summaryrefslogtreecommitdiff
path: root/vendor/github.com/ugorji/go/codec/decode.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/ugorji/go/codec/decode.go')
-rw-r--r--vendor/github.com/ugorji/go/codec/decode.go2350
1 files changed, 2350 insertions, 0 deletions
diff --git a/vendor/github.com/ugorji/go/codec/decode.go b/vendor/github.com/ugorji/go/codec/decode.go
new file mode 100644
index 000000000..d454db09c
--- /dev/null
+++ b/vendor/github.com/ugorji/go/codec/decode.go
@@ -0,0 +1,2350 @@
+// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
+// Use of this source code is governed by a MIT license found in the LICENSE file.
+
+package codec
+
+import (
+ "encoding"
+ "errors"
+ "io"
+ "math"
+ "reflect"
+ "strconv"
+ "time"
+)
+
+const msgBadDesc = "unrecognized descriptor byte"
+
+const (
+ decDefMaxDepth = 1024 // maximum depth
+ decDefChanCap = 64 // should be large, as cap cannot be expanded
+ decScratchByteArrayLen = (8 + 2 + 2) * 8 // around cacheLineSize ie ~64, depending on Decoder size
+
+ // MARKER: massage decScratchByteArrayLen to ensure xxxDecDriver structs fit within cacheLine*N
+
+ // decFailNonEmptyIntf configures whether we error
+ // when decoding naked into a non-empty interface.
+ //
+ // Typically, we cannot decode non-nil stream value into
+ // nil interface with methods (e.g. io.Reader).
+ // However, in some scenarios, this should be allowed:
+ // - MapType
+ // - SliceType
+ // - Extensions
+ //
+ // Consequently, we should relax this. Put it behind a const flag for now.
+ decFailNonEmptyIntf = false
+
+ // decUseTransient says that we should not use the transient optimization.
+ //
+ // There's potential for GC corruption or memory overwrites if transient isn't
+ // used carefully, so this flag helps turn it off quickly if needed.
+ //
+ // Use it everywhere needed so we can completely remove unused code blocks.
+ decUseTransient = true
+)
+
+var (
+ errNeedMapOrArrayDecodeToStruct = errors.New("only encoded map or array can decode into struct")
+ errCannotDecodeIntoNil = errors.New("cannot decode into nil")
+
+ errExpandSliceCannotChange = errors.New("expand slice: cannot change")
+
+ errDecoderNotInitialized = errors.New("Decoder not initialized")
+
+ errDecUnreadByteNothingToRead = errors.New("cannot unread - nothing has been read")
+ errDecUnreadByteLastByteNotRead = errors.New("cannot unread - last byte has not been read")
+ errDecUnreadByteUnknown = errors.New("cannot unread - reason unknown")
+ errMaxDepthExceeded = errors.New("maximum decoding depth exceeded")
+)
+
+// decByteState tracks where the []byte returned by the last call
+// to DecodeBytes or DecodeStringAsByte came from
+type decByteState uint8
+
+const (
+ decByteStateNone decByteState = iota
+ decByteStateZerocopy // view into []byte that we are decoding from
+ decByteStateReuseBuf // view into transient buffer used internally by decDriver
+ // decByteStateNewAlloc
+)
+
+type decNotDecodeableReason uint8
+
+const (
+ decNotDecodeableReasonUnknown decNotDecodeableReason = iota
+ decNotDecodeableReasonBadKind
+ decNotDecodeableReasonNonAddrValue
+ decNotDecodeableReasonNilReference
+)
+
+type decDriver interface {
+ // this will check if the next token is a break.
+ CheckBreak() bool
+
+ // TryNil tries to decode as nil.
+ // If a nil is in the stream, it consumes it and returns true.
+ //
+ // Note: if TryNil returns true, that must be handled.
+ TryNil() bool
+
+ // ContainerType returns one of: Bytes, String, Nil, Slice or Map.
+ //
+ // Return unSet if not known.
+ //
+ // Note: Implementations MUST fully consume sentinel container types, specifically Nil.
+ ContainerType() (vt valueType)
+
+ // DecodeNaked will decode primitives (number, bool, string, []byte) and RawExt.
+ // For maps and arrays, it will not do the decoding in-band, but will signal
+ // the decoder, so that is done later, by setting the fauxUnion.valueType field.
+ //
+ // Note: Numbers are decoded as int64, uint64, float64 only (no smaller sized number types).
+ // for extensions, DecodeNaked must read the tag and the []byte if it exists.
+ // if the []byte is not read, then kInterfaceNaked will treat it as a Handle
+ // that stores the subsequent value in-band, and complete reading the RawExt.
+ //
+ // extensions should also use readx to decode them, for efficiency.
+ // kInterface will extract the detached byte slice if it has to pass it outside its realm.
+ DecodeNaked()
+
+ DecodeInt64() (i int64)
+ DecodeUint64() (ui uint64)
+
+ DecodeFloat64() (f float64)
+ DecodeBool() (b bool)
+
+ // DecodeStringAsBytes returns the bytes representing a string.
+ // It will return a view into scratch buffer or input []byte (if applicable).
+ //
+ // Note: This can also decode symbols, if supported.
+ //
+ // Users should consume it right away and not store it for later use.
+ DecodeStringAsBytes() (v []byte)
+
+ // DecodeBytes returns the bytes representing a binary value.
+ // It will return a view into scratch buffer or input []byte (if applicable).
+ //
+ // All implementations must honor the contract below:
+ // if ZeroCopy and applicable, return a view into input []byte we are decoding from
+ // else if in == nil, return a view into scratch buffer
+ // else append decoded value to in[:0] and return that
+ // (this can be simulated by passing []byte{} as in parameter)
+ //
+ // Implementations must also update Decoder.decByteState on each call to
+ // DecodeBytes or DecodeStringAsBytes. Some callers may check that and work appropriately.
+ //
+ // Note: DecodeBytes may decode past the length of the passed byte slice, up to the cap.
+ // Consequently, it is ok to pass a zero-len slice to DecodeBytes, as the returned
+ // byte slice will have the appropriate length.
+ DecodeBytes(in []byte) (out []byte)
+ // DecodeBytes(bs []byte, isstring, zerocopy bool) (bsOut []byte)
+
+ // DecodeExt will decode into a *RawExt or into an extension.
+ DecodeExt(v interface{}, basetype reflect.Type, xtag uint64, ext Ext)
+ // decodeExt(verifyTag bool, tag byte) (xtag byte, xbs []byte)
+
+ DecodeTime() (t time.Time)
+
+ // ReadArrayStart will return the length of the array.
+ // If the format doesn't prefix the length, it returns containerLenUnknown.
+ // If the expected array was a nil in the stream, it returns containerLenNil.
+ ReadArrayStart() int
+ ReadArrayEnd()
+
+ // ReadMapStart will return the length of the array.
+ // If the format doesn't prefix the length, it returns containerLenUnknown.
+ // If the expected array was a nil in the stream, it returns containerLenNil.
+ ReadMapStart() int
+ ReadMapEnd()
+
+ reset()
+
+ // atEndOfDecode()
+
+ // nextValueBytes will return the bytes representing the next value in the stream.
+ //
+ // if start is nil, then treat it as a request to discard the next set of bytes,
+ // and the return response does not matter.
+ // Typically, this means that the returned []byte is nil/empty/undefined.
+ //
+ // Optimize for decoding from a []byte, where the nextValueBytes will just be a sub-slice
+ // of the input slice. Callers that need to use this to not be a view into the input bytes
+ // should handle it appropriately.
+ nextValueBytes(start []byte) []byte
+
+ // descBd will describe the token descriptor that signifies what type was decoded
+ descBd() string
+
+ decoder() *Decoder
+
+ driverStateManager
+ decNegintPosintFloatNumber
+}
+
+type decDriverContainerTracker interface {
+ ReadArrayElem()
+ ReadMapElemKey()
+ ReadMapElemValue()
+}
+
+type decNegintPosintFloatNumber interface {
+ decInteger() (ui uint64, neg, ok bool)
+ decFloat() (f float64, ok bool)
+}
+
+type decDriverNoopNumberHelper struct{}
+
+func (x decDriverNoopNumberHelper) decInteger() (ui uint64, neg, ok bool) {
+ panic("decInteger unsupported")
+}
+func (x decDriverNoopNumberHelper) decFloat() (f float64, ok bool) { panic("decFloat unsupported") }
+
+type decDriverNoopContainerReader struct{}
+
+func (x decDriverNoopContainerReader) ReadArrayStart() (v int) { panic("ReadArrayStart unsupported") }
+func (x decDriverNoopContainerReader) ReadArrayEnd() {}
+func (x decDriverNoopContainerReader) ReadMapStart() (v int) { panic("ReadMapStart unsupported") }
+func (x decDriverNoopContainerReader) ReadMapEnd() {}
+func (x decDriverNoopContainerReader) CheckBreak() (v bool) { return }
+
+// DecodeOptions captures configuration options during decode.
+type DecodeOptions struct {
+ // MapType specifies type to use during schema-less decoding of a map in the stream.
+ // If nil (unset), we default to map[string]interface{} iff json handle and MapKeyAsString=true,
+ // else map[interface{}]interface{}.
+ MapType reflect.Type
+
+ // SliceType specifies type to use during schema-less decoding of an array in the stream.
+ // If nil (unset), we default to []interface{} for all formats.
+ SliceType reflect.Type
+
+ // MaxInitLen defines the maxinum initial length that we "make" a collection
+ // (string, slice, map, chan). If 0 or negative, we default to a sensible value
+ // based on the size of an element in the collection.
+ //
+ // For example, when decoding, a stream may say that it has 2^64 elements.
+ // We should not auto-matically provision a slice of that size, to prevent Out-Of-Memory crash.
+ // Instead, we provision up to MaxInitLen, fill that up, and start appending after that.
+ MaxInitLen int
+
+ // ReaderBufferSize is the size of the buffer used when reading.
+ //
+ // if > 0, we use a smart buffer internally for performance purposes.
+ ReaderBufferSize int
+
+ // MaxDepth defines the maximum depth when decoding nested
+ // maps and slices. If 0 or negative, we default to a suitably large number (currently 1024).
+ MaxDepth int16
+
+ // If ErrorIfNoField, return an error when decoding a map
+ // from a codec stream into a struct, and no matching struct field is found.
+ ErrorIfNoField bool
+
+ // If ErrorIfNoArrayExpand, return an error when decoding a slice/array that cannot be expanded.
+ // For example, the stream contains an array of 8 items, but you are decoding into a [4]T array,
+ // or you are decoding into a slice of length 4 which is non-addressable (and so cannot be set).
+ ErrorIfNoArrayExpand bool
+
+ // If SignedInteger, use the int64 during schema-less decoding of unsigned values (not uint64).
