[a], data[j]
- return j, true
- }
- data[i], data[j] = data[j], data[i]
- i++
- j--
-
- for {
- for i <= j && (data[i] < data[a]) {
- i++
- }
- for i <= j && !(data[j] < data[a]) {
- j--
- }
- if i > j {
- break
- }
- data[i], data[j] = data[j], data[i]
- i++
- j--
- }
- data[j], data[a] = data[a], data[j]
- return j, false
-}
-
-// partitionEqualOrdered partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
-// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
-func partitionEqualOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivot int) {
- data[a], data[pivot] = data[pivot], data[a]
- i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
-
- for {
- for i <= j && !(data[a] < data[i]) {
- i++
- }
- for i <= j && (data[a] < data[j]) {
- j--
- }
- if i > j {
- break
- }
- data[i], data[j] = data[j], data[i]
- i++
- j--
- }
- return i
-}
-
-// partialInsertionSortOrdered partially sorts a slice, returns true if the slice is sorted at the end.
-func partialInsertionSortOrdered[E constraints.Ordered](data []E, a, b int) bool {
- const (
- maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
- shortestShifting = 50 // don't shift any elements on short arrays
- )
- i := a + 1
- for j := 0; j < maxSteps; j++ {
- for i < b && !(data[i] < data[i-1]) {
- i++
- }
-
- if i == b {
- return true
- }
-
- if b-a < shortestShifting {
- return false
- }
-
- data[i], data[i-1] = data[i-1], data[i]
-
- // Shift the smaller one to the left.
- if i-a >= 2 {
- for j := i - 1; j >= 1; j-- {
- if !(data[j] < data[j-1]) {
- break
- }
- data[j], data[j-1] = data[j-1], data[j]
- }
- }
- // Shift the greater one to the right.
- if b-i >= 2 {
- for j := i + 1; j < b; j++ {
- if !(data[j] < data[j-1]) {
- break
- }
- data[j], data[j-1] = data[j-1], data[j]
- }
- }
- }
- return false
-}
-
-// breakPatternsOrdered scatters some elements around in an attempt to break some patterns
-// that might cause imbalanced partitions in quicksort.
-func breakPatternsOrdered[E constraints.Ordered](data []E, a, b int) {
- length := b - a
- if length >= 8 {
- random := xorshift(length)
- modulus := nextPowerOfTwo(length)
-
- for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
- other := int(uint(random.Next()) & (modulus - 1))
- if other >= length {
- other -= length
- }
- data[idx], data[a+other] = data[a+other], data[idx]
- }
- }
-}
-
-// choosePivotOrdered chooses a pivot in data[a:b].
-//
-// [0,8): chooses a static pivot.
-// [8,shortestNinther): uses the simple median-of-three method.
-// [shortestNinther,∞): uses the Tukey ninther method.
-func choosePivotOrdered[E constraints.Ordered](data []E, a, b int) (pivot int, hint sortedHint) {
- const (
- shortestNinther = 50
- maxSwaps = 4 * 3
- )
-
- l := b - a
-
- var (
- swaps int
- i = a + l/4*1
- j = a + l/4*2
- k = a + l/4*3
- )
-
- if l >= 8 {
- if l >= shortestNinther {
- // Tukey ninther method, the idea came from Rust's implementation.
- i = medianAdjacentOrdered(data, i, &swaps)
- j = medianAdjacentOrdered(data, j, &swaps)
- k = medianAdjacentOrdered(data, k, &swaps)
- }
- // Find the median among i, j, k and stores it into j.
