summaryrefslogtreecommitdiff
path: root/vendor/github.com/shopspring/decimal/decimal.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/shopspring/decimal/decimal.go')
-rw-r--r--vendor/github.com/shopspring/decimal/decimal.go1904
1 files changed, 0 insertions, 1904 deletions
diff --git a/vendor/github.com/shopspring/decimal/decimal.go b/vendor/github.com/shopspring/decimal/decimal.go
deleted file mode 100644
index 84405ec1c..000000000
--- a/vendor/github.com/shopspring/decimal/decimal.go
+++ /dev/null
@@ -1,1904 +0,0 @@
-// Package decimal implements an arbitrary precision fixed-point decimal.
-//
-// The zero-value of a Decimal is 0, as you would expect.
-//
-// The best way to create a new Decimal is to use decimal.NewFromString, ex:
-//
-// n, err := decimal.NewFromString("-123.4567")
-// n.String() // output: "-123.4567"
-//
-// To use Decimal as part of a struct:
-//
-// type Struct struct {
-// Number Decimal
-// }
-//
-// Note: This can "only" represent numbers with a maximum of 2^31 digits after the decimal point.
-package decimal
-
-import (
- "database/sql/driver"
- "encoding/binary"
- "fmt"
- "math"
- "math/big"
- "regexp"
- "strconv"
- "strings"
-)
-
-// DivisionPrecision is the number of decimal places in the result when it
-// doesn't divide exactly.
-//
-// Example:
-//
-// d1 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3))
-// d1.String() // output: "0.6666666666666667"
-// d2 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(30000))
-// d2.String() // output: "0.0000666666666667"
-// d3 := decimal.NewFromFloat(20000).Div(decimal.NewFromFloat(3))
-// d3.String() // output: "6666.6666666666666667"
-// decimal.DivisionPrecision = 3
-// d4 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3))
-// d4.String() // output: "0.667"
-//
-var DivisionPrecision = 16
-
-// MarshalJSONWithoutQuotes should be set to true if you want the decimal to
-// be JSON marshaled as a number, instead of as a string.
-// WARNING: this is dangerous for decimals with many digits, since many JSON
-// unmarshallers (ex: Javascript's) will unmarshal JSON numbers to IEEE 754
-// double-precision floating point numbers, which means you can potentially
-// silently lose precision.
-var MarshalJSONWithoutQuotes = false
-
-// ExpMaxIterations specifies the maximum number of iterations needed to calculate
-// precise natural exponent value using ExpHullAbrham method.
-var ExpMaxIterations = 1000
-
-// Zero constant, to make computations faster.
-// Zero should never be compared with == or != directly, please use decimal.Equal or decimal.Cmp instead.
-var Zero = New(0, 1)
-
-var zeroInt = big.NewInt(0)
-var oneInt = big.NewInt(1)
-var twoInt = big.NewInt(2)
-var fourInt = big.NewInt(4)
-var fiveInt = big.NewInt(5)
-var tenInt = big.NewInt(10)
-var twentyInt = big.NewInt(20)
-
-var factorials = []Decimal{New(1, 0)}
-
-// Decimal represents a fixed-point decimal. It is immutable.
-// number = value * 10 ^ exp
-type Decimal struct {
- value *big.Int
-
- // NOTE(vadim): this must be an int32, because we cast it to float64 during
- // calculations. If exp is 64 bit, we might lose precision.
- // If we cared about being able to represent every possible decimal, we
- // could make exp a *big.Int but it would hurt performance and numbers
- // like that are unrealistic.
- exp int32
-}
-
-// New returns a new fixed-point decimal, value * 10 ^ exp.
-func New(value int64, exp int32) Decimal {
- return Decimal{
- value: big.NewInt(value),
- exp: exp,
- }
-}
-
-// NewFromInt converts a int64 to Decimal.
-//
-// Example:
-//
-// NewFromInt(123).String() // output: "123"
-// NewFromInt(-10).String() // output: "-10"
-func NewFromInt(value int64) Decimal {
- return Decimal{
- value: big.NewInt(value),
- exp: 0,
- }
-}
-
-// NewFromInt32 converts a int32 to Decimal.
-//
-// Example:
-//
-// NewFromInt(123).String() // output: "123"
-// NewFromInt(-10).String() // output: "-10"
-func NewFromInt32(value int32) Decimal {
- return Decimal{
- value: big.NewInt(int64(value)),
- exp: 0,
- }
-}
-
-// NewFromBigInt returns a new Decimal from a big.Int, value * 10 ^ exp
-func NewFromBigInt(value *big.Int, exp int32) Decimal {
- return Decimal{
- value: new(big.Int).Set(value),
- exp: exp,
- }
-}
-
-// NewFromString returns a new Decimal from a string representation.
-// Trailing zeroes are not trimmed.