+ SignedInteger bool
+
+ // MapValueReset controls how we decode into a map value.
+ //
+ // By default, we MAY retrieve the mapping for a key, and then decode into that.
+ // However, especially with big maps, that retrieval may be expensive and unnecessary
+ // if the stream already contains all that is necessary to recreate the value.
+ //
+ // If true, we will never retrieve the previous mapping,
+ // but rather decode into a new value and set that in the map.
+ //
+ // If false, we will retrieve the previous mapping if necessary e.g.
+ // the previous mapping is a pointer, or is a struct or array with pre-set state,
+ // or is an interface.
+ MapValueReset bool
+
+ // SliceElementReset: on decoding a slice, reset the element to a zero value first.
+ //
+ // concern: if the slice already contained some garbage, we will decode into that garbage.
+ SliceElementReset bool
+
+ // InterfaceReset controls how we decode into an interface.
+ //
+ // By default, when we see a field that is an interface{...},
+ // or a map with interface{...} value, we will attempt decoding into the
+ // "contained" value.
+ //
+ // However, this prevents us from reading a string into an interface{}
+ // that formerly contained a number.
+ //
+ // If true, we will decode into a new "blank" value, and set that in the interface.
+ // If false, we will decode into whatever is contained in the interface.
+ InterfaceReset bool
+
+ // InternString controls interning of strings during decoding.
+ //
+ // Some handles, e.g. json, typically will read map keys as strings.
+ // If the set of keys are finite, it may help reduce allocation to
+ // look them up from a map (than to allocate them afresh).
+ //
+ // Note: Handles will be smart when using the intern functionality.
+ // Every string should not be interned.
+ // An excellent use-case for interning is struct field names,
+ // or map keys where key type is string.
+ InternString bool
+
+ // PreferArrayOverSlice controls whether to decode to an array or a slice.
+ //
+ // This only impacts decoding into a nil interface{}.
+ //
+ // Consequently, it has no effect on codecgen.
+ //
+ // *Note*: This only applies if using go1.5 and above,
+ // as it requires reflect.ArrayOf support which was absent before go1.5.
+ PreferArrayOverSlice bool
+
+ // DeleteOnNilMapValue controls how to decode a nil value in the stream.
+ //
+ // If true, we will delete the mapping of the key.
+ // Else, just set the mapping to the zero value of the type.
+ //
+ // Deprecated: This does NOTHING and is left behind for compiling compatibility.
+ // This change is necessitated because 'nil' in a stream now consistently
+ // means the zero value (ie reset the value to its zero state).
+ DeleteOnNilMapValue bool
+
+ // RawToString controls how raw bytes in a stream are decoded into a nil interface{}.
+ // By default, they are decoded as []byte, but can be decoded as string (if configured).
+ RawToString bool
+
+ // ZeroCopy controls whether decoded values of []byte or string type
+ // point into the input []byte parameter passed to a NewDecoderBytes/ResetBytes(...) call.
+ //
+ // To illustrate, if ZeroCopy and decoding from a []byte (not io.Writer),
+ // then a []byte or string in the output result may just be a slice of (point into)
+ // the input bytes.
+ //
+ // This optimization prevents unnecessary copying.
+ //
+ // However, it is made optional, as the caller MUST ensure that the input parameter []byte is
+ // not modified after the Decode() happens, as any changes are mirrored in the decoded result.
+ ZeroCopy bool
+
+ // PreferPointerForStructOrArray controls whether a struct or array
+ // is stored in a nil interface{}, or a pointer to it.
+ //
+ // This mostly impacts when we decode registered extensions.
+ PreferPointerForStructOrArray bool
+}
+
+// ----------------------------------------
+
+func (d *Decoder) rawExt(f *codecFnInfo, rv reflect.Value) {
+ d.d.DecodeExt(rv2i(rv), f.ti.rt, 0, nil)
+}
+
+func (d *Decoder) ext(f *codecFnInfo, rv reflect.Value) {
+ d.d.DecodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn)
+}
+
+func (d *Decoder) selferUnmarshal(f *codecFnInfo, rv reflect.Value) {
+ rv2i(rv).(Selfer).CodecDecodeSelf(d)
+}
+
+func (d *Decoder) binaryUnmarshal(f *codecFnInfo, rv reflect.Value) {
+ bm := rv2i(rv).(encoding.BinaryUnmarshaler)
+ xbs := d.d.DecodeBytes(nil)
+ fnerr := bm.UnmarshalBinary(xbs)
+ d.onerror(fnerr)
+}
+
+func (d *Decoder) textUnmarshal(f *codecFnInfo, rv reflect.Value) {
+ tm := rv2i(rv).(encoding.TextUnmarshaler)
+ fnerr := tm.UnmarshalText(d.d.DecodeStringAsBytes())
+ d.onerror(fnerr)
+}
+
+func (d *Decoder) jsonUnmarshal(f *codecFnInfo, rv reflect.Value) {
+ d.jsonUnmarshalV(rv2i(rv).(jsonUnmarshaler))
+}
+
+func (d *Decoder) jsonUnmarshalV(tm jsonUnmarshaler) {
+ // grab the bytes to be read, as UnmarshalJSON needs the full JSON so as to unmarshal it itself.
+ var bs0 = []byte{}
+ if !d.bytes {
+ bs0 = d.blist.get(256)
+ }
+ bs := d.d.nextValueBytes(bs0)
+ fnerr := tm.UnmarshalJSON(bs)
+ if !d.bytes {
+ d.blist.put(bs)
+ if !byteSliceSameData(bs0, bs) {
+ d.blist.put(bs0)
+ }
+ }
+ d.onerror(fnerr)
+}
+
+func (d *Decoder) kErr(f *codecFnInfo, rv reflect.Value) {
+ d.errorf("no decoding function defined for kind %v", rv.Kind())
+}
+
+func (d *Decoder) raw(f *codecFnInfo, rv reflect.Value) {
+ rvSetBytes(rv, d.rawBytes())
+}
+
+func (d *Decoder) kString(f *codecFnInfo, rv reflect.Value) {
+ rvSetString(rv, d.stringZC(d.d.DecodeStringAsBytes()))
+}
+
+func (d *Decoder) kBool(f *codecFnInfo, rv reflect.Value) {
+ rvSetBool(rv, d.d.DecodeBool())
+}
+
+func (d *Decoder) kTime(f *codecFnInfo, rv reflect.Value) {
+ rvSetTime(rv, d.d.DecodeTime())
+}
+
+func (d *Decoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
+ rvSetFloat32(rv, d.decodeFloat32())
+}
+
+func (d *Decoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
+ rvSetFloat64(rv, d.d.DecodeFloat64())
+}
+
+func (d *Decoder) kComplex64(f *codecFnInfo, rv reflect.Value) {
+ rvSetComplex64(rv, complex(d.decodeFloat32(), 0))
+}
+
+func (d *Decoder) kComplex128(f *codecFnInfo, rv reflect.Value) {
+ rvSetComplex128(rv, complex(d.d.DecodeFloat64(), 0))
+}
+
+func (d *Decoder) kInt(f *codecFnInfo, rv reflect.Value) {
+ rvSetInt(rv, int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize)))
+}
+
+func (d *Decoder) kInt8(f *codecFnInfo, rv reflect.Value) {
+ rvSetInt8(rv, int8(chkOvf.IntV(d.d.DecodeInt64(), 8)))
+}
+
+func (d *Decoder) kInt16(f *codecFnInfo, rv reflect.Value) {
+ rvSetInt16(rv, int16(chkOvf.IntV(d.d.DecodeInt64(), 16)))
+}
+
+func (d *Decoder) kInt32(f *codecFnInfo, rv reflect.Value) {
+ rvSetInt32(rv, int32(chkOvf.IntV(d.d.DecodeInt64(), 32)))
+}
+
+func (d *Decoder) kInt64(f *codecFnInfo, rv reflect.Value) {
+ rvSetInt64(rv, d.d.DecodeInt64())
+}
+
+func (d *Decoder) kUint(f *codecFnInfo, rv reflect.Value) {
+ rvSetUint(rv, uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)))
+}
+
+func (d *Decoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
+ rvSetUintptr(rv, uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)))
+}
+
+func (d *Decoder) kUint8(f *codecFnInfo, rv reflect.Value) {
+ rvSetUint8(rv, uint8(chkOvf.UintV(d.d.DecodeUint64(), 8)))
+}
+
+func (d *Decoder) kUint16(f *codecFnInfo, rv reflect.Value) {
+ rvSetUint16(rv, uint16(chkOvf.UintV(d.d.DecodeUint64(), 16)))
+}
+
+func (d *Decoder) kUint32(f *codecFnInfo, rv reflect.Value) {
+ rvSetUint32(rv, uint32(chkOvf.UintV(d.d.DecodeUint64(), 32)))
+}
+
+func (d *Decoder) kUint64(f *codecFnInfo, rv reflect.Value) {
+ rvSetUint64(rv, d.d.DecodeUint64())
+}
+
+func (d *Decoder) kInterfaceNaked(f *codecFnInfo) (rvn reflect.Value) {
+ // nil interface:
+ // use some hieristics to decode it appropriately
+ // based on the detected next value in the stream.
+ n := d.naked()
+ d.d.DecodeNaked()
+
+ // We cannot decode non-nil stream value into nil interface with methods (e.g. io.Reader).
+ // Howver, it is possible that the user has ways to pass in a type for a given interface
+ // - MapType
+ // - SliceType
+ // - Extensions
+ //
+ // Consequently, we should relax this. Put it behind a const flag for now.
+ if decFailNonEmptyIntf && f.ti.numMeth > 0 {
+ d.errorf("cannot decode non-nil codec value into nil %v (%v methods)", f.ti.rt, f.ti.numMeth)
+ }
+ switch n.v {
+ case valueTypeMap:
+ mtid := d.mtid
+ if mtid == 0 {
+ if d.jsms { // if json, default to a map type with string keys
+ mtid = mapStrIntfTypId // for json performance
+ } else {
+ mtid = mapIntfIntfTypId
+ }
+ }
+ if mtid == mapStrIntfTypId {
+ var v2 map[string]interface{}
+ d.decode(&v2)
+ rvn = rv4iptr(&v2).Elem()
+ } else if mtid == mapIntfIntfTypId {
+ var v2 map[interface{}]interface{}
+ d.decode(&v2)
+ rvn = rv4iptr(&v2).Elem()
+ } else if d.mtr {
+ rvn = reflect.New(d.h.MapType)
+ d.decode(rv2i(rvn))
+ rvn = rvn.Elem()
+ } else {
+ rvn = rvZeroAddrK(d.h.MapType, reflect.Map)
+ d.decodeValue(rvn, nil)
+ }
+ case valueTypeArray:
+ if d.stid == 0 || d.stid == intfSliceTypId {
+ var v2 []interface{}
+ d.decode(&v2)
+ rvn = rv4iptr(&v2).Elem()
+ } else if d.str {
+ rvn = reflect.New(d.h.SliceType)
+ d.decode(rv2i(rvn))
+ rvn = rvn.Elem()
+ } else {
+ rvn = rvZeroAddrK(d.h.SliceType, reflect.Slice)
+ d.decodeValue(rvn, nil)
+ }
+ if reflectArrayOfSupported && d.h.PreferArrayOverSlice {
+ rvn = rvGetArray4Slice(rvn)
+ }
+ case valueTypeExt:
+ tag, bytes := n.u, n.l // calling decode below might taint the values
+ bfn := d.h.getExtForTag(tag)
+ var re = RawExt{Tag: tag}
+ if bytes == nil {
+ // it is one of the InterfaceExt ones: json and cbor.
