summaryrefslogtreecommitdiff
path: root/vendor/github.com/ugorji/go/codec/decimal.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/ugorji/go/codec/decimal.go')
-rw-r--r--vendor/github.com/ugorji/go/codec/decimal.go499
1 files changed, 0 insertions, 499 deletions
diff --git a/vendor/github.com/ugorji/go/codec/decimal.go b/vendor/github.com/ugorji/go/codec/decimal.go
deleted file mode 100644
index dbb338049..000000000
--- a/vendor/github.com/ugorji/go/codec/decimal.go
+++ /dev/null
@@ -1,499 +0,0 @@
-// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
-// Use of this source code is governed by a MIT license found in the LICENSE file.
-
-package codec
-
-import (
- "math"
- "strconv"
-)
-
-// Per go spec, floats are represented in memory as
-// IEEE single or double precision floating point values.
-//
-// We also looked at the source for stdlib math/modf.go,
-// reviewed https://github.com/chewxy/math32
-// and read wikipedia documents describing the formats.
-//
-// It became clear that we could easily look at the bits to determine
-// whether any fraction exists.
-
-func parseFloat32(b []byte) (f float32, err error) {
- return parseFloat32_custom(b)
-}
-
-func parseFloat64(b []byte) (f float64, err error) {
- return parseFloat64_custom(b)
-}
-
-func parseFloat32_strconv(b []byte) (f float32, err error) {
- f64, err := strconv.ParseFloat(stringView(b), 32)
- f = float32(f64)
- return
-}
-
-func parseFloat64_strconv(b []byte) (f float64, err error) {
- return strconv.ParseFloat(stringView(b), 64)
-}
-
-// ------ parseFloat custom below --------
-
-// JSON really supports decimal numbers in base 10 notation, with exponent support.
-//
-// We assume the following:
-// - a lot of floating point numbers in json files will have defined precision
-// (in terms of number of digits after decimal point), etc.
-// - these (referenced above) can be written in exact format.
-//
-// strconv.ParseFloat has some unnecessary overhead which we can do without
-// for the common case:
-//
-// - expensive char-by-char check to see if underscores are in right place
-// - testing for and skipping underscores
-// - check if the string matches ignorecase +/- inf, +/- infinity, nan
-// - support for base 16 (0xFFFF...)
-//
-// The functions below will try a fast-path for floats which can be decoded
-// without any loss of precision, meaning they:
-//
-// - fits within the significand bits of the 32-bits or 64-bits
-// - exponent fits within the exponent value
-// - there is no truncation (any extra numbers are all trailing zeros)
-//
-// To figure out what the values are for maxMantDigits, use this idea below:
-//
-// 2^23 = 838 8608 (between 10^ 6 and 10^ 7) (significand bits of uint32)
-// 2^32 = 42 9496 7296 (between 10^ 9 and 10^10) (full uint32)
-// 2^52 = 4503 5996 2737 0496 (between 10^15 and 10^16) (significand bits of uint64)
-// 2^64 = 1844 6744 0737 0955 1616 (between 10^19 and 10^20) (full uint64)
-//
-// Note: we only allow for up to what can comfortably fit into the significand
-// ignoring the exponent, and we only try to parse iff significand fits.
-
-const (
- fMaxMultiplierForExactPow10_64 = 1e15
- fMaxMultiplierForExactPow10_32 = 1e7
-
- fUint64Cutoff = (1<<64-1)/10 + 1
- // fUint32Cutoff = (1<<32-1)/10 + 1
-
- fBase = 10
-)
-
-const (
- thousand = 1000
- million = thousand * thousand
- billion = thousand * million
- trillion = thousand * billion
- quadrillion = thousand * trillion
- quintillion = thousand * quadrillion
-)
-
-// Exact powers of 10.
-var uint64pow10 = [...]uint64{
- 1, 10, 100,
- 1 * thousand, 10 * thousand, 100 * thousand,
- 1 * million, 10 * million, 100 * million,
- 1 * billion, 10 * billion, 100 * billion,
- 1 * trillion, 10 * trillion, 100 * trillion,
- 1 * quadrillion, 10 * quadrillion, 100 * quadrillion,
- 1 * quintillion, 10 * quintillion,
-}
-var float64pow10 = [...]float64{
- 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- 1e20, 1e21, 1e22,
-}
-var float32pow10 = [...]float32{
- 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10,
-}
-
-type floatinfo struct {
- mantbits uint8
-
- // expbits uint8 // (unused)
- // bias int16 // (unused)
- // is32bit bool // (unused)
-
- exactPow10 int8 // Exact powers of ten are <= 10^N (32: 10, 64: 22)
-
- exactInts int8 // Exact integers are <= 10^N (for non-float, set to 0)
-
- // maxMantDigits int8 // 10^19 fits in uint64, while 10^9 fits in uint32
-
- mantCutoffIsUint64Cutoff bool
-
- mantCutoff uint64
-}
-
-var fi32 = floatinfo{23, 10, 7, false, 1<<23 - 1}
-var fi64 = floatinfo{52, 22, 15, false, 1<<52 - 1}
-
-var fi64u = floatinfo{0, 19, 0, true, fUint64Cutoff}
-
-func noFrac64(fbits uint64) bool {
- if fbits == 0 {
- return true
- }
-
- exp := uint64(fbits>>52)&0x7FF - 1023 // uint(x>>shift)&mask - bias
- // clear top 12+e bits, the integer part; if the rest is 0, then no fraction.