-//
-// Example:
-//
-// d, err := NewFromString("-123.45")
-// d2, err := NewFromString(".0001")
-// d3, err := NewFromString("1.47000")
-//
-func NewFromString(value string) (Decimal, error) {
- originalInput := value
- var intString string
- var exp int64
-
- // Check if number is using scientific notation
- eIndex := strings.IndexAny(value, "Ee")
- if eIndex != -1 {
- expInt, err := strconv.ParseInt(value[eIndex+1:], 10, 32)
- if err != nil {
- if e, ok := err.(*strconv.NumError); ok && e.Err == strconv.ErrRange {
- return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", value)
- }
- return Decimal{}, fmt.Errorf("can't convert %s to decimal: exponent is not numeric", value)
- }
- value = value[:eIndex]
- exp = expInt
- }
-
- pIndex := -1
- vLen := len(value)
- for i := 0; i < vLen; i++ {
- if value[i] == '.' {
- if pIndex > -1 {
- return Decimal{}, fmt.Errorf("can't convert %s to decimal: too many .s", value)
- }
- pIndex = i
- }
- }
-
- if pIndex == -1 {
- // There is no decimal point, we can just parse the original string as
- // an int
- intString = value
- } else {
- if pIndex+1 < vLen {
- intString = value[:pIndex] + value[pIndex+1:]
- } else {
- intString = value[:pIndex]
- }
- expInt := -len(value[pIndex+1:])
- exp += int64(expInt)
- }
-
- var dValue *big.Int
- // strconv.ParseInt is faster than new(big.Int).SetString so this is just a shortcut for strings we know won't overflow
- if len(intString) <= 18 {
- parsed64, err := strconv.ParseInt(intString, 10, 64)
- if err != nil {
- return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
- }
- dValue = big.NewInt(parsed64)
- } else {
- dValue = new(big.Int)
- _, ok := dValue.SetString(intString, 10)
- if !ok {
- return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
- }
- }
-
- if exp < math.MinInt32 || exp > math.MaxInt32 {
- // NOTE(vadim): I doubt a string could realistically be this long
- return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", originalInput)
- }
-
- return Decimal{
- value: dValue,
- exp: int32(exp),
- }, nil
-}
-
-// NewFromFormattedString returns a new Decimal from a formatted string representation.
-// The second argument - replRegexp, is a regular expression that is used to find characters that should be
-// removed from given decimal string representation. All matched characters will be replaced with an empty string.
-//
-// Example:
-//
-// r := regexp.MustCompile("[$,]")
-// d1, err := NewFromFormattedString("$5,125.99", r)
-//
-// r2 := regexp.MustCompile("[_]")
-// d2, err := NewFromFormattedString("1_000_000", r2)
-//
-// r3 := regexp.MustCompile("[USD\\s]")
-// d3, err := NewFromFormattedString("5000 USD", r3)
-//
-func NewFromFormattedString(value string, replRegexp *regexp.Regexp) (Decimal, error) {
- parsedValue := replRegexp.ReplaceAllString(value, "")
- d, err := NewFromString(parsedValue)
- if err != nil {
- return Decimal{}, err
- }
- return d, nil
-}
-
-// RequireFromString returns a new Decimal from a string representation
-// or panics if NewFromString would have returned an error.
-//
-// Example:
-//
-// d := RequireFromString("-123.45")
-// d2 := RequireFromString(".0001")
-//
-func RequireFromString(value string) Decimal {
- dec, err := NewFromString(value)
- if err != nil {
- panic(err)
- }
- return dec
-}
-
-// NewFromFloat converts a float64 to Decimal.
-//
-// The converted number will contain the number of significant digits that can be
-// represented in a float with reliable roundtrip.
-// This is typically 15 digits, but may be more in some cases.
-// See https://www.exploringbinary.com/decimal-precision-of-binary-floating-point-numbers/ for more information.
-//
-// For slightly faster conversion, use NewFromFloatWithExponent where you can specify the precision in absolute terms.
-//
-// NOTE: this will panic on NaN, +/-inf
-func NewFromFloat(value float64) Decimal {
- if value == 0 {
- return New(0, 0)
- }
- return newFromFloat(value, math.Float64bits(value), &float64info)
-}
-
-// NewFromFloat32 converts a float32 to Decimal.
-//
-// The converted number will contain the number of significant digits that can be
-// represented in a float with reliable roundtrip.
-// This is typically 6-8 digits depending on the input.
-// See https://www.exploringbinary.com/decimal-precision-of-binary-floating-point-numbers/ for more information.
-//
-// For slightly faster conversion, use NewFromFloatWithExponent where you can specify the precision in absolute terms.
-//
-// NOTE: this will panic on NaN, +/-inf
-func NewFromFloat32(value float32) Decimal {
- if value == 0 {
- return New(0, 0)
- }
- // XOR is workaround for https://github.com/golang/go/issues/26285
- a := math.Float32bits(value) ^ 0x80808080
- return newFromFloat(float64(value), uint64(a)^0x80808080, &float32info)
-}
-
-func newFromFloat(val float64, bits uint64, flt *floatInfo) Decimal {
- if math.IsNaN(val) || math.IsInf(val, 0) {
- panic(fmt.Sprintf("Cannot create a Decimal from %v", val))
- }
- exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
- mant := bits & (uint64(1)<<flt.mantbits - 1)
-
- switch exp {
- case 0:
- // denormalized
- exp++
-
- default:
- // add implicit top bit
- mant |= uint64(1) << flt.mantbits
- }
- exp += flt.bias
-
- var d decimal
- d.Assign(mant)
- d.Shift(exp - int(flt.mantbits))
- d.neg = bits>>(flt.expbits+flt.mantbits) != 0
-
- roundShortest(&d, mant, exp, flt)
- // If less than 19 digits, we can do calculation in an int64.