+ // most likely cbor, as json decoding never reveals valueTypeExt (no tagging support)
+ if bfn == nil {
+ d.decode(&re.Value)
+ rvn = rv4iptr(&re).Elem()
+ } else {
+ if bfn.ext == SelfExt {
+ rvn = rvZeroAddrK(bfn.rt, bfn.rt.Kind())
+ d.decodeValue(rvn, d.h.fnNoExt(bfn.rt))
+ } else {
+ rvn = reflect.New(bfn.rt)
+ d.interfaceExtConvertAndDecode(rv2i(rvn), bfn.ext)
+ rvn = rvn.Elem()
+ }
+ }
+ } else {
+ // one of the BytesExt ones: binc, msgpack, simple
+ if bfn == nil {
+ re.setData(bytes, false)
+ rvn = rv4iptr(&re).Elem()
+ } else {
+ rvn = reflect.New(bfn.rt)
+ if bfn.ext == SelfExt {
+ d.sideDecode(rv2i(rvn), bfn.rt, bytes)
+ } else {
+ bfn.ext.ReadExt(rv2i(rvn), bytes)
+ }
+ rvn = rvn.Elem()
+ }
+ }
+ // if struct/array, directly store pointer into the interface
+ if d.h.PreferPointerForStructOrArray && rvn.CanAddr() {
+ if rk := rvn.Kind(); rk == reflect.Array || rk == reflect.Struct {
+ rvn = rvn.Addr()
+ }
+ }
+ case valueTypeNil:
+ // rvn = reflect.Zero(f.ti.rt)
+ // no-op
+ case valueTypeInt:
+ rvn = n.ri()
+ case valueTypeUint:
+ rvn = n.ru()
+ case valueTypeFloat:
+ rvn = n.rf()
+ case valueTypeBool:
+ rvn = n.rb()
+ case valueTypeString, valueTypeSymbol:
+ rvn = n.rs()
+ case valueTypeBytes:
+ rvn = n.rl()
+ case valueTypeTime:
+ rvn = n.rt()
+ default:
+ halt.errorf("kInterfaceNaked: unexpected valueType: %d", n.v)
+ }
+ return
+}
+
+func (d *Decoder) kInterface(f *codecFnInfo, rv reflect.Value) {
+ // Note: A consequence of how kInterface works, is that
+ // if an interface already contains something, we try
+ // to decode into what was there before.
+ // We do not replace with a generic value (as got from decodeNaked).
+ //
+ // every interface passed here MUST be settable.
+ //
+ // ensure you call rvSetIntf(...) before returning.
+
+ isnilrv := rvIsNil(rv)
+
+ var rvn reflect.Value
+
+ if d.h.InterfaceReset {
+ // check if mapping to a type: if so, initialize it and move on
+ rvn = d.h.intf2impl(f.ti.rtid)
+ if !rvn.IsValid() {
+ rvn = d.kInterfaceNaked(f)
+ if rvn.IsValid() {
+ rvSetIntf(rv, rvn)
+ } else if !isnilrv {
+ decSetNonNilRV2Zero4Intf(rv)
+ }
+ return
+ }
+ } else if isnilrv {
+ // check if mapping to a type: if so, initialize it and move on
+ rvn = d.h.intf2impl(f.ti.rtid)
+ if !rvn.IsValid() {
+ rvn = d.kInterfaceNaked(f)
+ if rvn.IsValid() {
+ rvSetIntf(rv, rvn)
+ }
+ return
+ }
+ } else {
+ // now we have a non-nil interface value, meaning it contains a type
+ rvn = rv.Elem()
+ }
+
+ // rvn is now a non-interface type
+
+ canDecode, _ := isDecodeable(rvn)
+
+ // Note: interface{} is settable, but underlying type may not be.
+ // Consequently, we MAY have to allocate a value (containing the underlying value),
+ // decode into it, and reset the interface to that new value.
+
+ if !canDecode {
+ rvn2 := d.oneShotAddrRV(rvType(rvn), rvn.Kind())
+ rvSetDirect(rvn2, rvn)
+ rvn = rvn2
+ }
+
+ d.decodeValue(rvn, nil)
+ rvSetIntf(rv, rvn)
+}
+
+func decStructFieldKeyNotString(dd decDriver, keyType valueType, b *[decScratchByteArrayLen]byte) (rvkencname []byte) {
+ if keyType == valueTypeInt {
+ rvkencname = strconv.AppendInt(b[:0], dd.DecodeInt64(), 10)
+ } else if keyType == valueTypeUint {
+ rvkencname = strconv.AppendUint(b[:0], dd.DecodeUint64(), 10)
+ } else if keyType == valueTypeFloat {
+ rvkencname = strconv.AppendFloat(b[:0], dd.DecodeFloat64(), 'f', -1, 64)
+ } else {
+ halt.errorf("invalid struct key type: %v", keyType)
+ }
+ return
+}
+
+func (d *Decoder) kStruct(f *codecFnInfo, rv reflect.Value) {
+ ctyp := d.d.ContainerType()
+ ti := f.ti
+ var mf MissingFielder
+ if ti.flagMissingFielder {
+ mf = rv2i(rv).(MissingFielder)
+ } else if ti.flagMissingFielderPtr {
+ mf = rv2i(rvAddr(rv, ti.ptr)).(MissingFielder)
+ }
+ if ctyp == valueTypeMap {
+ containerLen := d.mapStart(d.d.ReadMapStart())
+ if containerLen == 0 {
+ d.mapEnd()
+ return
+ }
+ hasLen := containerLen >= 0
+ var name2 []byte
+ if mf != nil {
+ var namearr2 [16]byte
+ name2 = namearr2[:0]
+ }
+ var rvkencname []byte
+ for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
+ d.mapElemKey()
+ if ti.keyType == valueTypeString {
+ rvkencname = d.d.DecodeStringAsBytes()
+ } else {
+ rvkencname = decStructFieldKeyNotString(d.d, ti.keyType, &d.b)
+ }
+ d.mapElemValue()
+ if si := ti.siForEncName(rvkencname); si != nil {
+ d.decodeValue(si.path.fieldAlloc(rv), nil)
+ } else if mf != nil {
+ // store rvkencname in new []byte, as it previously shares Decoder.b, which is used in decode
+ name2 = append(name2[:0], rvkencname...)
+ var f interface{}
+ d.decode(&f)
+ if !mf.CodecMissingField(name2, f) && d.h.ErrorIfNoField {
+ d.errorf("no matching struct field when decoding stream map with key: %s ", stringView(name2))
+ }
+ } else {
+ d.structFieldNotFound(-1, stringView(rvkencname))
+ }
+ }
+ d.mapEnd()
+ } else if ctyp == valueTypeArray {
+ containerLen := d.arrayStart(d.d.ReadArrayStart())
+ if containerLen == 0 {
+ d.arrayEnd()
+ return
+ }
+ // Not much gain from doing it two ways for array.
+ // Arrays are not used as much for structs.
+ hasLen := containerLen >= 0
+ var checkbreak bool
+ tisfi := ti.sfi.source()
+ for j, si := range tisfi {
+ if hasLen {
+ if j == containerLen {
+ break
+ }
+ } else if d.checkBreak() {
+ checkbreak = true
+ break
+ }
+ d.arrayElem()
+ d.decodeValue(si.path.fieldAlloc(rv), nil)
+ }
+ var proceed bool
+ if hasLen {
+ proceed = containerLen > len(tisfi)
+ } else {
+ proceed = !checkbreak
+ }
+ // if (hasLen && containerLen > len(tisfi)) || (!hasLen && !checkbreak) {
+ if proceed {
+ // read remaining values and throw away
+ for j := len(tisfi); ; j++ {
+ if !d.containerNext(j, containerLen, hasLen) {
+ break
+ }
+ d.arrayElem()
+ d.structFieldNotFound(j, "")
+ }
+ }
+ d.arrayEnd()
+ } else {
+ d.onerror(errNeedMapOrArrayDecodeToStruct)
+ }
+}
+
+func (d *Decoder) kSlice(f *codecFnInfo, rv reflect.Value) {
+ // A slice can be set from a map or array in stream.
+ // This way, the order can be kept (as order is lost with map).
+
+ // Note: rv is a slice type here - guaranteed
+
+ ti := f.ti
+ rvCanset := rv.CanSet()
+
+ ctyp := d.d.ContainerType()
+ if ctyp == valueTypeBytes || ctyp == valueTypeString {
+ // you can only decode bytes or string in the stream into a slice or array of bytes
+ if !(ti.rtid == uint8SliceTypId || ti.elemkind == uint8(reflect.Uint8)) {
+ d.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", ti.rt)
+ }
+ rvbs := rvGetBytes(rv)
+ if !rvCanset {
+ // not addressable byte slice, so do not decode into it past the length
+ rvbs = rvbs[:len(rvbs):len(rvbs)]
+ }
+ bs2 := d.decodeBytesInto(rvbs)
+ // if !(len(bs2) == len(rvbs) && byteSliceSameData(rvbs, bs2)) {
+ if !(len(bs2) > 0 && len(bs2) == len(rvbs) && &bs2[0] == &rvbs[0]) {
+ if rvCanset {
+ rvSetBytes(rv, bs2)
+ } else if len(rvbs) > 0 && len(bs2) > 0 {
+ copy(rvbs, bs2)
+ }
+ }
+ return
+ }
+
+ slh, containerLenS := d.decSliceHelperStart() // only expects valueType(Array|Map) - never Nil
+
+ // an array can never return a nil slice. so no need to check f.array here.
