diff options
Diffstat (limited to 'vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go')
-rw-r--r-- | vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go | 432 |
1 files changed, 432 insertions, 0 deletions
diff --git a/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go b/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go new file mode 100644 index 000000000..98b7dc1e0 --- /dev/null +++ b/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go @@ -0,0 +1,432 @@ +// Copyright The OpenTelemetry Authors +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate" + +import ( + "context" + "errors" + "math" + "sync" + "time" + + "go.opentelemetry.io/otel" + "go.opentelemetry.io/otel/attribute" + "go.opentelemetry.io/otel/sdk/metric/metricdata" +) + +const ( + expoMaxScale = 20 + expoMinScale = -10 + + smallestNonZeroNormalFloat64 = 0x1p-1022 + + // These redefine the Math constants with a type, so the compiler won't coerce + // them into an int on 32 bit platforms. + maxInt64 int64 = math.MaxInt64 + minInt64 int64 = math.MinInt64 +) + +// expoHistogramDataPoint is a single data point in an exponential histogram. +type expoHistogramDataPoint[N int64 | float64] struct { + count uint64 + min N + max N + sum N + + maxSize int + noMinMax bool + noSum bool + + scale int + + posBuckets expoBuckets + negBuckets expoBuckets + zeroCount uint64 +} + +func newExpoHistogramDataPoint[N int64 | float64](maxSize, maxScale int, noMinMax, noSum bool) *expoHistogramDataPoint[N] { + f := math.MaxFloat64 + max := N(f) // if N is int64, max will overflow to -9223372036854775808 + min := N(-f) + if N(maxInt64) > N(f) { + max = N(maxInt64) + min = N(minInt64) + } + return &expoHistogramDataPoint[N]{ + min: max, + max: min, + maxSize: maxSize, + noMinMax: noMinMax, + noSum: noSum, + scale: maxScale, + } +} + +// record adds a new measurement to the histogram. It will rescale the buckets if needed. +func (p *expoHistogramDataPoint[N]) record(v N) { + p.count++ + + if !p.noMinMax { + if v < p.min { + p.min = v + } + if v > p.max { + p.max = v + } + } + if !p.noSum { + p.sum += v + } + + absV := math.Abs(float64(v)) + + if float64(absV) == 0.0 { + p.zeroCount++ + return + } + + bin := p.getBin(absV) + + bucket := &p.posBuckets + if v < 0 { + bucket = &p.negBuckets + } + + // If the new bin would make the counts larger than maxScale, we need to + // downscale current measurements. + if scaleDelta := p.scaleChange(bin, bucket.startBin, len(bucket.counts)); scaleDelta > 0 { + if p.scale-scaleDelta < expoMinScale { + // With a scale of -10 there is only two buckets for the whole range of float64 values. + // This can only happen if there is a max size of 1. + otel.Handle(errors.New("exponential histogram scale underflow")) + return + } + // Downscale + p.scale -= scaleDelta + p.posBuckets.downscale(scaleDelta) + p.negBuckets.downscale(scaleDelta) + + bin = p.getBin(absV) + } + + bucket.record(bin) +} + +// getBin returns the bin v should be recorded into. +func (p *expoHistogramDataPoint[N]) getBin(v float64) int { + frac, exp := math.Frexp(v) + if p.scale <= 0 { + // Because of the choice of fraction is always 1 power of two higher than we want. + correction := 1 + if frac == .5 { + // If v is an exact power of two the frac will be .5 and the exp + // will be one higher than we want. + correction = 2 + } + return (exp - correction) >> (-p.scale) + } + return exp<<p.scale + int(math.Log(frac)*scaleFactors[p.scale]) - 1 +} + +// scaleFactors are constants used in calculating the logarithm index. They are +// equivalent to 2^index/log(2). +var scaleFactors = [21]float64{ + math.Ldexp(math.Log2E, 0), + math.Ldexp(math.Log2E, 1), + math.Ldexp(math.Log2E, 2), + math.Ldexp(math.Log2E, 3), + math.Ldexp(math.Log2E, 4), + math.Ldexp(math.Log2E, 5), + math.Ldexp(math.Log2E, 