diff options
Diffstat (limited to 'vendor/golang.org/x/crypto/chacha20/chacha_generic.go')
-rw-r--r-- | vendor/golang.org/x/crypto/chacha20/chacha_generic.go | 398 |
1 files changed, 0 insertions, 398 deletions
diff --git a/vendor/golang.org/x/crypto/chacha20/chacha_generic.go b/vendor/golang.org/x/crypto/chacha20/chacha_generic.go deleted file mode 100644 index 93eb5ae6d..000000000 --- a/vendor/golang.org/x/crypto/chacha20/chacha_generic.go +++ /dev/null @@ -1,398 +0,0 @@ -// Copyright 2016 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package chacha20 implements the ChaCha20 and XChaCha20 encryption algorithms -// as specified in RFC 8439 and draft-irtf-cfrg-xchacha-01. -package chacha20 - -import ( - "crypto/cipher" - "encoding/binary" - "errors" - "math/bits" - - "golang.org/x/crypto/internal/alias" -) - -const ( - // KeySize is the size of the key used by this cipher, in bytes. - KeySize = 32 - - // NonceSize is the size of the nonce used with the standard variant of this - // cipher, in bytes. - // - // Note that this is too short to be safely generated at random if the same - // key is reused more than 2³² times. - NonceSize = 12 - - // NonceSizeX is the size of the nonce used with the XChaCha20 variant of - // this cipher, in bytes. - NonceSizeX = 24 -) - -// Cipher is a stateful instance of ChaCha20 or XChaCha20 using a particular key -// and nonce. A *Cipher implements the cipher.Stream interface. -type Cipher struct { - // The ChaCha20 state is 16 words: 4 constant, 8 of key, 1 of counter - // (incremented after each block), and 3 of nonce. - key [8]uint32 - counter uint32 - nonce [3]uint32 - - // The last len bytes of buf are leftover key stream bytes from the previous - // XORKeyStream invocation. The size of buf depends on how many blocks are - // computed at a time by xorKeyStreamBlocks. - buf [bufSize]byte - len int - - // overflow is set when the counter overflowed, no more blocks can be - // generated, and the next XORKeyStream call should panic. - overflow bool - - // The counter-independent results of the first round are cached after they - // are computed the first time. - precompDone bool - p1, p5, p9, p13 uint32 - p2, p6, p10, p14 uint32 - p3, p7, p11, p15 uint32 -} - -var _ cipher.Stream = (*Cipher)(nil) - -// NewUnauthenticatedCipher creates a new ChaCha20 stream cipher with the given -// 32 bytes key and a 12 or 24 bytes nonce. If a nonce of 24 bytes is provided, -// the XChaCha20 construction will be used. It returns an error if key or nonce -// have any other length. -// -// Note that ChaCha20, like all stream ciphers, is not authenticated and allows -// attackers to silently tamper with the plaintext. For this reason, it is more -// appropriate as a building block than as a standalone encryption mechanism. -// Instead, consider using package golang.org/x/crypto/chacha20poly1305. -func NewUnauthenticatedCipher(key, nonce []byte) (*Cipher, error) { - // This function is split into a wrapper so that the Cipher allocation will - // be inlined, and depending on how the caller uses the return value, won't - // escape to the heap. - c := &Cipher{} - return newUnauthenticatedCipher(c, key, nonce) -} - -func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) { - if len(key) != KeySize { - return nil, errors.New("chacha20: wrong key size") - } - if len(nonce) == NonceSizeX { - // XChaCha20 uses the ChaCha20 core to mix 16 bytes of the nonce into a - // derived key, allowing it to operate on a nonce of 24 bytes. See - // draft-irtf-cfrg-xchacha-01, Section 2.3. - key, _ = HChaCha20(key, nonce[0:16]) - cNonce := make([]byte, NonceSize) - copy(cNonce[4:12], nonce[16:24]) - nonce = cNonce - } else if len(nonce) != NonceSize { - return nil, errors.New("chacha20: wrong nonce size") - } - - key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint - c.key = [8]uint32{ - binary.LittleEndian.Uint32(key[0:4]), - binary.LittleEndian.Uint32(key[4:8]), - binary.LittleEndian.Uint32(key[8:12]), - binary.LittleEndian.Uint32(key[12:16]), - binary.LittleEndian.Uint32(key[16:20]), - binary.LittleEndian.Uint32(key[20:24]), - binary.LittleEndian.Uint32(key[24:28]), - binary.LittleEndian.Uint32(key[28:32]), - } - c.nonce = [3]uint32{ - binary.LittleEndian.Uint32(nonce[0:4]), - binary.LittleEndian.Uint32(nonce[4:8]), - binary.LittleEndian.Uint32(nonce[8:12]), - } - return c, nil -} - -// The constant first 4 words of the ChaCha20 state. -const ( - j0 uint32 = 0x61707865 // expa - j1 uint32 = 0x3320646e // nd 3 - j2 uint32 = 0x79622d32 // 2-by - j3 uint32 = 0x6b206574 // te k -) - -const blockSize = 64 - -// quarterRound is the core of ChaCha20. It shuffles the bits of 4 state words. -// It's executed 4 times for each of the 20 ChaCha20 rounds, operating on all 16 -// words each round, in columnar or diagonal groups of 4 at a time. -func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) { - a += b - d ^= a - d = bits.RotateLeft32(d, 16) - c += d - b ^= c - b = bits.RotateLeft32(b, 12) - a += b - d ^= a - d = bits.RotateLeft32(d, 8) - c += d - b ^= c - b = bits.RotateLeft32(b, 7) - return a, b, c, d -} - -// SetCounter sets the Cipher counter. The next invocation of XORKeyStream will -// behave as if (64 * counter) bytes had been encrypted so far. -// -// To prevent accidental counter reuse, SetCounter panics if counter is less -// than the current value. -// -// Note that the execution time of XORKeyStream is not independent of the -// counter value. -func (s *Cipher) SetCounter(counter uint32) { - // Internally, s may buffer multiple blocks, which complicates this - // implementation slightly. When checking whether the counter has rolled - // back, we must use both s.counter and s.len to determine how many blocks - // we have already output. - outputCounter := s.counter - uint32(s.len)/blockSize - if s.overflow || counter < outputCounter { - panic("chacha20: SetCounter attempted to rollback counter") - } - - // In the general case, we set the new counter value and reset s.len to 0, - // causing the next call to XORKeyStream to refill the buffer. However, if - // we're advancing within the existing buffer, we can save work by simply - // setting s.len. - if counter < s.counter { - s.len = int(s.counter-counter) * blockSize - } else { - s.counter = counter - s.len = 0 - } -} - -// XORKeyStream XORs each byte in the given slice with a byte from the -// cipher's key stream. Dst and src must overlap entirely or not at all. -// -// If len(dst) < len(src), XORKeyStream will panic. It is acceptable -// to pass a dst bigger than src, and in that case, XORKeyStream will -// only update dst[:len(src)] and will not touch the rest of dst. -// -// Multiple calls to XORKeyStream behave as if the concatenation of -// the src buffers was passed in a single run. That is, Cipher -// maintains state and does not reset at each XORKeyStream call. -func (s *Cipher) XORKeyStream(dst, src []byte) { - if len(src) == 0 { - return - } - if len(dst) < len(src) { - panic("chacha20: output smaller than input") - } - dst = dst[:len(src)] - if alias.InexactOverlap(dst, src) { - panic("chacha20: invalid buffer overlap") - } - - // First, drain any remaining key stream from a previous XORKeyStream. - if s.len != 0 { - keyStream := s.buf[bufSize-s.len:] - if len(src) < len(keyStream) { - keyStream = keyStream[:len(src)] - } - _ = src[len(keyStream)-1] // bounds check elimination hint - for i, b := range