+ if containerLenS == 0 {
+ if rvCanset {
+ if rvIsNil(rv) {
+ rvSetDirect(rv, rvSliceZeroCap(ti.rt))
+ } else {
+ rvSetSliceLen(rv, 0)
+ }
+ }
+ slh.End()
+ return
+ }
+
+ rtelem0Mut := !scalarBitset.isset(ti.elemkind)
+ rtelem := ti.elem
+
+ for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() {
+ rtelem = rtelem.Elem()
+ }
+
+ var fn *codecFn
+
+ var rvChanged bool
+
+ var rv0 = rv
+ var rv9 reflect.Value
+
+ rvlen := rvLenSlice(rv)
+ rvcap := rvCapSlice(rv)
+ hasLen := containerLenS > 0
+ if hasLen {
+ if containerLenS > rvcap {
+ oldRvlenGtZero := rvlen > 0
+ rvlen1 := decInferLen(containerLenS, d.h.MaxInitLen, int(ti.elemsize))
+ if rvlen1 == rvlen {
+ } else if rvlen1 <= rvcap {
+ if rvCanset {
+ rvlen = rvlen1
+ rvSetSliceLen(rv, rvlen)
+ }
+ } else if rvCanset { // rvlen1 > rvcap
+ rvlen = rvlen1
+ rv, rvCanset = rvMakeSlice(rv, f.ti, rvlen, rvlen)
+ rvcap = rvlen
+ rvChanged = !rvCanset
+ } else { // rvlen1 > rvcap && !canSet
+ d.errorf("cannot decode into non-settable slice")
+ }
+ if rvChanged && oldRvlenGtZero && rtelem0Mut {
+ rvCopySlice(rv, rv0, rtelem) // only copy up to length NOT cap i.e. rv0.Slice(0, rvcap)
+ }
+ } else if containerLenS != rvlen {
+ if rvCanset {
+ rvlen = containerLenS
+ rvSetSliceLen(rv, rvlen)
+ }
+ }
+ }
+
+ // consider creating new element once, and just decoding into it.
+ var elemReset = d.h.SliceElementReset
+
+ var j int
+
+ for ; d.containerNext(j, containerLenS, hasLen); j++ {
+ if j == 0 {
+ if rvIsNil(rv) { // means hasLen = false
+ if rvCanset {
+ rvlen = decInferLen(containerLenS, d.h.MaxInitLen, int(ti.elemsize))
+ rv, rvCanset = rvMakeSlice(rv, f.ti, rvlen, rvlen)
+ rvcap = rvlen
+ rvChanged = !rvCanset
+ } else {
+ d.errorf("cannot decode into non-settable slice")
+ }
+ }
+ if fn == nil {
+ fn = d.h.fn(rtelem)
+ }
+ }
+ // if indefinite, etc, then expand the slice if necessary
+ if j >= rvlen {
+ slh.ElemContainerState(j)
+
+ // expand the slice up to the cap.
+ // Note that we did, so we have to reset it later.
+
+ if rvlen < rvcap {
+ rvlen = rvcap
+ if rvCanset {
+ rvSetSliceLen(rv, rvlen)
+ } else if rvChanged {
+ rv = rvSlice(rv, rvlen)
+ } else {
+ d.onerror(errExpandSliceCannotChange)
+ }
+ } else {
+ if !(rvCanset || rvChanged) {
+ d.onerror(errExpandSliceCannotChange)
+ }
+ rv, rvcap, rvCanset = rvGrowSlice(rv, f.ti, rvcap, 1)
+ rvlen = rvcap
+ rvChanged = !rvCanset
+ }
+ } else {
+ slh.ElemContainerState(j)
+ }
+ rv9 = rvSliceIndex(rv, j, f.ti)
+ if elemReset {
+ rvSetZero(rv9)
+ }
+ d.decodeValue(rv9, fn)
+ }
+ if j < rvlen {
+ if rvCanset {
+ rvSetSliceLen(rv, j)
+ } else if rvChanged {
+ rv = rvSlice(rv, j)
+ }
+ // rvlen = j
+ } else if j == 0 && rvIsNil(rv) {
+ if rvCanset {
+ rv = rvSliceZeroCap(ti.rt)
+ rvCanset = false
+ rvChanged = true
+ }
+ }
+ slh.End()
+
+ if rvChanged { // infers rvCanset=true, so it can be reset
+ rvSetDirect(rv0, rv)
+ }
+}
+
+func (d *Decoder) kArray(f *codecFnInfo, rv reflect.Value) {
+ // An array can be set from a map or array in stream.
+
+ ctyp := d.d.ContainerType()
+ if handleBytesWithinKArray && (ctyp == valueTypeBytes || ctyp == valueTypeString) {
+ // you can only decode bytes or string in the stream into a slice or array of bytes
+ if f.ti.elemkind != uint8(reflect.Uint8) {
+ d.errorf("bytes/string in stream can decode into array of bytes, but not %v", f.ti.rt)
+ }
+ rvbs := rvGetArrayBytes(rv, nil)
+ bs2 := d.decodeBytesInto(rvbs)
+ if !byteSliceSameData(rvbs, bs2) && len(rvbs) > 0 && len(bs2) > 0 {
+ copy(rvbs, bs2)
+ }
+ return
+ }
+
+ slh, containerLenS := d.decSliceHelperStart() // only expects valueType(Array|Map) - never Nil
+
+ // an array can never return a nil slice. so no need to check f.array here.
+ if containerLenS == 0 {
+ slh.End()
+ return
+ }
+
+ rtelem := f.ti.elem
+ for k := reflect.Kind(f.ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() {
+ rtelem = rtelem.Elem()
+ }
+
+ var fn *codecFn
+
+ var rv9 reflect.Value
+
+ rvlen := rv.Len() // same as cap
+ hasLen := containerLenS > 0
+ if hasLen && containerLenS > rvlen {
+ d.errorf("cannot decode into array with length: %v, less than container length: %v", rvlen, containerLenS)
+ }
+
+ // consider creating new element once, and just decoding into it.
+ var elemReset = d.h.SliceElementReset
+
+ for j := 0; d.containerNext(j, containerLenS, hasLen); j++ {
+ // note that you cannot expand the array if indefinite and we go past array length
+ if j >= rvlen {
+ slh.arrayCannotExpand(hasLen, rvlen, j, containerLenS)
+ return
+ }
+
+ slh.ElemContainerState(j)
+ rv9 = rvArrayIndex(rv, j, f.ti)
+ if elemReset {
+ rvSetZero(rv9)
+ }
+
+ if fn == nil {
+ fn = d.h.fn(rtelem)
+ }
+ d.decodeValue(rv9, fn)
+ }
+ slh.End()
+}
+
+func (d *Decoder) kChan(f *codecFnInfo, rv reflect.Value) {
+ // A slice can be set from a map or array in stream.
+ // This way, the order can be kept (as order is lost with map).
+
+ ti := f.ti
+ if ti.chandir&uint8(reflect.SendDir) == 0 {
+ d.errorf("receive-only channel cannot be decoded")
+ }
+ ctyp := d.d.ContainerType()
+ if ctyp == valueTypeBytes || ctyp == valueTypeString {
+ // you can only decode bytes or string in the stream into a slice or array of bytes
+ if !(ti.rtid == uint8SliceTypId || ti.elemkind == uint8(reflect.Uint8)) {
+ d.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", ti.rt)
+ }
+ bs2 := d.d.DecodeBytes(nil)
+ irv := rv2i(rv)
+ ch, ok := irv.(chan<- byte)
+ if !ok {
+ ch = irv.(chan byte)
+ }
+ for _, b := range bs2 {
+ ch <- b
+ }
+ return
+ }
+
+ var rvCanset = rv.CanSet()
+
+ // only expects valueType(Array|Map - nil handled above)
+ slh, containerLenS := d.decSliceHelperStart()
+
+ // an array can never return a nil slice. so no need to check f.array here.
+ if containerLenS == 0 {
+ if rvCanset && rvIsNil(rv) {
+ rvSetDirect(rv, reflect.MakeChan(ti.rt, 0))
+ }
+ slh.End()
+ return
+ }
+
+ rtelem := ti.elem
+ useTransient := decUseTransient && ti.elemkind != byte(reflect.Ptr) && ti.tielem.flagCanTransient
+
+ for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() {
+ rtelem = rtelem.Elem()
+ }
+
+ var fn *codecFn
+
+ var rvChanged bool
+ var rv0 = rv
+ var rv9 reflect.Value
+
+ var rvlen int // = rv.Len()
+ hasLen := containerLenS > 0
+
+ for j := 0; d.containerNext(j, containerLenS, hasLen); j++ {
+ if j == 0 {
+ if rvIsNil(rv) {
+ if hasLen {
+ rvlen = decInferLen(containerLenS, d.h.MaxInitLen, int(ti.elemsize))
+ } else {
+ rvlen = decDefChanCap
+ }
+ if rvCanset {
+ rv = reflect.MakeChan(ti.rt, rvlen)
+ rvChanged = true
+ } else {
+ d.errorf("cannot decode into non-settable chan")
+ }
+ }
+ if fn == nil {
+ fn = d.h.fn(rtelem)
+ }
+ }
+ slh.ElemContainerState(j)
+ if rv9.IsValid() {
+ rvSetZero(rv9)
+ } else if decUseTransient && useTransient {
+ rv9 = d.perType.TransientAddrK(ti.elem, reflect.Kind(ti.elemkind))
+ } else {
+ rv9 = rvZeroAddrK(ti.elem, reflect.Kind(ti.elemkind))
+ }
+ if !d.d.TryNil() {
+ d.decodeValueNoCheckNil(rv9, fn)
+ }
+ rv.Send(rv9)
+ }
+ slh.End()
+
+ if rvChanged { // infers rvCanset=true, so it can be reset
+ rvSetDirect(rv0, rv)
+ }
+
+}
+
+func (d *Decoder) kMap(f *codecFnInfo, rv reflect.Value) {
+ containerLen := d.mapStart(d.d.ReadMapStart())
+ ti := f.ti
+ if rvIsNil(rv) {
+ rvlen := decInferLen(containerLen, d.h.MaxInitLen, int(ti.keysize+ti.elemsize))
+ rvSetDirect(rv, makeMapReflect(ti.rt, rvlen))
+ }
+
+ if containerLen == 0 {
+ d.mapEnd()
+ return
+ }
+
+ ktype, vtype := ti.key, ti.elem
+ ktypeId := rt2id(ktype)
+ vtypeKind := reflect.Kind(ti.elemkind)
+ ktypeKind := reflect.Kind(ti.keykind)
+ kfast := mapKeyFastKindFor(ktypeKind)
+ visindirect := mapStoresElemIndirect(uintptr(ti.elemsize))
+ visref := refBitset.isset(ti.elemkind)
+
+ vtypePtr := vtypeKind == reflect.Ptr
+ ktypePtr := ktypeKind == reflect.Ptr
+
+ vTransient := decUseTransient && !vtypePtr && ti.tielem.flagCanTransient
+ kTransient := decUseTransient && !ktypePtr && ti.tikey.flagCanTransient
+
+ var vtypeElem reflect.Type
+
+ var keyFn, valFn *codecFn
+ var ktypeLo, vtypeLo = ktype, vtype
+
+ if ktypeKind == reflect.Ptr {
+ for ktypeLo = ktype.Elem(); ktypeLo.Kind() == reflect.Ptr; ktypeLo = ktypeLo.Elem() {
+ }
+ }
+
+ if vtypePtr {
+ vtypeElem = vtype.Elem()
+ for vtypeLo = vtypeElem; vtypeLo.Kind() == reflect.Ptr; vtypeLo = vtypeLo.Elem() {
+ }
+ }
+
+ rvkMut := !scalarBitset.isset(ti.keykind) // if ktype is immutable, then re-use the same rvk.