- if d.nd < 19 {
- tmp := int64(0)
- m := int64(1)
- for i := d.nd - 1; i >= 0; i-- {
- tmp += m * int64(d.d[i]-'0')
- m *= 10
- }
- if d.neg {
- tmp *= -1
- }
- return Decimal{value: big.NewInt(tmp), exp: int32(d.dp) - int32(d.nd)}
- }
- dValue := new(big.Int)
- dValue, ok := dValue.SetString(string(d.d[:d.nd]), 10)
- if ok {
- return Decimal{value: dValue, exp: int32(d.dp) - int32(d.nd)}
- }
-
- return NewFromFloatWithExponent(val, int32(d.dp)-int32(d.nd))
-}
-
-// NewFromFloatWithExponent converts a float64 to Decimal, with an arbitrary
-// number of fractional digits.
-//
-// Example:
-//
-// NewFromFloatWithExponent(123.456, -2).String() // output: "123.46"
-//
-func NewFromFloatWithExponent(value float64, exp int32) Decimal {
- if math.IsNaN(value) || math.IsInf(value, 0) {
- panic(fmt.Sprintf("Cannot create a Decimal from %v", value))
- }
-
- bits := math.Float64bits(value)
- mant := bits & (1<<52 - 1)
- exp2 := int32((bits >> 52) & (1<<11 - 1))
- sign := bits >> 63
-
- if exp2 == 0 {
- // specials
- if mant == 0 {
- return Decimal{}
- }
- // subnormal
- exp2++
- } else {
- // normal
- mant |= 1 << 52
- }
-
- exp2 -= 1023 + 52
-
- // normalizing base-2 values
- for mant&1 == 0 {
- mant = mant >> 1
- exp2++
- }
-
- // maximum number of fractional base-10 digits to represent 2^N exactly cannot be more than -N if N<0
- if exp < 0 && exp < exp2 {
- if exp2 < 0 {
- exp = exp2
- } else {
- exp = 0
- }
- }
-
- // representing 10^M * 2^N as 5^M * 2^(M+N)
- exp2 -= exp
-
- temp := big.NewInt(1)
- dMant := big.NewInt(int64(mant))
-
- // applying 5^M
- if exp > 0 {
- temp = temp.SetInt64(int64(exp))
- temp = temp.Exp(fiveInt, temp, nil)
- } else if exp < 0 {
- temp = temp.SetInt64(-int64(exp))
- temp = temp.Exp(fiveInt, temp, nil)
- dMant = dMant.Mul(dMant, temp)
- temp = temp.SetUint64(1)
- }
-
- // applying 2^(M+N)
- if exp2 > 0 {
- dMant = dMant.Lsh(dMant, uint(exp2))
- } else if exp2 < 0 {
- temp = temp.Lsh(temp, uint(-exp2))
- }
-
- // rounding and downscaling
- if exp > 0 || exp2 < 0 {
- halfDown := new(big.Int).Rsh(temp, 1)
- dMant = dMant.Add(dMant, halfDown)
- dMant = dMant.Quo(dMant, temp)
- }
-
- if sign == 1 {
- dMant = dMant.Neg(dMant)
- }
-
- return Decimal{
- value: dMant,
- exp: exp,
- }
-}
-
-// Copy returns a copy of decimal with the same value and exponent, but a different pointer to value.
-func (d Decimal) Copy() Decimal {
- d.ensureInitialized()
- return Decimal{
- value: &(*d.value),
- exp: d.exp,
- }
-}
-
-// rescale returns a rescaled version of the decimal. Returned
-// decimal may be less precise if the given exponent is bigger
-// than the initial exponent of the Decimal.
-// NOTE: this will truncate, NOT round
-//
-// Example:
-//
-// d := New(12345, -4)
-// d2 := d.rescale(-1)
-// d3 := d2.rescale(-4)
-// println(d1)
-// println(d2)
-// println(d3)
-//
-// Output:
-//
-// 1.2345
-// 1.2
-// 1.2000
-//
-func (d Decimal) rescale(exp int32) Decimal {
- d.ensureInitialized()
-
- if d.exp == exp {
- return Decimal{
- new(big.Int).Set(d.value),
- d.exp,
- }
- }
-
- // NOTE(vadim): must convert exps to float64 before - to prevent overflow
- diff := math.Abs(float64(exp) - float64(d.exp))
- value := new(big.Int).Set(d.value)
-
- expScale := new(big.Int).Exp(tenInt, big.NewInt(int64(diff)), nil)
- if exp > d.exp {
- value = value.Quo(value, expScale)
- } else if exp < d.exp {
- value = value.Mul(value, expScale)
- }
-
- return Decimal{
- value: value,
- exp: exp,
- }
-}
-
-// Abs returns the absolute value of the decimal.
-func (d Decimal) Abs() Decimal {
- if !d.IsNegative() {
- return d
- }
- d.ensureInitialized()
- d2Value := new(big.Int).Abs(d.value)
- return Decimal{
- value: d2Value,
- exp: d.exp,
- }
-}
-
-// Add returns d + d2.
-func (d Decimal) Add(d2 Decimal) Decimal {
- rd, rd2 := RescalePair(d, d2)
-
- d3Value := new(big.Int).Add(rd.value, rd2.value)
- return Decimal{
- value: d3Value,
- exp: rd.exp,
- }
-}
-
-// Sub returns d - d2.