- return exp < 52 && fbits<<(12+exp) == 0 // means there's no fractional part
-}
-
-func noFrac32(fbits uint32) bool {
- if fbits == 0 {
- return true
- }
-
- exp := uint32(fbits>>23)&0xFF - 127 // uint(x>>shift)&mask - bias
- // clear top 9+e bits, the integer part; if the rest is 0, then no fraction.
- return exp < 23 && fbits<<(9+exp) == 0 // means there's no fractional part
-}
-
-func strconvParseErr(b []byte, fn string) error {
- return &strconv.NumError{
- Func: fn,
- Err: strconv.ErrSyntax,
- Num: string(b),
- }
-}
-
-func parseFloat32_reader(r readFloatResult) (f float32, fail bool) {
- f = float32(r.mantissa)
- if r.exp == 0 {
- } else if r.exp < 0 { // int / 10^k
- f /= float32pow10[uint8(-r.exp)]
- } else { // exp > 0
- if r.exp > fi32.exactPow10 {
- f *= float32pow10[r.exp-fi32.exactPow10]
- if f > fMaxMultiplierForExactPow10_32 { // exponent too large - outside range
- fail = true
- return // ok = false
- }
- f *= float32pow10[fi32.exactPow10]
- } else {
- f *= float32pow10[uint8(r.exp)]
- }
- }
- if r.neg {
- f = -f
- }
- return
-}
-
-func parseFloat32_custom(b []byte) (f float32, err error) {
- r := readFloat(b, fi32)
- if r.bad {
- return 0, strconvParseErr(b, "ParseFloat")
- }
- if r.ok {
- f, r.bad = parseFloat32_reader(r)
- if !r.bad {
- return
- }
- }
- return parseFloat32_strconv(b)
-}
-
-func parseFloat64_reader(r readFloatResult) (f float64, fail bool) {
- f = float64(r.mantissa)
- if r.exp == 0 {
- } else if r.exp < 0 { // int / 10^k
- f /= float64pow10[-uint8(r.exp)]
- } else { // exp > 0
- if r.exp > fi64.exactPow10 {
- f *= float64pow10[r.exp-fi64.exactPow10]
- if f > fMaxMultiplierForExactPow10_64 { // exponent too large - outside range
- fail = true
- return
- }
- f *= float64pow10[fi64.exactPow10]
- } else {
- f *= float64pow10[uint8(r.exp)]
- }
- }
- if r.neg {
- f = -f
- }
- return
-}
-
-func parseFloat64_custom(b []byte) (f float64, err error) {
- r := readFloat(b, fi64)
- if r.bad {
- return 0, strconvParseErr(b, "ParseFloat")
- }
- if r.ok {
- f, r.bad = parseFloat64_reader(r)
- if !r.bad {
- return
- }
- }
- return parseFloat64_strconv(b)
-}
-
-func parseUint64_simple(b []byte) (n uint64, ok bool) {
- var i int
- var n1 uint64
- var c uint8
-LOOP:
- if i < len(b) {
- c = b[i]
- // unsigned integers don't overflow well on multiplication, so check cutoff here
- // e.g. (maxUint64-5)*10 doesn't overflow well ...
- // if n >= fUint64Cutoff || !isDigitChar(b[i]) { // if c < '0' || c > '9' {
- if n >= fUint64Cutoff || c < '0' || c > '9' {
- return
- } else if c == '0' {
- n *= fBase
- } else {
- n1 = n
- n = n*fBase + uint64(c-'0')
- if n < n1 {
- return
- }
- }
- i++
- goto LOOP
- }
- ok = true
- return
-}
-
-func parseUint64_reader(r readFloatResult) (f uint64, fail bool) {
- f = r.mantissa
- if r.exp == 0 {
- } else if r.exp < 0 { // int / 10^k
- if f%uint64pow10[uint8(-r.exp)] != 0 {
- fail = true
- } else {
- f /= uint64pow10[uint8(-r.exp)]
- }
- } else { // exp > 0
- f *= uint64pow10[uint8(r.exp)]
- }
- return
-}
-
-func parseInteger_bytes(b []byte) (u uint64, neg, ok bool) {
- if len(b) == 0 {
- ok = true
- return
- }
- if b[0] == '-' {
- if len(b) == 1 {
- return
- }
- neg = true
- b = b[1:]
- }
-
- u, ok = parseUint64_simple(b)
- if ok {
- return
- }
-
- r := readFloat(b, fi64u)
- if r.ok {
- var fail bool
- u, fail = parseUint64_reader(r)
- if fail {
- f, err := parseFloat64(b)
- if err != nil {
- return
- }
- if !noFrac64(math.Float64bits(f)) {
- return
- }
- u = uint64(f)
- }
- ok = true
- return
- }
- return
-}
-
-// parseNumber will return an integer if only composed of [-]?[0-9]+
-// Else it will return a float.