+ rvvMut := !scalarBitset.isset(ti.elemkind)
+ rvvCanNil := isnilBitset.isset(ti.elemkind)
+
+ // rvk: key
+ // rvkn: if non-mutable, on each iteration of loop, set rvk to this
+ // rvv: value
+ // rvvn: if non-mutable, on each iteration of loop, set rvv to this
+ // if mutable, may be used as a temporary value for local-scoped operations
+ // rvva: if mutable, used as transient value for use for key lookup
+ // rvvz: zero value of map value type, used to do a map set when nil is found in stream
+ var rvk, rvkn, rvv, rvvn, rvva, rvvz reflect.Value
+
+ // we do a doMapGet if kind is mutable, and InterfaceReset=true if interface
+ var doMapGet, doMapSet bool
+
+ if !d.h.MapValueReset {
+ if rvvMut && (vtypeKind != reflect.Interface || !d.h.InterfaceReset) {
+ doMapGet = true
+ rvva = mapAddrLoopvarRV(vtype, vtypeKind)
+ }
+ }
+
+ ktypeIsString := ktypeId == stringTypId
+ ktypeIsIntf := ktypeId == intfTypId
+
+ hasLen := containerLen > 0
+
+ // kstrbs is used locally for the key bytes, so we can reduce allocation.
+ // When we read keys, we copy to this local bytes array, and use a stringView for lookup.
+ // We only convert it into a true string if we have to do a set on the map.
+
+ // Since kstr2bs will usually escape to the heap, declaring a [64]byte array may be wasteful.
+ // It is only valuable if we are sure that it is declared on the stack.
+ // var kstrarr [64]byte // most keys are less than 32 bytes, and even more less than 64
+ // var kstrbs = kstrarr[:0]
+ var kstrbs []byte
+ var kstr2bs []byte
+ var s string
+
+ var callFnRvk bool
+
+ fnRvk2 := func() (s string) {
+ callFnRvk = false
+ if len(kstr2bs) < 2 {
+ return string(kstr2bs)
+ }
+ return d.mapKeyString(&callFnRvk, &kstrbs, &kstr2bs)
+ }
+
+ // Use a possibly transient (map) value (and key), to reduce allocation
+
+ for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
+ callFnRvk = false
+ if j == 0 {
+ // if vtypekind is a scalar and thus value will be decoded using TransientAddrK,
+ // then it is ok to use TransientAddr2K for the map key.
+ if decUseTransient && vTransient && kTransient {
+ rvk = d.perType.TransientAddr2K(ktype, ktypeKind)
+ } else {
+ rvk = rvZeroAddrK(ktype, ktypeKind)
+ }
+ if !rvkMut {
+ rvkn = rvk
+ }
+ if !rvvMut {
+ if decUseTransient && vTransient {
+ rvvn = d.perType.TransientAddrK(vtype, vtypeKind)
+ } else {
+ rvvn = rvZeroAddrK(vtype, vtypeKind)
+ }
+ }
+ if !ktypeIsString && keyFn == nil {
+ keyFn = d.h.fn(ktypeLo)
+ }
+ if valFn == nil {
+ valFn = d.h.fn(vtypeLo)
+ }
+ } else if rvkMut {
+ rvSetZero(rvk)
+ } else {
+ rvk = rvkn
+ }
+
+ d.mapElemKey()
+ if ktypeIsString {
+ kstr2bs = d.d.DecodeStringAsBytes()
+ rvSetString(rvk, fnRvk2())
+ } else {
+ d.decByteState = decByteStateNone
+ d.decodeValue(rvk, keyFn)
+ // special case if interface wrapping a byte slice
+ if ktypeIsIntf {
+ if rvk2 := rvk.Elem(); rvk2.IsValid() && rvType(rvk2) == uint8SliceTyp {
+ kstr2bs = rvGetBytes(rvk2)
+ rvSetIntf(rvk, rv4istr(fnRvk2()))
+ }
+ // NOTE: consider failing early if map/slice/func
+ }
+ }
+
+ d.mapElemValue()
+
+ if d.d.TryNil() {
+ // since a map, we have to set zero value if needed
+ if !rvvz.IsValid() {
+ rvvz = rvZeroK(vtype, vtypeKind)
+ }
+ if callFnRvk {
+ s = d.string(kstr2bs)
+ if ktypeIsString {
+ rvSetString(rvk, s)
+ } else { // ktypeIsIntf
+ rvSetIntf(rvk, rv4istr(s))
+ }
+ }
+ mapSet(rv, rvk, rvvz, kfast, visindirect, visref)
+ continue
+ }
+
+ // there is non-nil content in the stream to decode ...
+ // consequently, it's ok to just directly create new value to the pointer (if vtypePtr)
+
+ // set doMapSet to false iff u do a get, and the return value is a non-nil pointer
+ doMapSet = true
+
+ if !rvvMut {
+ rvv = rvvn
+ } else if !doMapGet {
+ goto NEW_RVV
+ } else {
+ rvv = mapGet(rv, rvk, rvva, kfast, visindirect, visref)
+ if !rvv.IsValid() || (rvvCanNil && rvIsNil(rvv)) {
+ goto NEW_RVV
+ }
+ switch vtypeKind {
+ case reflect.Ptr, reflect.Map: // ok to decode directly into map
+ doMapSet = false
+ case reflect.Interface:
+ // if an interface{}, just decode into it iff a non-nil ptr/map, else allocate afresh
+ rvvn = rvv.Elem()
+ if k := rvvn.Kind(); (k == reflect.Ptr || k == reflect.Map) && !rvIsNil(rvvn) {
+ d.decodeValueNoCheckNil(rvvn, nil) // valFn is incorrect here
+ continue
+ }
+ // make addressable (so we can set the interface)
+ rvvn = rvZeroAddrK(vtype, vtypeKind)
+ rvSetIntf(rvvn, rvv)
+ rvv = rvvn
+ default:
+ // make addressable (so you can set the slice/array elements, etc)
+ if decUseTransient && vTransient {
+ rvvn = d.perType.TransientAddrK(vtype, vtypeKind)
+ } else {
+ rvvn = rvZeroAddrK(vtype, vtypeKind)
+ }
+ rvSetDirect(rvvn, rvv)
+ rvv = rvvn
+ }
+ }
+ goto DECODE_VALUE_NO_CHECK_NIL
+
+ NEW_RVV:
+ if vtypePtr {
+ rvv = reflect.New(vtypeElem) // non-nil in stream, so allocate value
+ } else if decUseTransient && vTransient {
+ rvv = d.perType.TransientAddrK(vtype, vtypeKind)
+ } else {
+ rvv = rvZeroAddrK(vtype, vtypeKind)
+ }
+
+ DECODE_VALUE_NO_CHECK_NIL:
+ d.decodeValueNoCheckNil(rvv, valFn)
+
+ if doMapSet {
+ if callFnRvk {
+ s = d.string(kstr2bs)
+ if ktypeIsString {
+ rvSetString(rvk, s)
+ } else { // ktypeIsIntf
+ rvSetIntf(rvk, rv4istr(s))
+ }
+ }
+ mapSet(rv, rvk, rvv, kfast, visindirect, visref)
+ }
+ }
+
+ d.mapEnd()
+}
+
+// Decoder reads and decodes an object from an input stream in a supported format.
+//
+// Decoder is NOT safe for concurrent use i.e. a Decoder cannot be used
+// concurrently in multiple goroutines.
+//
+// However, as Decoder could be allocation heavy to initialize, a Reset method is provided
+// so its state can be reused to decode new input streams repeatedly.
+// This is the idiomatic way to use.
+type Decoder struct {
+ panicHdl
+
+ d decDriver
+
+ // cache the mapTypeId and sliceTypeId for faster comparisons
+ mtid uintptr
+ stid uintptr
+
+ h *BasicHandle
+
+ blist bytesFreelist
+
+ // ---- cpu cache line boundary?
+ decRd
+
+ // ---- cpu cache line boundary?
+ n fauxUnion
+
+ hh Handle
+ err error
+
+ perType decPerType
+
+ // used for interning strings
+ is internerMap
+
+ // ---- cpu cache line boundary?
+ // ---- writable fields during execution --- *try* to keep in sep cache line
+ maxdepth int16
+ depth int16
+
+ // Extensions can call Decode() within a current Decode() call.
+ // We need to know when the top level Decode() call returns,
+ // so we can decide whether to Release() or not.
+ calls uint16 // what depth in mustDecode are we in now.
+
+ c containerState
+
+ decByteState
+
+ // b is an always-available scratch buffer used by Decoder and decDrivers.
+ // By being always-available, it can be used for one-off things without
+ // having to get from freelist, use, and return back to freelist.
+ b [decScratchByteArrayLen]byte
+}
+
+// NewDecoder returns a Decoder for decoding a stream of bytes from an io.Reader.
+//
+// For efficiency, Users are encouraged to configure ReaderBufferSize on the handle
+// OR pass in a memory buffered reader (eg bufio.Reader, bytes.Buffer).
+func NewDecoder(r io.Reader, h Handle) *Decoder {
+ d := h.newDecDriver().decoder()
+ if r != nil {
+ d.Reset(r)
+ }
+ return d
+}
+
+// NewDecoderBytes returns a Decoder which efficiently decodes directly
+// from a byte slice with zero copying.
+func NewDecoderBytes(in []byte, h Handle) *Decoder {
+ d := h.newDecDriver().decoder()
+ if in != nil {
+ d.ResetBytes(in)
+ }
+ return d
+}
+
+// NewDecoderString returns a Decoder which efficiently decodes directly
+// from a string with zero copying.
+//
+// It is a convenience function that calls NewDecoderBytes with a
+// []byte view into the string.
+//
+// This can be an efficient zero-copy if using default mode i.e. without codec.safe tag.