-func (d Decimal) Sub(d2 Decimal) Decimal {
- rd, rd2 := RescalePair(d, d2)
-
- d3Value := new(big.Int).Sub(rd.value, rd2.value)
- return Decimal{
- value: d3Value,
- exp: rd.exp,
- }
-}
-
-// Neg returns -d.
-func (d Decimal) Neg() Decimal {
- d.ensureInitialized()
- val := new(big.Int).Neg(d.value)
- return Decimal{
- value: val,
- exp: d.exp,
- }
-}
-
-// Mul returns d * d2.
-func (d Decimal) Mul(d2 Decimal) Decimal {
- d.ensureInitialized()
- d2.ensureInitialized()
-
- expInt64 := int64(d.exp) + int64(d2.exp)
- if expInt64 > math.MaxInt32 || expInt64 < math.MinInt32 {
- // NOTE(vadim): better to panic than give incorrect results, as
- // Decimals are usually used for money
- panic(fmt.Sprintf("exponent %v overflows an int32!", expInt64))
- }
-
- d3Value := new(big.Int).Mul(d.value, d2.value)
- return Decimal{
- value: d3Value,
- exp: int32(expInt64),
- }
-}
-
-// Shift shifts the decimal in base 10.
-// It shifts left when shift is positive and right if shift is negative.
-// In simpler terms, the given value for shift is added to the exponent
-// of the decimal.
-func (d Decimal) Shift(shift int32) Decimal {
- d.ensureInitialized()
- return Decimal{
- value: new(big.Int).Set(d.value),
- exp: d.exp + shift,
- }
-}
-
-// Div returns d / d2. If it doesn't divide exactly, the result will have
-// DivisionPrecision digits after the decimal point.
-func (d Decimal) Div(d2 Decimal) Decimal {
- return d.DivRound(d2, int32(DivisionPrecision))
-}
-
-// QuoRem does divsion with remainder
-// d.QuoRem(d2,precision) returns quotient q and remainder r such that
-// d = d2 * q + r, q an integer multiple of 10^(-precision)
-// 0 <= r < abs(d2) * 10 ^(-precision) if d>=0
-// 0 >= r > -abs(d2) * 10 ^(-precision) if d<0
-// Note that precision<0 is allowed as input.
-func (d Decimal) QuoRem(d2 Decimal, precision int32) (Decimal, Decimal) {
- d.ensureInitialized()
- d2.ensureInitialized()
- if d2.value.Sign() == 0 {
- panic("decimal division by 0")
- }
- scale := -precision
- e := int64(d.exp - d2.exp - scale)
- if e > math.MaxInt32 || e < math.MinInt32 {
- panic("overflow in decimal QuoRem")
- }
- var aa, bb, expo big.Int
- var scalerest int32
- // d = a 10^ea
- // d2 = b 10^eb
- if e < 0 {
- aa = *d.value
- expo.SetInt64(-e)
- bb.Exp(tenInt, &expo, nil)
- bb.Mul(d2.value, &bb)
- scalerest = d.exp
- // now aa = a
- // bb = b 10^(scale + eb - ea)
- } else {
- expo.SetInt64(e)
- aa.Exp(tenInt, &expo, nil)
- aa.Mul(d.value, &aa)
- bb = *d2.value
- scalerest = scale + d2.exp
- // now aa = a ^ (ea - eb - scale)
- // bb = b
- }
- var q, r big.Int
- q.QuoRem(&aa, &bb, &r)
- dq := Decimal{value: &q, exp: scale}
- dr := Decimal{value: &r, exp: scalerest}
- return dq, dr
-}
-
-// DivRound divides and rounds to a given precision
-// i.e. to an integer multiple of 10^(-precision)
-// for a positive quotient digit 5 is rounded up, away from 0
-// if the quotient is negative then digit 5 is rounded down, away from 0
-// Note that precision<0 is allowed as input.
-func (d Decimal) DivRound(d2 Decimal, precision int32) Decimal {
- // QuoRem already checks initialization
- q, r := d.QuoRem(d2, precision)
- // the actual rounding decision is based on comparing r*10^precision and d2/2
- // instead compare 2 r 10 ^precision and d2
- var rv2 big.Int
- rv2.Abs(r.value)
- rv2.Lsh(&rv2, 1)
- // now rv2 = abs(r.value) * 2
- r2 := Decimal{value: &rv2, exp: r.exp + precision}
- // r2 is now 2 * r * 10 ^ precision
- var c = r2.Cmp(d2.Abs())
-
- if c < 0 {
- return q
- }
-
- if d.value.Sign()*d2.value.Sign() < 0 {
- return q.Sub(New(1, -precision))
- }
-
- return q.Add(New(1, -precision))
-}
-
-// Mod returns d % d2.
-func (d Decimal) Mod(d2 Decimal) Decimal {
- quo := d.Div(d2).Truncate(0)
- return d.Sub(d2.Mul(quo))
-}
-
-// Pow returns d to the power d2
-func (d Decimal) Pow(d2 Decimal) Decimal {
- var temp Decimal
- if d2.IntPart() == 0 {
- return NewFromFloat(1)
- }
- temp = d.Pow(d2.Div(NewFromFloat(2)))
- if d2.IntPart()%2 == 0 {
- return temp.Mul(temp)
- }
- if d2.IntPart() > 0 {
- return temp.Mul(temp).Mul(d)
- }
- return temp.Mul(temp).Div(d)
-}
-
-// ExpHullAbrham calculates the natural exponent of decimal (e to the power of d) using Hull-Abraham algorithm.