keyStream { - dst[i] = src[i] ^ b - } - s.len -= len(keyStream) - dst, src = dst[len(keyStream):], src[len(keyStream):] - } - if len(src) == 0 { - return - } - - // If we'd need to let the counter overflow and keep generating output, - // panic immediately. If instead we'd only reach the last block, remember - // not to generate any more output after the buffer is drained. - numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize - if s.overflow || uint64(s.counter)+numBlocks > 1<<32 { - panic("chacha20: counter overflow") - } else if uint64(s.counter)+numBlocks == 1<<32 { - s.overflow = true - } - - // xorKeyStreamBlocks implementations expect input lengths that are a - // multiple of bufSize. Platform-specific ones process multiple blocks at a - // time, so have bufSizes that are a multiple of blockSize. - - full := len(src) - len(src)%bufSize - if full > 0 { - s.xorKeyStreamBlocks(dst[:full], src[:full]) - } - dst, src = dst[full:], src[full:] - - // If using a multi-block xorKeyStreamBlocks would overflow, use the generic - // one that does one block at a time. - const blocksPerBuf = bufSize / blockSize - if uint64(s.counter)+blocksPerBuf > 1<<32 { - s.buf = [bufSize]byte{} - numBlocks := (len(src) + blockSize - 1) / blockSize - buf := s.buf[bufSize-numBlocks*blockSize:] - copy(buf, src) - s.xorKeyStreamBlocksGeneric(buf, buf) - s.len = len(buf) - copy(dst, buf) - return - } - - // If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and - // keep the leftover keystream for the next XORKeyStream invocation. - if len(src) > 0 { - s.buf = [bufSize]byte{} - copy(s.buf[:], src) - s.xorKeyStreamBlocks(s.buf[:], s.buf[:]) - s.len = bufSize - copy(dst, s.buf[:]) - } -} - -func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) { - if len(dst) != len(src) || len(dst)%blockSize != 0 { - panic("chacha20: internal error: wrong dst and/or src length") - } - - // To generate each block of key stream, the initial cipher state - // (represented below) is passed through 20 rounds of shuffling, - // alternatively applying quarterRounds by columns (like 1, 5, 9, 13) - // or by diagonals (like 1, 6, 11, 12). - // - // 0:cccccccc 1:cccccccc 2:cccccccc 3:cccccccc - // 4:kkkkkkkk 5:kkkkkkkk 6:kkkkkkkk 7:kkkkkkkk - // 8:kkkkkkkk 9:kkkkkkkk 10:kkkkkkkk 11:kkkkkkkk - // 12:bbbbbbbb 13:nnnnnnnn 14:nnnnnnnn 15:nnnnnnnn - // - // c=constant k=key b=blockcount n=nonce - var ( - c0, c1, c2, c3 = j0, j1, j2, j3 - c4, c5, c6, c7 = s.key[0], s.key[1], s.key[2], s.key[3] - c8, c9, c10, c11 = s.key[4], s.key[5], s.key[6], s.key[7] - _, c13, c14, c15 = s.counter, s.nonce[0], s.nonce[1], s.nonce[2] - ) - - // Three quarters of the first round don't depend on the counter, so we can - // calculate them here, and reuse them for multiple blocks in the loop, and - // for future XORKeyStream invocations. - if !s.precompDone { - s.p1, s.p5, s.p9, s.p13 = quarterRound(c1, c5, c9, c13) - s.p2, s.p6, s.p10, s.p14 = quarterRound(c2, c6, c10, c14) - s.p3, s.p7, s.p11, s.p15 = quarterRound(c3, c7, c11, c15) - s.precompDone = true - } - - // A condition of len(src) > 0 would be sufficient, but this also - // acts as a bounds check elimination hint. - for len(src) >= 64 && len(dst) >= 64 { - // The remainder of the first column round. - fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter) - - // The second diagonal round. - x0, x5, x10, x15 := quarterRound(fcr0, s.p5, s.p10, s.p15) - x1, x6, x11, x12 := quarterRound(s.p1, s.p6, s.p11, fcr12) - x2, x7, x8, x13 := quarterRound(s.p2, s.p7, fcr8, s.p13) - x3, x4, x9, x14 := quarterRound(s.p3, fcr4, s.p9, s.p14) - - // The remaining 18 rounds. - for i := 0; i < 9; i++ { - // Column