+func NewDecoderString(s string, h Handle) *Decoder {
+ return NewDecoderBytes(bytesView(s), h)
+}
+
+func (d *Decoder) r() *decRd {
+ return &d.decRd
+}
+
+func (d *Decoder) init(h Handle) {
+ initHandle(h)
+ d.bytes = true
+ d.err = errDecoderNotInitialized
+ d.h = h.getBasicHandle()
+ d.hh = h
+ d.be = h.isBinary()
+ if d.h.InternString && d.is == nil {
+ d.is.init()
+ }
+ // NOTE: do not initialize d.n here. It is lazily initialized in d.naked()
+}
+
+func (d *Decoder) resetCommon() {
+ d.d.reset()
+ d.err = nil
+ d.c = 0
+ d.decByteState = decByteStateNone
+ d.depth = 0
+ d.calls = 0
+ // reset all things which were cached from the Handle, but could change
+ d.maxdepth = decDefMaxDepth
+ if d.h.MaxDepth > 0 {
+ d.maxdepth = d.h.MaxDepth
+ }
+ d.mtid = 0
+ d.stid = 0
+ d.mtr = false
+ d.str = false
+ if d.h.MapType != nil {
+ d.mtid = rt2id(d.h.MapType)
+ d.mtr = fastpathAvIndex(d.mtid) != -1
+ }
+ if d.h.SliceType != nil {
+ d.stid = rt2id(d.h.SliceType)
+ d.str = fastpathAvIndex(d.stid) != -1
+ }
+}
+
+// Reset the Decoder with a new Reader to decode from,
+// clearing all state from last run(s).
+func (d *Decoder) Reset(r io.Reader) {
+ if r == nil {
+ r = &eofReader
+ }
+ d.bytes = false
+ if d.h.ReaderBufferSize > 0 {
+ if d.bi == nil {
+ d.bi = new(bufioDecReader)
+ }
+ d.bi.reset(r, d.h.ReaderBufferSize, &d.blist)
+ d.bufio = true
+ d.decReader = d.bi
+ } else {
+ if d.ri == nil {
+ d.ri = new(ioDecReader)
+ }
+ d.ri.reset(r, &d.blist)
+ d.bufio = false
+ d.decReader = d.ri
+ }
+ d.resetCommon()
+}
+
+// ResetBytes resets the Decoder with a new []byte to decode from,
+// clearing all state from last run(s).
+func (d *Decoder) ResetBytes(in []byte) {
+ if in == nil {
+ in = []byte{}
+ }
+ d.bufio = false
+ d.bytes = true
+ d.decReader = &d.rb
+ d.rb.reset(in)
+ d.resetCommon()
+}
+
+// ResetString resets the Decoder with a new string to decode from,
+// clearing all state from last run(s).
+//
+// It is a convenience function that calls ResetBytes with a
+// []byte view into the string.
+//
+// This can be an efficient zero-copy if using default mode i.e. without codec.safe tag.
+func (d *Decoder) ResetString(s string) {
+ d.ResetBytes(bytesView(s))
+}
+
+func (d *Decoder) naked() *fauxUnion {
+ return &d.n
+}
+
+// Decode decodes the stream from reader and stores the result in the
+// value pointed to by v. v cannot be a nil pointer. v can also be
+// a reflect.Value of a pointer.
+//
+// Note that a pointer to a nil interface is not a nil pointer.
+// If you do not know what type of stream it is, pass in a pointer to a nil interface.
+// We will decode and store a value in that nil interface.
+//
+// Sample usages:
+// // Decoding into a non-nil typed value
+// var f float32
+// err = codec.NewDecoder(r, handle).Decode(&f)
+//
+// // Decoding into nil interface
+// var v interface{}
+// dec := codec.NewDecoder(r, handle)
+// err = dec.Decode(&v)
+//
+// When decoding into a nil interface{}, we will decode into an appropriate value based
+// on the contents of the stream:
+// - Numbers are decoded as float64, int64 or uint64.
+// - Other values are decoded appropriately depending on the type:
+// bool, string, []byte, time.Time, etc
+// - Extensions are decoded as RawExt (if no ext function registered for the tag)
+// Configurations exist on the Handle to override defaults
+// (e.g. for MapType, SliceType and how to decode raw bytes).
+//
+// When decoding into a non-nil interface{} value, the mode of encoding is based on the
+// type of the value. When a value is seen:
+// - If an extension is registered for it, call that extension function
+// - If it implements BinaryUnmarshaler, call its UnmarshalBinary(data []byte) error
+// - Else decode it based on its reflect.Kind
+//
+// There are some special rules when decoding into containers (slice/array/map/struct).
+// Decode will typically use the stream contents to UPDATE the container i.e. the values
+// in these containers will not be zero'ed before decoding.
+// - A map can be decoded from a stream map, by updating matching keys.
+// - A slice can be decoded from a stream array,
+// by updating the first n elements, where n is length of the stream.
+// - A slice can be decoded from a stream map, by decoding as if
+// it contains a sequence of key-value pairs.
+// - A struct can be decoded from a stream map, by updating matching fields.
+// - A struct can be decoded from a stream array,
+// by updating fields as they occur in the struct (by index).
+//
+// This in-place update maintains consistency in the decoding philosophy (i.e. we ALWAYS update
+// in place by default). However, the consequence of this is that values in slices or maps
+// which are not zero'ed before hand, will have part of the prior values in place after decode
+// if the stream doesn't contain an update for those parts.
+//
+// This in-place update can be disabled by configuring the MapValueReset and SliceElementReset
+// decode options available on every handle.
+//
+// Furthermore, when decoding a stream map or array with length of 0 into a nil map or slice,
+// we reset the destination map or slice to a zero-length value.
+//
+// However, when decoding a stream nil, we reset the destination container
+// to its "zero" value (e.g. nil for slice/map, etc).
+//
+// Note: we allow nil values in the stream anywhere except for map keys.
+// A nil value in the encoded stream where a map key is expected is treated as an error.
+func (d *Decoder) Decode(v interface{}) (err error) {
+ // tried to use closure, as runtime optimizes defer with no params.
+ // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
+ // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
+ if !debugging {
+ defer func() {
+ if x := recover(); x != nil {
+ panicValToErr(d, x, &d.err)
+ err = d.err
+ }
+ }()
+ }
+
+ d.MustDecode(v)
+ return
+}
+
+// MustDecode is like Decode, but panics if unable to Decode.
+//
+// Note: This provides insight to the code location that triggered the error.
+func (d *Decoder) MustDecode(v interface{}) {
+ halt.onerror(d.err)
+ if d.hh == nil {
+ halt.onerror(errNoFormatHandle)
+ }
+
+ // Top-level: v is a pointer and not nil.
+ d.calls++
+ d.decode(v)
+ d.calls--
+}
+
+// Release releases shared (pooled) resources.
+//
+// It is important to call Release() when done with a Decoder, so those resources
+// are released instantly for use by subsequently created Decoders.
+//
+// By default, Release() is automatically called unless the option ExplicitRelease is set.
+//
+// Deprecated: Release is a no-op as pooled resources are not used with an Decoder.
+// This method is kept for compatibility reasons only.
+func (d *Decoder) Release() {
+}
+
+func (d *Decoder) swallow() {
+ d.d.nextValueBytes(nil)
+}
+
+func (d *Decoder) swallowErr() (err error) {
+ if !debugging {
+ defer func() {
+ if x := recover(); x != nil {
+ panicValToErr(d, x, &err)
+ }
+ }()
+ }
+ d.swallow()
+ return
+}
+
+func setZero(iv interface{}) {
+ if iv == nil {
+ return
+ }
+ rv, ok := isNil(iv)
+ if ok {
+ return
+ }
+ // var canDecode bool
+ switch v := iv.(type) {
+ case *string:
+ *v = ""
+ case *bool:
+ *v = false
+ case *int:
+ *v = 0
+ case *int8:
+ *v = 0
+ case *int16:
+ *v = 0
+ case *int32:
+ *v = 0
+ case *int64:
+ *v = 0
+ case *uint:
+ *v = 0
+ case *uint8:
+ *v = 0
+ case *uint16:
+ *v = 0
+ case *uint32:
+ *v = 0
+ case *uint64:
+ *v = 0
+ case *float32:
+ *v = 0
+ case *float64:
+ *v = 0
+ case *complex64:
+ *v = 0
+ case *complex128:
+ *v = 0
+ case *[]byte:
+ *v = nil
+ case *Raw:
+ *v = nil
+ case *time.Time:
+ *v = time.Time{}
+ case reflect.Value:
+ decSetNonNilRV2Zero(v)
+ default:
+ if !fastpathDecodeSetZeroTypeSwitch(iv) {
+ decSetNonNilRV2Zero(rv)
+ }
+ }
+}
+
+// decSetNonNilRV2Zero will set the non-nil value to its zero value.
+func decSetNonNilRV2Zero(v reflect.Value) {
+ // If not decodeable (settable), we do not touch it.
+ // We considered empty'ing it if not decodeable e.g.
+ // - if chan, drain it
+ // - if map, clear it
+ // - if slice or array, zero all elements up to len
+ //
+ // However, we decided instead that we either will set the
+ // whole value to the zero value, or leave AS IS.
+
+ k := v.Kind()
+ if k == reflect.Interface {
+ decSetNonNilRV2Zero4Intf(v)
+ } else if k == reflect.Ptr {
+ decSetNonNilRV2Zero4Ptr(v)
+ } else if v.CanSet() {
+ rvSetDirectZero(v)
+ }
+}
+
+func decSetNonNilRV2Zero4Ptr(v reflect.Value) {
+ ve := v.Elem()
+ if ve.CanSet() {
+ rvSetZero(ve) // we can have a pointer to an interface
+ } else if v.CanSet() {
+ rvSetZero(v)
+ }
+}
+
+func decSetNonNilRV2Zero4Intf(v reflect.Value) {
+ ve := v.Elem()
+ if ve.CanSet() {
+ rvSetDirectZero(ve) // interfaces always have element as a non-interface
+ } else if v.CanSet() {
+ rvSetZero(v)
+ }
+}
+
+func (d *Decoder) decode(iv interface{}) {
+ // a switch with only concrete types can be optimized.
+ // consequently, we deal with nil and interfaces outside the switch.