-// OverallPrecision argument specifies the overall precision of the result (integer part + decimal part).
-//
-// ExpHullAbrham is faster than ExpTaylor for small precision values, but it is much slower for large precision values.
-//
-// Example:
-//
-// NewFromFloat(26.1).ExpHullAbrham(2).String() // output: "220000000000"
-// NewFromFloat(26.1).ExpHullAbrham(20).String() // output: "216314672147.05767284"
-//
-func (d Decimal) ExpHullAbrham(overallPrecision uint32) (Decimal, error) {
- // Algorithm based on Variable precision exponential function.
- // ACM Transactions on Mathematical Software by T. E. Hull & A. Abrham.
- if d.IsZero() {
- return Decimal{oneInt, 0}, nil
- }
-
- currentPrecision := overallPrecision
-
- // Algorithm does not work if currentPrecision * 23 < |x|.
- // Precision is automatically increased in such cases, so the value can be calculated precisely.
- // If newly calculated precision is higher than ExpMaxIterations the currentPrecision will not be changed.
- f := d.Abs().InexactFloat64()
- if ncp := f / 23; ncp > float64(currentPrecision) && ncp < float64(ExpMaxIterations) {
- currentPrecision = uint32(math.Ceil(ncp))
- }
-
- // fail if abs(d) beyond an over/underflow threshold
- overflowThreshold := New(23*int64(currentPrecision), 0)
- if d.Abs().Cmp(overflowThreshold) > 0 {
- return Decimal{}, fmt.Errorf("over/underflow threshold, exp(x) cannot be calculated precisely")
- }
-
- // Return 1 if abs(d) small enough; this also avoids later over/underflow
- overflowThreshold2 := New(9, -int32(currentPrecision)-1)
- if d.Abs().Cmp(overflowThreshold2) <= 0 {
- return Decimal{oneInt, d.exp}, nil
- }
-
- // t is the smallest integer >= 0 such that the corresponding abs(d/k) < 1
- t := d.exp + int32(d.NumDigits()) // Add d.NumDigits because the paper assumes that d.value [0.1, 1)
-
- if t < 0 {
- t = 0
- }
-
- k := New(1, t) // reduction factor
- r := Decimal{new(big.Int).Set(d.value), d.exp - t} // reduced argument
- p := int32(currentPrecision) + t + 2 // precision for calculating the sum
-
- // Determine n, the number of therms for calculating sum
- // use first Newton step (1.435p - 1.182) / log10(p/abs(r))
- // for solving appropriate equation, along with directed
- // roundings and simple rational bound for log10(p/abs(r))
- rf := r.Abs().InexactFloat64()
- pf := float64(p)
- nf := math.Ceil((1.453*pf - 1.182) / math.Log10(pf/rf))
- if nf > float64(ExpMaxIterations) || math.IsNaN(nf) {
- return Decimal{}, fmt.Errorf("exact value cannot be calculated in <=ExpMaxIterations iterations")
- }
- n := int64(nf)
-
- tmp := New(0, 0)
- sum := New(1, 0)
- one := New(1, 0)
- for i := n - 1; i > 0; i-- {
- tmp.value.SetInt64(i)
- sum = sum.Mul(r.DivRound(tmp, p))
- sum = sum.Add(one)
- }
-
- ki := k.IntPart()
- res := New(1, 0)
- for i := ki; i > 0; i-- {
- res = res.Mul(sum)
- }
-
- resNumDigits := int32(res.NumDigits())
-
- var roundDigits int32
- if resNumDigits > abs(res.exp) {
- roundDigits = int32(currentPrecision) - resNumDigits - res.exp
- } else {
- roundDigits = int32(currentPrecision)
- }
-
- res = res.Round(roundDigits)
-
- return res, nil
-}
-
-// ExpTaylor calculates the natural exponent of decimal (e to the power of d) using Taylor series expansion.
-// Precision argument specifies how precise the result must be (number of digits after decimal point).
-// Negative precision is allowed.
-//
-// ExpTaylor is much faster for large precision values than ExpHullAbrham.
-//
-// Example:
-//
-// d, err := NewFromFloat(26.1).ExpTaylor(2).String()
-// d.String() // output: "216314672147.06"
-//
-// NewFromFloat(26.1).ExpTaylor(20).String()
-// d.String() // output: "216314672147.05767284062928674083"
-//
-// NewFromFloat(26.1).ExpTaylor(-10).String()
-// d.String() // output: "220000000000"
-//
-func (d Decimal) ExpTaylor(precision int32) (Decimal, error) {
- // Note(mwoss): Implementation can be optimized by exclusively using big.Int API only
- if d.IsZero() {
- return Decimal{oneInt, 0}.Round(precision), nil
- }
-
- var epsilon Decimal
- var divPrecision int32
- if precision < 0 {
- epsilon = New(1, -1)
- divPrecision = 8
- } else {
- epsilon = New(1, -precision-1)
- divPrecision = precision + 1
- }
-
- decAbs := d.Abs()
- pow := d.Abs()
- factorial := New(1, 0)
-
- result := New(1, 0)
-
- for i := int64(1); ; {
- step := pow.DivRound(factorial, divPrecision)
- result = result.Add(step)
-
- // Stop Taylor series when current step is smaller than epsilon
- if step.Cmp(epsilon) < 0 {
- break
- }
-
- pow = pow.Mul(decAbs)
-
- i++
-
- // Calculate next factorial number or retrieve cached value
- if len(factorials) >= int(i) && !factorials[i-1].IsZero() {
- factorial = factorials[i-1]
- } else {
- // To avoid any race conditions, firstly the zero value is appended to a slice to create
- // a spot for newly calculated factorial. After that, the zero value is replaced by calculated
- // factorial using the index notation.
