diff options
Diffstat (limited to 'vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go')
-rw-r--r-- | vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go | 165 |
1 files changed, 79 insertions, 86 deletions
diff --git a/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go b/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go index 4139a6d15..707342408 100644 --- a/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go +++ b/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go @@ -1,16 +1,5 @@ // Copyright The OpenTelemetry Authors -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. +// SPDX-License-Identifier: Apache-2.0 package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate" @@ -41,7 +30,8 @@ const ( // expoHistogramDataPoint is a single data point in an exponential histogram. type expoHistogramDataPoint[N int64 | float64] struct { - res exemplar.Reservoir[N] + attrs attribute.Set + res exemplar.FilteredReservoir[N] count uint64 min N @@ -52,14 +42,14 @@ type expoHistogramDataPoint[N int64 | float64] struct { noMinMax bool noSum bool - scale int + scale int32 posBuckets expoBuckets negBuckets expoBuckets zeroCount uint64 } -func newExpoHistogramDataPoint[N int64 | float64](maxSize, maxScale int, noMinMax, noSum bool) *expoHistogramDataPoint[N] { +func newExpoHistogramDataPoint[N int64 | float64](attrs attribute.Set, maxSize int, maxScale int32, noMinMax, noSum bool) *expoHistogramDataPoint[N] { f := math.MaxFloat64 max := N(f) // if N is int64, max will overflow to -9223372036854775808 min := N(-f) @@ -68,6 +58,7 @@ func newExpoHistogramDataPoint[N int64 | float64](maxSize, maxScale int, noMinMa min = N(minInt64) } return &expoHistogramDataPoint[N]{ + attrs: attrs, min: max, max: min, maxSize: maxSize, @@ -128,11 +119,13 @@ func (p *expoHistogramDataPoint[N]) record(v N) { } // getBin returns the bin v should be recorded into. -func (p *expoHistogramDataPoint[N]) getBin(v float64) int { - frac, exp := math.Frexp(v) +func (p *expoHistogramDataPoint[N]) getBin(v float64) int32 { + frac, expInt := math.Frexp(v) + // 11-bit exponential. + exp := int32(expInt) // nolint: gosec if p.scale <= 0 { // Because of the choice of fraction is always 1 power of two higher than we want. - correction := 1 + var correction int32 = 1 if frac == .5 { // If v is an exact power of two the frac will be .5 and the exp // will be one higher than we want. @@ -140,7 +133,7 @@ func (p *expoHistogramDataPoint[N]) getBin(v float64) int { } return (exp - correction) >> (-p.scale) } - return exp<<p.scale + int(math.Log(frac)*scaleFactors[p.scale]) - 1 + return exp<<p.scale + int32(math.Log(frac)*scaleFactors[p.scale]) - 1 } // scaleFactors are constants used in calculating the logarithm index. They are @@ -171,20 +164,20 @@ var scaleFactors = [21]float64{ // scaleChange returns the magnitude of the scale change needed to fit bin in // the bucket. If no scale change is needed 0 is returned. -func (p *expoHistogramDataPoint[N]) scaleChange(bin, startBin, length int) int { +func (p *expoHistogramDataPoint[N]) scaleChange(bin, startBin int32, length int) int32 { if length == 0 { // No need to rescale if there are no buckets. return 0 } - low := startBin - high := bin + low := int(startBin) + high := int(bin) if startBin >= bin { - low = bin - high = startBin + length - 1 + low = int(bin) + high = int(startBin) + length - 1 } - count := 0 + var count int32 for high-low >= p.maxSize { low = low >> 1 high = high >> 1 @@ -198,39 +191,39 @@ func (p *expoHistogramDataPoint[N]) scaleChange(bin, startBin, length int) int { // expoBuckets is a set of buckets in an exponential histogram. type expoBuckets struct { - startBin int + startBin int32 counts []uint64 } // record increments the count for the given bin, and expands the buckets if needed. // Size changes must be done before calling this function. -func (b *expoBuckets) record(bin int) { +func (b *expoBuckets) record(bin int32) { if len(b.counts) == 0 { b.counts = []uint64{1} b.startBin = bin return } - endBin := b.startBin + len(b.counts) - 1 + endBin := int(b.startBin) + len(b.counts) - 1 // if the new bin is inside the current range - if bin >= b.startBin && bin <= endBin { + if bin >= b.startBin && int(bin) <= endBin { b.counts[bin-b.startBin]++ return } // if the new bin is before the current start add spaces to the counts if bin < b.startBin { origLen := len(b.counts) - newLength := endBin - bin + 1 + newLength := endBin - int(bin) + 1 shift := b.startBin - bin if newLength > cap(b.counts) { b.counts = append(b.counts, make([]uint64, newLength-len(b.counts))...) } - copy(b.counts[shift:origLen+shift], b.counts[:]) + copy(b.counts[shift:origLen+int(shift)], b.counts[:]) b.counts = b.counts[:newLength] - for i := 1; i < shift; i++ { + for i := 1; i < int(shift); i++ { b.counts[i] = 0 } b.startBin = bin @@ -238,17 +231,17 @@ func (b *expoBuckets) record(bin int) { return } // if the new is after the end add spaces to the end - if bin > endBin { - if bin-b.startBin < cap(b.counts) { + if int(bin) > endBin { + if int(bin-b.startBin) < cap(b.counts) { b.counts = b.counts[:bin-b.startBin+1] - for i := endBin + 1 - b.startBin; i < len(b.counts); i++ { + for i := endBin + 1 - int(b.startBin); i < len(b.counts); i++ { b.counts[i] = 0 } b.counts[bin-b.startBin] = 1 return } - end := make([]uint64, bin-b.startBin-len(b.counts)+1) + end := make([]uint64, int(bin-b.startBin)-len(b.counts)+1) b.counts = append(b.counts, end...) b.counts[bin-b.startBin] = 1 } @@ -256,7 +249,7 @@ func (b *expoBuckets) record(bin int) { // downscale shrinks a bucket by a factor of 2*s. It will sum counts into the // correct lower resolution bucket. -func (b *expoBuckets) downscale(delta int) { +func (b *expoBuckets) downscale(delta int32) { // Example // delta = 2 // Original offset: -6 @@ -271,19 +264,19 @@ func (b *expoBuckets) downscale(delta int) { return } - steps := 1 << delta + steps := int32(1) << delta offset := b.startBin % steps offset = (offset + steps) % steps // to make offset positive for i := 1; i < len(b.counts); i++ { - idx := i + offset - if idx%steps == 0 { - b.counts[idx/steps] = b.counts[i] + idx := i + int(offset) + if idx%int(steps) == 0 { + b.counts[idx/int(steps)] = b.counts[i] continue } - b.counts[idx/steps] += b.counts[i] + b.counts[idx/int(steps)] += b.counts[i] } - lastIdx := (len(b.counts) - 1 + offset) / steps + lastIdx := (len(b.counts) - 1 + int(offset)) / int(steps) b.counts = b.counts[:lastIdx+1] b.startBin = b.startBin >> delta } @@ -291,16 +284,16 @@ func (b *expoBuckets) downscale(delta int) { // newExponentialHistogram returns an Aggregator that summarizes a set of // measurements as an exponential histogram. Each histogram is scoped by attributes // and the aggregation cycle the measurements were made in. -func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func() exemplar.Reservoir[N]) *expoHistogram[N] { +func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *expoHistogram[N] { return &expoHistogram[N]{ noSum: noSum, noMinMax: noMinMax, maxSize: int(maxSize), - maxScale: int(maxScale), + maxScale: maxScale, newRes: r, limit: newLimiter[*expoHistogramDataPoint[N]](limit), - values: make(map[attribute.Set]*expoHistogramDataPoint[N]), + values: make(map[attribute.Distinct]*expoHistogramDataPoint[N]), start: now(), } @@ -312,11 +305,11 @@ type expoHistogram[N int64 | float64] struct { noSum bool noMinMax bool maxSize int - maxScale int + maxScale int32 - newRes func() exemplar.Reservoir[N] + newRes func() exemplar.FilteredReservoir[N] limit limiter[*expoHistogramDataPoint[N]] - values map[attribute.Set]*expoHistogramDataPoint[N] + values map[attribute.Distinct]*expoHistogramDataPoint[N] valuesMu sync.Mutex start time.Time @@ -328,21 +321,19 @@ func (e *expoHistogram[N]) measure(ctx context.Context, value N, fltrAttr attrib return } - t := now() - e.valuesMu.Lock() defer e.valuesMu.Unlock() attr := e.limit.Attributes(fltrAttr, e.values) - v, ok := e.values[attr] + v, ok := e.values[attr.Equivalent()] if !ok { - v = newExpoHistogramDataPoint[N](e.maxSize, e.maxScale, e.noMinMax, e.noSum) + v = newExpoHistogramDataPoint[N](attr, e.maxSize, e.maxScale, e.noMinMax, e.noSum) v.res = e.newRes() - e.values[attr] = v + e.values[attr.Equivalent()] = v } v.record(value) - v.res.Offer(ctx, t, value, droppedAttr) + v.res.Offer(ctx, value, droppedAttr) } func (e *expoHistogram[N]) delta(dest *metricdata.Aggregation) int { @@ -360,36 +351,38 @@ func (e *expoHistogram[N]) delta(dest *metricdata.Aggregation) int { hDPts := reset(h.DataPoints, n, n) var i int - for a, b := range e.values { - hDPts[i].Attributes = a + for _, val := range e.values { + hDPts[i].Attributes = val.attrs hDPts[i].StartTime = e.start hDPts[i].Time = t - hDPts[i].Count = b.count - hDPts[i].Scale = int32(b.scale) - hDPts[i].ZeroCount = b.zeroCount + hDPts[i].Count = val.count + hDPts[i].Scale = val.scale + hDPts[i].ZeroCount = val.zeroCount hDPts[i].ZeroThreshold = 0.0 - hDPts[i].PositiveBucket.Offset = int32(b.posBuckets.startBin) - hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(b.posBuckets.counts), len(b.posBuckets.counts)) - copy(hDPts[i].PositiveBucket.Counts, b.posBuckets.counts) + hDPts[i].PositiveBucket.Offset = val.posBuckets.startBin + hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts)) + copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts) - hDPts[i].NegativeBucket.Offset = int32(b.negBuckets.startBin) - hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(b.negBuckets.counts), len(b.negBuckets.counts)) - copy(hDPts[i].NegativeBucket.Counts, b.negBuckets.counts) + hDPts[i].NegativeBucket.Offset = val.negBuckets.startBin + hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts)) + copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts) if !e.noSum { - hDPts[i].Sum = b.sum + hDPts[i].Sum = val.sum } if !e.noMinMax { - hDPts[i].Min = metricdata.NewExtrema(b.min) - hDPts[i].Max = metricdata.NewExtrema(b.max) + hDPts[i].Min = metricdata.NewExtrema(val.min) + hDPts[i].Max = metricdata.NewExtrema(val.max) } - b.res.Collect(&hDPts[i].Exemplars) + collectExemplars(&hDPts[i].Exemplars, val.res.Collect) - delete(e.values, a) i++ } + // Unused attribute sets do not report. + clear(e.values) + e.start = t h.DataPoints = hDPts *dest = h @@ -411,32 +404,32 @@ func (e *expoHistogram[N]) cumulative(dest *metricdata.Aggregation) int { hDPts := reset(h.DataPoints, n, n) var i int - for a, b := range e.values { - hDPts[i].Attributes = a + for _, val := range e.values { + hDPts[i].Attributes = val.attrs hDPts[i].StartTime = e.start hDPts[i].Time = t - hDPts[i].Count = b.count - hDPts[i].Scale = int32(b.scale) - hDPts[i].ZeroCount = b.zeroCount + hDPts[i].Count = val.count + hDPts[i].Scale = val.scale + hDPts[i].ZeroCount = val.zeroCount hDPts[i].ZeroThreshold = 0.0 - hDPts[i].PositiveBucket.Offset = int32(b.posBuckets.startBin) - hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(b.posBuckets.counts), len(b.posBuckets.counts)) - copy(hDPts[i].PositiveBucket.Counts, b.posBuckets.counts) + hDPts[i].PositiveBucket.Offset = val.posBuckets.startBin + hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts)) + copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts) - hDPts[i].NegativeBucket.Offset = int32(b.negBuckets.startBin) - hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(b.negBuckets.counts), len(b.negBuckets.counts)) - copy(hDPts[i].NegativeBucket.Counts, b.negBuckets.counts) + hDPts[i].NegativeBucket.Offset = val.negBuckets.startBin + hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts)) + copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts) if !e.noSum { - hDPts[i].Sum = b.sum + hDPts[i].Sum = val.sum } if !e.noMinMax { - hDPts[i].Min = metricdata.NewExtrema(b.min) - hDPts[i].Max = metricdata.NewExtrema(b.max) + hDPts[i].Min = metricdata.NewExtrema(val.min) + hDPts[i].Max = metricdata.NewExtrema(val.max) } - b.res.Collect(&hDPts[i].Exemplars) + collectExemplars(&hDPts[i].Exemplars, val.res.Collect) i++ // TODO (#3006): This will use an unbounded amount of memory if there |