+
+ if iv == nil {
+ d.onerror(errCannotDecodeIntoNil)
+ }
+
+ switch v := iv.(type) {
+ // case nil:
+ // case Selfer:
+ case reflect.Value:
+ if x, _ := isDecodeable(v); !x {
+ d.haltAsNotDecodeable(v)
+ }
+ d.decodeValue(v, nil)
+ case *string:
+ *v = d.stringZC(d.d.DecodeStringAsBytes())
+ case *bool:
+ *v = d.d.DecodeBool()
+ case *int:
+ *v = int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))
+ case *int8:
+ *v = int8(chkOvf.IntV(d.d.DecodeInt64(), 8))
+ case *int16:
+ *v = int16(chkOvf.IntV(d.d.DecodeInt64(), 16))
+ case *int32:
+ *v = int32(chkOvf.IntV(d.d.DecodeInt64(), 32))
+ case *int64:
+ *v = d.d.DecodeInt64()
+ case *uint:
+ *v = uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))
+ case *uint8:
+ *v = uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))
+ case *uint16:
+ *v = uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))
+ case *uint32:
+ *v = uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))
+ case *uint64:
+ *v = d.d.DecodeUint64()
+ case *float32:
+ *v = d.decodeFloat32()
+ case *float64:
+ *v = d.d.DecodeFloat64()
+ case *complex64:
+ *v = complex(d.decodeFloat32(), 0)
+ case *complex128:
+ *v = complex(d.d.DecodeFloat64(), 0)
+ case *[]byte:
+ *v = d.decodeBytesInto(*v)
+ case []byte:
+ // not addressable byte slice, so do not decode into it past the length
+ b := d.decodeBytesInto(v[:len(v):len(v)])
+ if !(len(b) > 0 && len(b) == len(v) && &b[0] == &v[0]) { // not same slice
+ copy(v, b)
+ }
+ case *time.Time:
+ *v = d.d.DecodeTime()
+ case *Raw:
+ *v = d.rawBytes()
+
+ case *interface{}:
+ d.decodeValue(rv4iptr(v), nil)
+
+ default:
+ // we can't check non-predefined types, as they might be a Selfer or extension.
+ if skipFastpathTypeSwitchInDirectCall || !fastpathDecodeTypeSwitch(iv, d) {
+ v := reflect.ValueOf(iv)
+ if x, _ := isDecodeable(v); !x {
+ d.haltAsNotDecodeable(v)
+ }
+ d.decodeValue(v, nil)
+ }
+ }
+}
+
+// decodeValue MUST be called by the actual value we want to decode into,
+// not its addr or a reference to it.
+//
+// This way, we know if it is itself a pointer, and can handle nil in
+// the stream effectively.
+//
+// Note that decodeValue will handle nil in the stream early, so that the
+// subsequent calls i.e. kXXX methods, etc do not have to handle it themselves.
+func (d *Decoder) decodeValue(rv reflect.Value, fn *codecFn) {
+ if d.d.TryNil() {
+ decSetNonNilRV2Zero(rv)
+ return
+ }
+ d.decodeValueNoCheckNil(rv, fn)
+}
+
+func (d *Decoder) decodeValueNoCheckNil(rv reflect.Value, fn *codecFn) {
+ // If stream is not containing a nil value, then we can deref to the base
+ // non-pointer value, and decode into that.
+ var rvp reflect.Value
+ var rvpValid bool
+PTR:
+ if rv.Kind() == reflect.Ptr {
+ rvpValid = true
+ if rvIsNil(rv) {
+ rvSetDirect(rv, reflect.New(rvType(rv).Elem()))
+ }
+ rvp = rv
+ rv = rv.Elem()
+ goto PTR
+ }
+
+ if fn == nil {
+ fn = d.h.fn(rvType(rv))
+ }
+ if fn.i.addrD {
+ if rvpValid {
+ rv = rvp
+ } else if rv.CanAddr() {
+ rv = rvAddr(rv, fn.i.ti.ptr)
+ } else if fn.i.addrDf {
+ d.errorf("cannot decode into a non-pointer value")
+ }
+ }
+ fn.fd(d, &fn.i, rv)
+}
+
+func (d *Decoder) structFieldNotFound(index int, rvkencname string) {
+ // Note: rvkencname is used only if there is an error, to pass into d.errorf.
+ // Consequently, it is ok to pass in a stringView
+ // Since rvkencname may be a stringView, do NOT pass it to another function.
+ if d.h.ErrorIfNoField {
+ if index >= 0 {
+ d.errorf("no matching struct field found when decoding stream array at index %v", index)
+ } else if rvkencname != "" {
+ d.errorf("no matching struct field found when decoding stream map with key " + rvkencname)
+ }
+ }
+ d.swallow()
+}
+
+func (d *Decoder) arrayCannotExpand(sliceLen, streamLen int) {
+ if d.h.ErrorIfNoArrayExpand {
+ d.errorf("cannot expand array len during decode from %v to %v", sliceLen, streamLen)
+ }
+}
+
+func (d *Decoder) haltAsNotDecodeable(rv reflect.Value) {
+ if !rv.IsValid() {
+ d.onerror(errCannotDecodeIntoNil)
+ }
+ // check if an interface can be retrieved, before grabbing an interface
+ if !rv.CanInterface() {
+ d.errorf("cannot decode into a value without an interface: %v", rv)
+ }
+ d.errorf("cannot decode into value of kind: %v, %#v", rv.Kind(), rv2i(rv))
+}
+
+func (d *Decoder) depthIncr() {
+ d.depth++
+ if d.depth >= d.maxdepth {
+ d.onerror(errMaxDepthExceeded)
+ }
+}
+
+func (d *Decoder) depthDecr() {
+ d.depth--
+}
+
+// Possibly get an interned version of a string, iff InternString=true and decoding a map key.
+//
+// This should mostly be used for map keys, where the key type is string.
+// This is because keys of a map/struct are typically reused across many objects.
+func (d *Decoder) string(v []byte) (s string) {
+ if d.is == nil || d.c != containerMapKey || len(v) < 2 || len(v) > internMaxStrLen {
+ return string(v)
+ }
+ return d.is.string(v)
+}
+
+func (d *Decoder) zerocopy() bool {
+ return d.bytes && d.h.ZeroCopy
+}
+
+// decodeBytesInto is a convenience delegate function to decDriver.DecodeBytes.
+// It ensures that `in` is not a nil byte, before calling decDriver.DecodeBytes,
+// as decDriver.DecodeBytes treats a nil as a hint to use its internal scratch buffer.
+func (d *Decoder) decodeBytesInto(in []byte) (v []byte) {
+ if in == nil {
+ in = []byte{}
+ }
+ return d.d.DecodeBytes(in)
+}
+
+func (d *Decoder) rawBytes() (v []byte) {
+ // ensure that this is not a view into the bytes
+ // i.e. if necessary, make new copy always.
+ v = d.d.nextValueBytes([]byte{})
+ if d.bytes && !d.h.ZeroCopy {
+ v0 := v
+ v = make([]byte, len(v))
+ copy(v, v0)
+ }
+ return
+}
+
+func (d *Decoder) wrapErr(v error, err *error) {
+ *err = wrapCodecErr(v, d.hh.Name(), d.NumBytesRead(), false)
+}
+
+// NumBytesRead returns the number of bytes read
+func (d *Decoder) NumBytesRead() int {
+ return int(d.r().numread())
+}
+
+// decodeFloat32 will delegate to an appropriate DecodeFloat32 implementation (if exists),
+// else if will call DecodeFloat64 and ensure the value doesn't overflow.
+//
+// Note that we return float64 to reduce unnecessary conversions
+func (d *Decoder) decodeFloat32() float32 {
+ if d.js {
+ return d.jsondriver().DecodeFloat32() // custom implementation for 32-bit
+ }
+ return float32(chkOvf.Float32V(d.d.DecodeFloat64()))
+}
+
+// ---- container tracking
+// Note: We update the .c after calling the callback.
+// This way, the callback can know what the last status was.
+
+// MARKER: do not call mapEnd if mapStart returns containerLenNil.
+
+func (d *Decoder) containerNext(j, containerLen int, hasLen bool) bool {
+ // return (hasLen && j < containerLen) || !(hasLen || slh.d.checkBreak())
+ if hasLen {
+ return j < containerLen
+ }
+ return !d.checkBreak()
+}
+
+func (d *Decoder) mapStart(v int) int {
+ if v != containerLenNil {
+ d.depthIncr()
+ d.c = containerMapStart
+ }
+ return v
+}
+
+func (d *Decoder) mapElemKey() {
+ if d.js {
+ d.jsondriver().ReadMapElemKey()
+ }
+ d.c = containerMapKey
+}
+
+func (d *Decoder) mapElemValue() {
+ if d.js {
+ d.jsondriver().ReadMapElemValue()
+ }
+ d.c = containerMapValue
+}
+
+func (d *Decoder) mapEnd() {
+ d.d.ReadMapEnd()
+ d.depthDecr()
+ d.c = 0
+}
+
+func (d *Decoder) arrayStart(v int) int {
+ if v != containerLenNil {
+ d.depthIncr()
+ d.c = containerArrayStart
+ }
+ return v
+}
+
+func (d *Decoder) arrayElem() {
+ if d.js {
+ d.jsondriver().ReadArrayElem()
+ }
+ d.c = containerArrayElem
+}
+
+func (d *Decoder) arrayEnd() {
+ d.d.ReadArrayEnd()
+ d.depthDecr()
+ d.c = 0
+}
+
+func (d *Decoder) interfaceExtConvertAndDecode(v interface{}, ext InterfaceExt) {
+ // var v interface{} = ext.ConvertExt(rv)
+ // d.d.decode(&v)
+ // ext.UpdateExt(rv, v)
+
+ // assume v is a pointer:
+ // - if struct|array, pass as is to ConvertExt
+ // - else make it non-addressable and pass to ConvertExt
+ // - make return value from ConvertExt addressable
+ // - decode into it
+ // - return the interface for passing into UpdateExt.
+ // - interface should be a pointer if struct|array, else a value
+
+ var s interface{}
+ rv := reflect.ValueOf(v)
+ rv2 := rv.Elem()
+ rvk := rv2.Kind()
+ if rvk == reflect.Struct || rvk == reflect.Array {
+ s = ext.ConvertExt(v)
+ } else {
+ s = ext.ConvertExt(rv2i(rv2))
+ }
+ rv = reflect.ValueOf(s)
+
+ // We cannot use isDecodeable here, as the value converted may be nil,
+ // or it may not be nil but is not addressable and thus we cannot extend it, etc.
+ // Instead, we just ensure that the value is addressable.