- factorial = factorials[i-2].Mul(New(i, 0))
- factorials = append(factorials, Zero)
- factorials[i-1] = factorial
- }
- }
-
- if d.Sign() < 0 {
- result = New(1, 0).DivRound(result, precision+1)
- }
-
- result = result.Round(precision)
- return result, nil
-}
-
-// NumDigits returns the number of digits of the decimal coefficient (d.Value)
-// Note: Current implementation is extremely slow for large decimals and/or decimals with large fractional part
-func (d Decimal) NumDigits() int {
- // Note(mwoss): It can be optimized, unnecessary cast of big.Int to string
- if d.IsNegative() {
- return len(d.value.String()) - 1
- }
- return len(d.value.String())
-}
-
-// IsInteger returns true when decimal can be represented as an integer value, otherwise, it returns false.
-func (d Decimal) IsInteger() bool {
- // The most typical case, all decimal with exponent higher or equal 0 can be represented as integer
- if d.exp >= 0 {
- return true
- }
- // When the exponent is negative we have to check every number after the decimal place
- // If all of them are zeroes, we are sure that given decimal can be represented as an integer
- var r big.Int
- q := new(big.Int).Set(d.value)
- for z := abs(d.exp); z > 0; z-- {
- q.QuoRem(q, tenInt, &r)
- if r.Cmp(zeroInt) != 0 {
- return false
- }
- }
- return true
-}
-
-// Abs calculates absolute value of any int32. Used for calculating absolute value of decimal's exponent.
-func abs(n int32) int32 {
- if n < 0 {
- return -n
- }
- return n
-}
-
-// Cmp compares the numbers represented by d and d2 and returns:
-//
-// -1 if d < d2
-// 0 if d == d2
-// +1 if d > d2
-//
-func (d Decimal) Cmp(d2 Decimal) int {
- d.ensureInitialized()
- d2.ensureInitialized()
-
- if d.exp == d2.exp {
- return d.value.Cmp(d2.value)
- }
-
- rd, rd2 := RescalePair(d, d2)
-
- return rd.value.Cmp(rd2.value)
-}
-
-// Equal returns whether the numbers represented by d and d2 are equal.
-func (d Decimal) Equal(d2 Decimal) bool {
- return d.Cmp(d2) == 0
-}
-
-// Equals is deprecated, please use Equal method instead
-func (d Decimal) Equals(d2 Decimal) bool {
- return d.Equal(d2)
-}
-
-// GreaterThan (GT) returns true when d is greater than d2.
-func (d Decimal) GreaterThan(d2 Decimal) bool {
- return d.Cmp(d2) == 1
-}
-
-// GreaterThanOrEqual (GTE) returns true when d is greater than or equal to d2.
-func (d Decimal) GreaterThanOrEqual(d2 Decimal) bool {
- cmp := d.Cmp(d2)
- return cmp == 1 || cmp == 0
-}
-
-// LessThan (LT) returns true when d is less than d2.
-func (d Decimal) LessThan(d2 Decimal) bool {
- return d.Cmp(d2) == -1
-}
-
-// LessThanOrEqual (LTE) returns true when d is less than or equal to d2.
-func (d Decimal) LessThanOrEqual(d2 Decimal) bool {
- cmp := d.Cmp(d2)
- return cmp == -1 || cmp == 0
-}
-
-// Sign returns:
-//
-// -1 if d < 0
-// 0 if d == 0
-// +1 if d > 0
-//
-func (d Decimal) Sign() int {
- if d.value == nil {
- return 0
- }
- return d.value.Sign()
-}
-
-// IsPositive return
-//
-// true if d > 0
-// false if d == 0
-// false if d < 0
-func (d Decimal) IsPositive() bool {
- return d.Sign() == 1
-}
-
-// IsNegative return
-//
-// true if d < 0
-// false if d == 0
-// false if d > 0
-func (d Decimal) IsNegative() bool {
- return d.Sign() == -1
-}
-
-// IsZero return
-//
-// true if d == 0
-// false if d > 0
-// false if d < 0
-func (d Decimal) IsZero() bool {
- return d.Sign() == 0
-}
-
-// Exponent returns the exponent, or scale component of the decimal.
-func (d Decimal) Exponent() int32 {
- return d.exp
-}
-
-// Coefficient returns the coefficient of the decimal. It is scaled by 10^Exponent()
-func (d Decimal) Coefficient() *big.Int {
- d.ensureInitialized()
- // we copy the coefficient so that mutating the result does not mutate the Decimal.
- return new(big.Int).Set(d.value)
-}
-
-// CoefficientInt64 returns the coefficient of the decimal as int64. It is scaled by 10^Exponent()
-// If coefficient cannot be represented in an int64, the result will be undefined.