6), + math.Ldexp(math.Log2E, 7), + math.Ldexp(math.Log2E, 8), + math.Ldexp(math.Log2E, 9), + math.Ldexp(math.Log2E, 10), + math.Ldexp(math.Log2E, 11), + math.Ldexp(math.Log2E, 12), + math.Ldexp(math.Log2E, 13), + math.Ldexp(math.Log2E, 14), + math.Ldexp(math.Log2E, 15), + math.Ldexp(math.Log2E, 16), + math.Ldexp(math.Log2E, 17), + math.Ldexp(math.Log2E, 18), + math.Ldexp(math.Log2E, 19), + math.Ldexp(math.Log2E, 20), +} + +// scaleChange returns the magnitude of the scale change needed to fit bin in +// the bucket. If no scale change is needed 0 is returned. +func (p *expoHistogramDataPoint[N]) scaleChange(bin, startBin, length int) int { + if length == 0 { + // No need to rescale if there are no buckets. + return 0 + } + + low := startBin + high := bin + if startBin >= bin { + low = bin + high = startBin + length - 1 + } + + count := 0 + for high-low >= p.maxSize { + low = low >> 1 + high = high >> 1 + count++ + if count > expoMaxScale-expoMinScale { + return count + } + } + return count +} + +// expoBuckets is a set of buckets in an exponential histogram. +type expoBuckets struct { + startBin int + counts []uint64 +} + +// record increments the count for the given bin, and expands the buckets if needed. +// Size changes must be done before calling this function. +func (b *expoBuckets) record(bin int) { + if len(b.counts) == 0 { + b.counts = []uint64{1} + b.startBin = bin + return + } + + endBin := b.startBin + len(b.counts) - 1 + + // if the new bin is inside the current range + if bin >= b.startBin && bin <= endBin { + b.counts[bin-b.startBin]++ + return + } + // if the new bin is before the current start add spaces to the counts + if bin < b.startBin { + origLen := len(b.counts) + newLength := endBin - bin + 1 + shift := b.startBin - bin + + if newLength > cap(b.counts) { + b.counts = append(b.counts, make([]uint64, newLength-len(b.counts))...) + } + + copy(b.counts[shift:origLen+shift], b.counts[:]) + b.counts = b.counts[:newLength] + for i := 1; i < shift; i++ { + b.counts[i] = 0 + } + b.startBin = bin + b.counts[0] = 1 + return + } + // if the new is after the end add spaces to the end + if bin > endBin { + if bin-b.startBin < cap(b.counts) { + b.counts = b.counts[:bin-b.startBin+1] + for i := endBin + 1 - b.startBin; i < len(b.counts); i++ { + b.counts[i] = 0 + } + b.counts[bin-b.startBin] = 1 + return + } + + end := make([]uint64, bin-b.startBin-len(b.counts)+1) + b.counts = append(b.counts, end...) + b.counts[bin-b.startBin] = 1 + } +} + +// downscale shrinks a bucket by a factor of 2*s. It will sum counts into the +// correct lower resolution bucket. +func (b *expoBuckets) downscale(delta int) { + // Example + // delta = 2 + // Original offset: -6 + // Counts: [ 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + // bins: -6 -5, -4, -3, -2, -1, 0, 1, 2, 3, 4 + // new bins:-2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 1 + // new Offset: -2 + // new Counts: [4, 14, 30, 10] + + if len(b.counts) <= 1 || delta < 1 { + b.startBin = b.startBin >> delta + return + } + + steps := 1 << delta + offset := b.startBin % steps + offset = (offset + steps) % steps // to make offset positive + for i := 1; i < len(b.counts); i++ { + idx := i + offset + if idx%steps == 0 { + b.counts[idx/steps] = b.counts[i] + continue + } + b.counts[idx/steps] += b.counts[i] + } + + lastIdx := (len(b.counts) - 1 + offset) / steps + b.counts = b.counts[:lastIdx+1] + b.startBin = b.startBin >> delta +} + +// newExponentialHistogram returns an Aggregator that summarizes a set of +// measurements as an exponential histogram. Each histogram is scoped by attributes +// and the aggregation cycle the measurements were made in. +func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool) *expoHistogram[N] { + return &expoHistogram[N]{ + noSum: noSum, + noMinMax: noMinMax, + maxSize: int(maxSize), + maxScale: int(maxScale), + + values: make(map[attribute.Set]*expoHistogramDataPoint[N]), + + start: now(), + } +} + +// expoHistogram summarizes a set of measurements as an histogram with exponentially +// defined buckets. +type expoHistogram[N int64 | float64] struct { + noSum bool + noMinMax bool + maxSize int + maxScale int + + values map[attribute.Set]*expoHistogramDataPoint[N] + valuesMu sync.Mutex + + start time.Time +} + +func (e *expoHistogram[N]) measure(_ context.Context, value N, attr attribute.Set) { + // Ignore NaN and infinity. + if math.IsInf(float64(value), 0) || math.IsNaN(float64(value)) { + return + } + + e.valuesMu.Lock() + defer e.valuesMu.Unlock() + + v, ok := e.values[attr] + if !ok { + v = newExpoHistogramDataPoint[N](e.maxSize, e.maxScale, e.noMinMax, e.noSum) + e.values[attr] = v + } + v.record(value) +} + +func (e *expoHistogram[N]) delta(dest *metricdata.Aggregation) int { + t := now() + + // If *dest is not a metricdata.ExponentialHistogram, memory reuse is missed. + // In that case, use the zero-value h and hope for better alignment next cycle. + h, _ := (*dest).(metricdata.ExponentialHistogram[N]) + h.Temporality = metricdata.DeltaTemporality + + e.valuesMu.Lock() + defer e.valuesMu.Unlock() + + n := len(e.values) + hDPts := reset(h.DataPoints, n, n) + + var i int + for a, b := range e.values { + hDPts[i].Attributes = a + hDPts[i].StartTime = e.start + hDPts[i].Time = t + hDPts[i].Count = b.count + hDPts[i].Scale = int32(b.scale) + hDPts[i].ZeroCount = b.zeroCount + hDPts[i].ZeroThreshold = 0.0 + + hDPts[i].PositiveBucket.Offset = int32(b.posBuckets.startBin) + hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(b.posBuckets.counts), len(b.posBuckets.counts)) + copy(hDPts[i].PositiveBucket.Counts, b.posBuckets.counts) + + hDPts[i].NegativeBucket.Offset = int32(b.negBuckets.startBin) + hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(b.negBuckets.counts), len(b.negBuckets.counts)) + + if !e.noSum { + hDPts[i].Sum = b.sum + } + if !e.noMinMax { + hDPts[i].Min = metricdata.NewExtrema(b.min) + hDPts[i].Max = metricdata.NewExtrema(b.max) + } + + delete(e.values, a) + i++ + } + e.start = t + h.DataPoints = hDPts + *dest = h + return n +} + +func (e *expoHistogram[N]) cumulative(dest *metricdata.Aggregation) int { + t := now() + + // If *dest is not a metricdata.ExponentialHistogram, memory reuse is missed. + // In that case, use the zero-value h and hope for better alignment next cycle. + h, _ := (*dest).(metricdata.ExponentialHistogram[N]) + h.Temporality = metricdata.CumulativeTemporality + + e.valuesMu.Lock() + defer e.valuesMu.Unlock() + + n := len(e.values) + hDPts := reset(h.DataPoints, n, n) + + var i int + for a, b := range e.values { + hDPts[i].Attributes = a + hDPts[i].StartTime = e.start + hDPts[i].Time = t + hDPts[i].Count = b.count + hDPts[i].Scale = int32(b.scale) + hDPts[i].ZeroCount = b.zeroCount + hDPts[i].ZeroThreshold = 0.0 + + hDPts[i].PositiveBucket.Offset = int32(b.posBuckets.startBin) + hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(b.posBuckets.counts), len(b.posBuckets.counts)) + copy(hDPts[i].PositiveBucket.Counts, b.posBuckets.counts) + + hDPts[i].NegativeBucket.Offset = int32(b.negBuckets.startBin) + hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(b.negBuckets.counts), len(b.negBuckets.counts)) + + if !e.noSum { + hDPts[i].Sum = b.sum + } + if !e.noMinMax { + hDPts[i].Min = metricdata.NewExtrema(b.min) + hDPts[i].Max = metricdata.NewExtrema(b.max) + } + + i++ + // TODO (#3006): This will use an unbounded amount of memory if there + // are unbounded number of attribute sets being aggregated. Attribute + // sets that become "stale" need to be forgotten so this will not + // overload the system. + } + + h.DataPoints = hDPts + *dest = h + return n +} |