round. - x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12) - x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13) - x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14) - x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15) - - // Diagonal round. - x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15) - x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12) - x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13) - x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14) - } - - // Add back the initial state to generate the key stream, then - // XOR the key stream with the source and write out the result. - addXor(dst[0:4], src[0:4], x0, c0) - addXor(dst[4:8], src[4:8], x1, c1) - addXor(dst[8:12], src[8:12], x2, c2) - addXor(dst[12:16], src[12:16], x3, c3) - addXor(dst[16:20], src[16:20], x4, c4) - addXor(dst[20:24], src[20:24], x5, c5) - addXor(dst[24:28], src[24:28], x6, c6) - addXor(dst[28:32], src[28:32], x7, c7) - addXor(dst[32:36], src[32:36], x8, c8) - addXor(dst[36:40], src[36:40], x9, c9) - addXor(dst[40:44], src[40:44], x10, c10) - addXor(dst[44:48], src[44:48], x11, c11) - addXor(dst[48:52], src[48:52], x12, s.counter) - addXor(dst[52:56], src[52:56], x13, c13) - addXor(dst[56:60], src[56:60], x14, c14) - addXor(dst[60:64], src[60:64], x15, c15) - - s.counter += 1 - - src, dst = src[blockSize:], dst[blockSize:] - } -} - -// HChaCha20 uses the ChaCha20 core to generate a derived key from a 32 bytes -// key and a 16 bytes nonce. It returns an error if key or nonce have any other -// length. It is used as part of the XChaCha20 construction. -func HChaCha20(key, nonce []byte) ([]byte, error) { - // This function is split into a wrapper so that the slice allocation will - // be inlined, and depending on how the caller uses the return value, won't - // escape to the heap. - out := make([]byte, 32) - return hChaCha20(out, key, nonce) -} - -func hChaCha20(out, key, nonce []byte) ([]byte, error) { - if len(key) != KeySize { - return nil, errors.New("chacha20: wrong HChaCha20 key size") - } - if len(nonce) != 16 { - return nil, errors.New("chacha20: wrong HChaCha20 nonce size") - } - - x0, x1, x2, x3 := j0, j1, j2, j3 - x4 := binary.LittleEndian.Uint32(key[0:4]) - x5 := binary.LittleEndian.Uint32(key[4:8]) - x6 := binary.LittleEndian.Uint32(key[8:12]) - x7 := binary.LittleEndian.Uint32(key[12:16]) - x8 := binary.LittleEndian.Uint32(key[16:20]) - x9 := binary.LittleEndian.Uint32(key[20:24]) - x10 := binary.LittleEndian.Uint32(key[24:28]) - x11 := binary.LittleEndian.Uint32(key[28:32]) - x12 := binary.LittleEndian.Uint32(nonce[0:4]) - x13 := binary.LittleEndian.Uint32(nonce[4:8]) - x14 := binary.LittleEndian.Uint32(nonce[8:12]) - x15 := binary.LittleEndian.Uint32(nonce[12:16]) - - for i := 0; i < 10; i++ { - // Diagonal round. - x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12) - x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13) - x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14) - x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15) - - // Column round. - x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15) - x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12) - x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13) - x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14) - } - - _ = out[31] // bounds check elimination hint - binary.LittleEndian.PutUint32(out[0:4], x0) - binary.LittleEndian.PutUint32(out[4:8], x1) - binary.LittleEndian.PutUint32(out[8:12], x2) - binary.LittleEndian.PutUint32(out[12:16], x3) - binary.LittleEndian.PutUint32(out[16:20], x12) - binary.LittleEndian.PutUint32(out[20:24], x13) - binary.LittleEndian.PutUint32(out[24:28], x14) - binary.LittleEndian.PutUint32(out[28:32], x15) - return out, nil -} |