-func (d Decimal) CoefficientInt64() int64 {
- d.ensureInitialized()
- return d.value.Int64()
-}
-
-// IntPart returns the integer component of the decimal.
-func (d Decimal) IntPart() int64 {
- scaledD := d.rescale(0)
- return scaledD.value.Int64()
-}
-
-// BigInt returns integer component of the decimal as a BigInt.
-func (d Decimal) BigInt() *big.Int {
- scaledD := d.rescale(0)
- i := &big.Int{}
- i.SetString(scaledD.String(), 10)
- return i
-}
-
-// BigFloat returns decimal as BigFloat.
-// Be aware that casting decimal to BigFloat might cause a loss of precision.
-func (d Decimal) BigFloat() *big.Float {
- f := &big.Float{}
- f.SetString(d.String())
- return f
-}
-
-// Rat returns a rational number representation of the decimal.
-func (d Decimal) Rat() *big.Rat {
- d.ensureInitialized()
- if d.exp <= 0 {
- // NOTE(vadim): must negate after casting to prevent int32 overflow
- denom := new(big.Int).Exp(tenInt, big.NewInt(-int64(d.exp)), nil)
- return new(big.Rat).SetFrac(d.value, denom)
- }
-
- mul := new(big.Int).Exp(tenInt, big.NewInt(int64(d.exp)), nil)
- num := new(big.Int).Mul(d.value, mul)
- return new(big.Rat).SetFrac(num, oneInt)
-}
-
-// Float64 returns the nearest float64 value for d and a bool indicating
-// whether f represents d exactly.
-// For more details, see the documentation for big.Rat.Float64
-func (d Decimal) Float64() (f float64, exact bool) {
- return d.Rat().Float64()
-}
-
-// InexactFloat64 returns the nearest float64 value for d.
-// It doesn't indicate if the returned value represents d exactly.
-func (d Decimal) InexactFloat64() float64 {
- f, _ := d.Float64()
- return f
-}
-
-// String returns the string representation of the decimal
-// with the fixed point.
-//
-// Example:
-//
-// d := New(-12345, -3)
-// println(d.String())
-//
-// Output:
-//
-// -12.345
-//
-func (d Decimal) String() string {
- return d.string(true)
-}
-
-// StringFixed returns a rounded fixed-point string with places digits after
-// the decimal point.
-//
-// Example:
-//
-// NewFromFloat(0).StringFixed(2) // output: "0.00"
-// NewFromFloat(0).StringFixed(0) // output: "0"
-// NewFromFloat(5.45).StringFixed(0) // output: "5"
-// NewFromFloat(5.45).StringFixed(1) // output: "5.5"
-// NewFromFloat(5.45).StringFixed(2) // output: "5.45"
-// NewFromFloat(5.45).StringFixed(3) // output: "5.450"
-// NewFromFloat(545).StringFixed(-1) // output: "550"
-//
-func (d Decimal) StringFixed(places int32) string {
- rounded := d.Round(places)
- return rounded.string(false)
-}
-
-// StringFixedBank returns a banker rounded fixed-point string with places digits
-// after the decimal point.
-//
-// Example:
-//
-// NewFromFloat(0).StringFixedBank(2) // output: "0.00"
-// NewFromFloat(0).StringFixedBank(0) // output: "0"
-// NewFromFloat(5.45).StringFixedBank(0) // output: "5"
-// NewFromFloat(5.45).StringFixedBank(1) // output: "5.4"
-// NewFromFloat(5.45).StringFixedBank(2) // output: "5.45"
-// NewFromFloat(5.45).StringFixedBank(3) // output: "5.450"
-// NewFromFloat(545).StringFixedBank(-1) // output: "540"
-//
-func (d Decimal) StringFixedBank(places int32) string {
- rounded := d.RoundBank(places)
- return rounded.string(false)
-}
-
-// StringFixedCash returns a Swedish/Cash rounded fixed-point string. For
-// more details see the documentation at function RoundCash.
-func (d Decimal) StringFixedCash(interval uint8) string {
- rounded := d.RoundCash(interval)
- return rounded.string(false)
-}
-
-// Round rounds the decimal to places decimal places.
-// If places < 0, it will round the integer part to the nearest 10^(-places).
-//
-// Example:
-//
-// NewFromFloat(5.45).Round(1).String() // output: "5.5"
-// NewFromFloat(545).Round(-1).String() // output: "550"
-//
-func (d Decimal) Round(places int32) Decimal {
- if d.exp == -places {
- return d
- }
- // truncate to places + 1
- ret := d.rescale(-places - 1)
-
- // add sign(d) * 0.5
- if ret.value.Sign() < 0 {
- ret.value.Sub(ret.value, fiveInt)
- } else {
- ret.value.Add(ret.value, fiveInt)
- }
-
- // floor for positive numbers, ceil for negative numbers
- _, m := ret.value.DivMod(ret.value, tenInt, new(big.Int))
- ret.exp++
- if ret.value.Sign() < 0 && m.Cmp(zeroInt) != 0 {
- ret.value.Add(ret.value, oneInt)
- }
-
- return ret
-}
-
-// RoundCeil rounds the decimal towards +infinity.