-func parseNumber(b []byte, z *fauxUnion, preferSignedInt bool) (err error) {
- var ok, neg bool
- var f uint64
-
- if len(b) == 0 {
- return
- }
-
- if b[0] == '-' {
- neg = true
- f, ok = parseUint64_simple(b[1:])
- } else {
- f, ok = parseUint64_simple(b)
- }
-
- if ok {
- if neg {
- z.v = valueTypeInt
- if chkOvf.Uint2Int(f, neg) {
- return strconvParseErr(b, "ParseInt")
- }
- z.i = -int64(f)
- } else if preferSignedInt {
- z.v = valueTypeInt
- if chkOvf.Uint2Int(f, neg) {
- return strconvParseErr(b, "ParseInt")
- }
- z.i = int64(f)
- } else {
- z.v = valueTypeUint
- z.u = f
- }
- return
- }
-
- z.v = valueTypeFloat
- z.f, err = parseFloat64_custom(b)
- return
-}
-
-type readFloatResult struct {
- mantissa uint64
- exp int8
- neg bool
- trunc bool
- bad bool // bad decimal string
- hardexp bool // exponent is hard to handle (> 2 digits, etc)
- ok bool
- // sawdot bool
- // sawexp bool
- //_ [2]bool // padding
-}
-
-func readFloat(s []byte, y floatinfo) (r readFloatResult) {
- var i uint // uint, so that we eliminate bounds checking
- var slen = uint(len(s))
- if slen == 0 {
- // read an empty string as the zero value
- // r.bad = true
- r.ok = true
- return
- }
-
- if s[0] == '-' {
- r.neg = true
- i++
- }
-
- // we considered punting early if string has length > maxMantDigits, but this doesn't account
- // for trailing 0's e.g. 700000000000000000000 can be encoded exactly as it is 7e20
-
- var nd, ndMant, dp int8
- var sawdot, sawexp bool
- var xu uint64
-
-LOOP:
- for ; i < slen; i++ {
- switch s[i] {
- case '.':
- if sawdot {
- r.bad = true
- return
- }
- sawdot = true
- dp = nd
- case 'e', 'E':
- sawexp = true
- break LOOP
- case '0':
- if nd == 0 {
- dp--
- continue LOOP
- }
- nd++
- if r.mantissa < y.mantCutoff {
- r.mantissa *= fBase
- ndMant++
- }
- case '1', '2', '3', '4', '5', '6', '7', '8', '9':
- nd++
- if y.mantCutoffIsUint64Cutoff && r.mantissa < fUint64Cutoff {
- r.mantissa *= fBase
- xu = r.mantissa + uint64(s[i]-'0')
- if xu < r.mantissa {
- r.trunc = true
- return
- }
- r.mantissa = xu
- } else if r.mantissa < y.mantCutoff {
- // mantissa = (mantissa << 1) + (mantissa << 3) + uint64(c-'0')
- r.mantissa = r.mantissa*fBase + uint64(s[i]-'0')
- } else {
- r.trunc = true
- return
- }
- ndMant++
- default:
- r.bad = true
- return
- }
- }
-
- if !sawdot {
- dp = nd
- }
-
- if sawexp {
- i++
- if i < slen {
- var eneg bool
- if s[i] == '+' {
- i++
- } else if s[i] == '-' {
- i++
- eneg = true
- }
- if i < slen {
- // for exact match, exponent is 1 or 2 digits (float64: -22 to 37, float32: -1 to 17).
- // exit quick if exponent is more than 2 digits.
- if i+2 < slen {
- r.hardexp = true
- return
- }
- var e int8
- if s[i] < '0' || s[i] > '9' { // !isDigitChar(s[i]) { //
- r.bad = true
- return
- }
- e = int8(s[i] - '0')
- i++
- if i < slen {
- if s[i] < '0' || s[i] > '9' { // !isDigitChar(s[i]) { //
- r.bad = true
- return
- }
- e = e*fBase + int8(s[i]-'0') // (e << 1) + (e << 3) + int8(s[i]-'0')
- i++
- }
- if eneg {
- dp -= e
- } else {
- dp += e
- }
- }
- }
- }
-
- if r.mantissa != 0 {
- r.exp = dp - ndMant
- // do not set ok=true for cases we cannot handle
- if r.exp < -y.exactPow10 ||
- r.exp > y.exactInts+y.exactPow10 ||
- (y.mantbits != 0 && r.mantissa>>y.mantbits != 0) {
- r.hardexp = true
- return
- }
- }
-
- r.ok = true
- return
-}