- j = medianOrdered(data, i, j, k, &swaps)
- }
-
- switch swaps {
- case 0:
- return j, increasingHint
- case maxSwaps:
- return j, decreasingHint
- default:
- return j, unknownHint
- }
-}
-
-// order2Ordered returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
-func order2Ordered[E constraints.Ordered](data []E, a, b int, swaps *int) (int, int) {
- if data[b] < data[a] {
- *swaps++
- return b, a
- }
- return a, b
-}
-
-// medianOrdered returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
-func medianOrdered[E constraints.Ordered](data []E, a, b, c int, swaps *int) int {
- a, b = order2Ordered(data, a, b, swaps)
- b, c = order2Ordered(data, b, c, swaps)
- a, b = order2Ordered(data, a, b, swaps)
- return b
-}
-
-// medianAdjacentOrdered finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
-func medianAdjacentOrdered[E constraints.Ordered](data []E, a int, swaps *int) int {
- return medianOrdered(data, a-1, a, a+1, swaps)
-}
-
-func reverseRangeOrdered[E constraints.Ordered](data []E, a, b int) {
- i := a
- j := b - 1
- for i < j {
- data[i], data[j] = data[j], data[i]
- i++
- j--
- }
-}
-
-func swapRangeOrdered[E constraints.Ordered](data []E, a, b, n int) {
- for i := 0; i < n; i++ {
- data[a+i], data[b+i] = data[b+i], data[a+i]
- }
-}
-
-func stableOrdered[E constraints.Ordered](data []E, n int) {
- blockSize := 20 // must be > 0
- a, b := 0, blockSize
- for b <= n {
- insertionSortOrdered(data, a, b)
- a = b
- b += blockSize
- }
- insertionSortOrdered(data, a, n)
-
- for blockSize < n {
- a, b = 0, 2*blockSize
- for b <= n {
- symMergeOrdered(data, a, a+blockSize, b)
- a = b
- b += 2 * blockSize
- }
- if m := a + blockSize; m < n {
- symMergeOrdered(data, a, m, n)
- }
- blockSize *= 2
- }
-}
-
-// symMergeOrdered merges the two sorted subsequences data[a:m] and data[m:b] using
-// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
-// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
-// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
-// Computer Science, pages 714-723. Springer, 2004.
-//
-// Let M = m-a and N = b-n. Wolog M < N.
-// The recursion depth is bound by ceil(log(N+M)).
-// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
-// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
-//
-// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
-// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
-// in the paper carries through for Swap operations, especially as the block
-// swapping rotate uses only O(M+N) Swaps.
-//
-// symMerge assumes non-degenerate arguments: a < m && m < b.
-// Having the caller check this condition eliminates many leaf recursion calls,
-// which improves performance.
-func symMergeOrdered[E constraints.Ordered](data []E, a, m, b int) {
- // Avoid unnecessary recursions of symMerge
- // by direct insertion of data[a] into data[m:b]
- // if data[a:m] only contains one element.
- if m-a == 1 {
- // Use binary search to find the lowest index i
- // such that data[i] >= data[a] for m <= i < b.
- // Exit the search loop with i == b in case no such index exists.
- i := m
- j := b
- for i < j {
- h := int(uint(i+j) >> 1)
- if data[h] < data[a] {
- i = h + 1
- } else {
- j = h
- }
- }
- // Swap values until data[a] reaches the position before i.
- for k := a; k < i-1; k++ {
- data[k], data[k+1] = data[k+1], data[k]
- }
- return
- }
-
- // Avoid unnecessary recursions of symMerge
- // by direct insertion of data[m] into data[a:m]
- // if data[m:b] only contains one element.
- if b-m == 1 {
- // Use binary search to find the lowest index i
- // such that data[i] > data[m] for a <= i < m.
- // Exit the search loop with i == m in case no such index exists.
- i := a
- j := m
- for i < j {
- h := int(uint(i+j) >> 1)
- if !(data[m] < data[h]) {
- i = h + 1
- } else {
- j = h
- }
- }
- // Swap values until data[m] reaches the position i.
- for k := m; k > i; k-- {
- data[k], data[k-1] = data[k-1], data[k]
- }
- return
- }
-
- mid := int(uint(a+b) >> 1)
- n := mid + m
- var start, r int
- if m > mid {
- start = n - b
- r = mid
- } else {
- start = a
- r = m
- }
- p := n - 1
-
- for start < r {
- c := int(uint(start+r) >> 1)
- if !(data[p-c] < data[c]) {
- start = c + 1
- } else {
- r = c
- }
- }
-
- end := n - start
- if start < m && m < end {
- rotateOrdered(data, start, m, end)
- }
- if a < start && start < mid {
- symMergeOrdered(data, a, start, mid)
- }
- if mid < end && end < b {
- symMergeOrdered(data, mid, end, b)
- }
-}
-
-// rotateOrdered rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
-// Data of the form 'x u v y' is changed to 'x v u y'.
-// rotate performs at most b-a many calls to data.Swap,
-// and it assumes non-degenerate arguments: a < m && m < b.
-func rotateOrdered[E constraints.Ordered](data []E, a, m, b int) {
- i := m - a
- j := b - m
-
- for i != j {
- if i > j {
- swapRangeOrdered(data, m-i, m, j)
- i -= j
- } else {
- swapRangeOrdered(data, m-i, m+j-i, i)
- j -= i
- }
- }
- // i == j
- swapRangeOrdered(data, m-i, m, i)
-}