+
+ if !rv.CanAddr() {
+ rvk = rv.Kind()
+ rv2 = d.oneShotAddrRV(rvType(rv), rvk)
+ if rvk == reflect.Interface {
+ rvSetIntf(rv2, rv)
+ } else {
+ rvSetDirect(rv2, rv)
+ }
+ rv = rv2
+ }
+
+ d.decodeValue(rv, nil)
+ ext.UpdateExt(v, rv2i(rv))
+}
+
+func (d *Decoder) sideDecode(v interface{}, basetype reflect.Type, bs []byte) {
+ // NewDecoderBytes(bs, d.hh).decodeValue(baseRV(v), d.h.fnNoExt(basetype))
+
+ defer func(rb bytesDecReader, bytes bool,
+ c containerState, dbs decByteState, depth int16, r decReader, state interface{}) {
+ d.rb = rb
+ d.bytes = bytes
+ d.c = c
+ d.decByteState = dbs
+ d.depth = depth
+ d.decReader = r
+ d.d.restoreState(state)
+ }(d.rb, d.bytes, d.c, d.decByteState, d.depth, d.decReader, d.d.captureState())
+
+ // d.rb.reset(in)
+ d.rb = bytesDecReader{bs[:len(bs):len(bs)], 0}
+ d.bytes = true
+ d.decReader = &d.rb
+ d.d.resetState()
+ d.c = 0
+ d.decByteState = decByteStateNone
+ d.depth = 0
+
+ // must call using fnNoExt
+ d.decodeValue(baseRV(v), d.h.fnNoExt(basetype))
+}
+
+func (d *Decoder) fauxUnionReadRawBytes(asString bool) {
+ if asString || d.h.RawToString {
+ d.n.v = valueTypeString
+ // fauxUnion is only used within DecodeNaked calls; consequently, we should try to intern.
+ d.n.s = d.stringZC(d.d.DecodeBytes(nil))
+ } else {
+ d.n.v = valueTypeBytes
+ d.n.l = d.d.DecodeBytes([]byte{})
+ }
+}
+
+func (d *Decoder) oneShotAddrRV(rvt reflect.Type, rvk reflect.Kind) reflect.Value {
+ if decUseTransient &&
+ (numBoolStrSliceBitset.isset(byte(rvk)) ||
+ ((rvk == reflect.Struct || rvk == reflect.Array) &&
+ d.h.getTypeInfo(rt2id(rvt), rvt).flagCanTransient)) {
+ return d.perType.TransientAddrK(rvt, rvk)
+ }
+ return rvZeroAddrK(rvt, rvk)
+}
+
+// --------------------------------------------------
+
+// decSliceHelper assists when decoding into a slice, from a map or an array in the stream.
+// A slice can be set from a map or array in stream. This supports the MapBySlice interface.
+//
+// Note: if IsNil, do not call ElemContainerState.
+type decSliceHelper struct {
+ d *Decoder
+ ct valueType
+ Array bool
+ IsNil bool
+}
+
+func (d *Decoder) decSliceHelperStart() (x decSliceHelper, clen int) {
+ x.ct = d.d.ContainerType()
+ x.d = d
+ switch x.ct {
+ case valueTypeNil:
+ x.IsNil = true
+ case valueTypeArray:
+ x.Array = true
+ clen = d.arrayStart(d.d.ReadArrayStart())
+ case valueTypeMap:
+ clen = d.mapStart(d.d.ReadMapStart())
+ clen += clen
+ default:
+ d.errorf("only encoded map or array can be decoded into a slice (%d)", x.ct)
+ }
+ return
+}
+
+func (x decSliceHelper) End() {
+ if x.IsNil {
+ } else if x.Array {
+ x.d.arrayEnd()
+ } else {
+ x.d.mapEnd()
+ }
+}
+
+func (x decSliceHelper) ElemContainerState(index int) {
+ // Note: if isnil, clen=0, so we never call into ElemContainerState
+
+ if x.Array {
+ x.d.arrayElem()
+ } else if index&1 == 0 { // index%2 == 0 {
+ x.d.mapElemKey()
+ } else {
+ x.d.mapElemValue()
+ }
+}
+
+func (x decSliceHelper) arrayCannotExpand(hasLen bool, lenv, j, containerLenS int) {
+ x.d.arrayCannotExpand(lenv, j+1)
+ // drain completely and return
+ x.ElemContainerState(j)
+ x.d.swallow()
+ j++
+ for ; x.d.containerNext(j, containerLenS, hasLen); j++ {
+ x.ElemContainerState(j)
+ x.d.swallow()
+ }
+ x.End()
+}
+
+// decNextValueBytesHelper helps with NextValueBytes calls.
+//
+// Typical usage:
+// - each Handle's decDriver will implement a high level nextValueBytes,
+// which will track the current cursor, delegate to a nextValueBytesR
+// method, and then potentially call bytesRdV at the end.
+//
+// See simple.go for typical usage model.
+type decNextValueBytesHelper struct {
+ d *Decoder
+}
+
+func (x decNextValueBytesHelper) append1(v *[]byte, b byte) {
+ if *v != nil && !x.d.bytes {
+ *v = append(*v, b)
+ }
+}
+
+func (x decNextValueBytesHelper) appendN(v *[]byte, b ...byte) {
+ if *v != nil && !x.d.bytes {
+ *v = append(*v, b...)
+ }
+}
+
+func (x decNextValueBytesHelper) bytesRdV(v *[]byte, startpos uint) {
+ if x.d.bytes {
+ *v = x.d.rb.b[startpos:x.d.rb.c]
+ }
+}
+
+// decNegintPosintFloatNumberHelper is used for formats that are binary
+// and have distinct ways of storing positive integers vs negative integers
+// vs floats, which are uniquely identified by the byte descriptor.
+//
+// Currently, these formats are binc, cbor and simple.
+type decNegintPosintFloatNumberHelper struct {
+ d *Decoder
+}
+
+func (x decNegintPosintFloatNumberHelper) uint64(ui uint64, neg, ok bool) uint64 {
+ if ok && !neg {
+ return ui
+ }
+ return x.uint64TryFloat(ok)
+}
+
+func (x decNegintPosintFloatNumberHelper) uint64TryFloat(ok bool) (ui uint64) {
+ if ok { // neg = true
+ x.d.errorf("assigning negative signed value to unsigned type")
+ }
+ f, ok := x.d.d.decFloat()
+ if ok && f >= 0 && noFrac64(math.Float64bits(f)) {
+ ui = uint64(f)
+ } else {
+ x.d.errorf("invalid number loading uint64, with descriptor: %v", x.d.d.descBd())
+ }
+ return ui
+}
+
+func decNegintPosintFloatNumberHelperInt64v(ui uint64, neg, incrIfNeg bool) (i int64) {
+ if neg && incrIfNeg {
+ ui++
+ }
+ i = chkOvf.SignedIntV(ui)
+ if neg {
+ i = -i
+ }
+ return
+}
+
+func (x decNegintPosintFloatNumberHelper) int64(ui uint64, neg, ok bool) (i int64) {
+ if ok {
+ return decNegintPosintFloatNumberHelperInt64v(ui, neg, x.d.cbor)
+ }
+ // return x.int64TryFloat()
+ // }
+ // func (x decNegintPosintFloatNumberHelper) int64TryFloat() (i int64) {
+ f, ok := x.d.d.decFloat()
+ if ok && noFrac64(math.Float64bits(f)) {
+ i = int64(f)
+ } else {
+ x.d.errorf("invalid number loading uint64, with descriptor: %v", x.d.d.descBd())
+ }
+ return
+}
+
+func (x decNegintPosintFloatNumberHelper) float64(f float64, ok bool) float64 {
+ if ok {
+ return f
+ }
+ return x.float64TryInteger()
+}
+
+func (x decNegintPosintFloatNumberHelper) float64TryInteger() float64 {
+ ui, neg, ok := x.d.d.decInteger()
+ if !ok {
+ x.d.errorf("invalid descriptor for float: %v", x.d.d.descBd())
+ }
+ return float64(decNegintPosintFloatNumberHelperInt64v(ui, neg, x.d.cbor))
+}
+
+// isDecodeable checks if value can be decoded into
+//
+// decode can take any reflect.Value that is a inherently addressable i.e.
+// - non-nil chan (we will SEND to it)
+// - non-nil slice (we will set its elements)
+// - non-nil map (we will put into it)
+// - non-nil pointer (we can "update" it)
+// - func: no
+// - interface: no
+// - array: if canAddr=true
+// - any other value pointer: if canAddr=true
+func isDecodeable(rv reflect.Value) (canDecode bool, reason decNotDecodeableReason) {
+ switch rv.Kind() {
+ case reflect.Ptr, reflect.Slice, reflect.Chan, reflect.Map:
+ canDecode = !rvIsNil(rv)
+ reason = decNotDecodeableReasonNilReference
+ case reflect.Func, reflect.Interface, reflect.Invalid, reflect.UnsafePointer:
+ reason = decNotDecodeableReasonBadKind
+ default:
+ canDecode = rv.CanAddr()
+ reason = decNotDecodeableReasonNonAddrValue
+ }
+ return
+}
+
+func decByteSlice(r *decRd, clen, maxInitLen int, bs []byte) (bsOut []byte) {
+ if clen == 0 {
+ return zeroByteSlice
+ }
+ if len(bs) == clen {
+ bsOut = bs
+ r.readb(bsOut)
+ } else if cap(bs) >= clen {
+ bsOut = bs[:clen]
+ r.readb(bsOut)
+ } else {
+ var len2 int
+ for len2 < clen {
+ len3 := decInferLen(clen-len2, maxInitLen, 1)
+ bs3 := bsOut
+ bsOut = make([]byte, len2+len3)
+ copy(bsOut, bs3)
+ r.readb(bsOut[len2:])
+ len2 += len3
+ }
+ }
+ return
+}
+
+// decInferLen will infer a sensible length, given the following:
+// - clen: length wanted.
+// - maxlen: max length to be returned.
+// if <= 0, it is unset, and we infer it based on the unit size
+// - unit: number of bytes for each element of the collection
+func decInferLen(clen, maxlen, unit int) int {
+ // anecdotal testing showed increase in allocation with map length of 16.
+ // We saw same typical alloc from 0-8, then a 20% increase at 16.
+ // Thus, we set it to 8.
+ const (
+ minLenIfUnset = 8
+ maxMem = 256 * 1024 // 256Kb Memory
+ )
+
+ // handle when maxlen is not set i.e. <= 0
+
+ // clen==0: use 0
+ // maxlen<=0, clen<0: use default
+ // maxlen> 0, clen<0: use default
+ // maxlen<=0, clen>0: infer maxlen, and cap on it
+ // maxlen> 0, clen>0: cap at maxlen
+
+ if clen == 0 || clen == containerLenNil {
+ return 0
+ }
+ if clen < 0 {
+ // if unspecified, return 64 for bytes, ... 8 for uint64, ... and everything else
+ clen = 64 / unit
+ if clen > minLenIfUnset {
+ return clen
+ }
+ return minLenIfUnset
+ }
+ if unit <= 0 {
+ return clen
+ }
+ if maxlen <= 0 {
+ maxlen = maxMem / unit
+ }
+ if clen < maxlen {
+ return clen
+ }
+ return maxlen
+}