-//
-// Example:
-//
-// NewFromFloat(545).RoundCeil(-2).String() // output: "600"
-// NewFromFloat(500).RoundCeil(-2).String() // output: "500"
-// NewFromFloat(1.1001).RoundCeil(2).String() // output: "1.11"
-// NewFromFloat(-1.454).RoundCeil(1).String() // output: "-1.5"
-//
-func (d Decimal) RoundCeil(places int32) Decimal {
- if d.exp >= -places {
- return d
- }
-
- rescaled := d.rescale(-places)
- if d.Equal(rescaled) {
- return d
- }
-
- if d.value.Sign() > 0 {
- rescaled.value.Add(rescaled.value, oneInt)
- }
-
- return rescaled
-}
-
-// RoundFloor rounds the decimal towards -infinity.
-//
-// Example:
-//
-// NewFromFloat(545).RoundFloor(-2).String() // output: "500"
-// NewFromFloat(-500).RoundFloor(-2).String() // output: "-500"
-// NewFromFloat(1.1001).RoundFloor(2).String() // output: "1.1"
-// NewFromFloat(-1.454).RoundFloor(1).String() // output: "-1.4"
-//
-func (d Decimal) RoundFloor(places int32) Decimal {
- if d.exp >= -places {
- return d
- }
-
- rescaled := d.rescale(-places)
- if d.Equal(rescaled) {
- return d
- }
-
- if d.value.Sign() < 0 {
- rescaled.value.Sub(rescaled.value, oneInt)
- }
-
- return rescaled
-}
-
-// RoundUp rounds the decimal away from zero.
-//
-// Example:
-//
-// NewFromFloat(545).RoundUp(-2).String() // output: "600"
-// NewFromFloat(500).RoundUp(-2).String() // output: "500"
-// NewFromFloat(1.1001).RoundUp(2).String() // output: "1.11"
-// NewFromFloat(-1.454).RoundUp(1).String() // output: "-1.4"
-//
-func (d Decimal) RoundUp(places int32) Decimal {
- if d.exp >= -places {
- return d
- }
-
- rescaled := d.rescale(-places)
- if d.Equal(rescaled) {
- return d
- }
-
- if d.value.Sign() > 0 {
- rescaled.value.Add(rescaled.value, oneInt)
- } else if d.value.Sign() < 0 {
- rescaled.value.Sub(rescaled.value, oneInt)
- }
-
- return rescaled
-}
-
-// RoundDown rounds the decimal towards zero.
-//
-// Example:
-//
-// NewFromFloat(545).RoundDown(-2).String() // output: "500"
-// NewFromFloat(-500).RoundDown(-2).String() // output: "-500"
-// NewFromFloat(1.1001).RoundDown(2).String() // output: "1.1"
-// NewFromFloat(-1.454).RoundDown(1).String() // output: "-1.5"
-//
-func (d Decimal) RoundDown(places int32) Decimal {
- if d.exp >= -places {
- return d
- }
-
- rescaled := d.rescale(-places)
- if d.Equal(rescaled) {
- return d
- }
- return rescaled
-}
-
-// RoundBank rounds the decimal to places decimal places.
-// If the final digit to round is equidistant from the nearest two integers the
-// rounded value is taken as the even number
-//
-// If places < 0, it will round the integer part to the nearest 10^(-places).
-//
-// Examples:
-//
-// NewFromFloat(5.45).RoundBank(1).String() // output: "5.4"
-// NewFromFloat(545).RoundBank(-1).String() // output: "540"
-// NewFromFloat(5.46).RoundBank(1).String() // output: "5.5"
-// NewFromFloat(546).RoundBank(-1).String() // output: "550"
-// NewFromFloat(5.55).RoundBank(1).String() // output: "5.6"
-// NewFromFloat(555).RoundBank(-1).String() // output: "560"
-//
-func (d Decimal) RoundBank(places int32) Decimal {
-
- round := d.Round(places)
- remainder := d.Sub(round).Abs()
-
- half := New(5, -places-1)
- if remainder.Cmp(half) == 0 && round.value.Bit(0) != 0 {
- if round.value.Sign() < 0 {
- round.value.Add(round.value, oneInt)
- } else {
- round.value.Sub(round.value, oneInt)
- }
- }
-
- return round
-}
-
-// RoundCash aka Cash/Penny/öre rounding rounds decimal to a specific
-// interval. The amount payable for a cash transaction is rounded to the nearest
-// multiple of the minimum currency unit available. The following intervals are
-// available: 5, 10, 25, 50 and 100; any other number throws a panic.
-// 5: 5 cent rounding 3.43 => 3.45
-// 10: 10 cent rounding 3.45 => 3.50 (5 gets rounded up)
-// 25: 25 cent rounding 3.41 => 3.50
-// 50: 50 cent rounding 3.75 => 4.00
-// 100: 100 cent rounding 3.50 => 4.00
-// For more details: https://en.wikipedia.org/wiki/Cash_rounding
-func (d Decimal) RoundCash(interval uint8) Decimal {
- var iVal *big.Int
- switch interval {
- case 5:
- iVal = twentyInt
- case 10:
- iVal = tenInt
- case 25:
- iVal = fourInt
- case 50:
- iVal = twoInt
- case 100:
- iVal = oneInt
- default:
- panic(fmt.Sprintf("Decimal does not support this Cash rounding interval `%d`. Supported: 5, 10, 25, 50, 100", interval))
- }
- dVal := Decimal{
- value: iVal,
- }
-
- // TODO: optimize those calculations to reduce the high allocations (~29 allocs).
- return d.Mul(dVal).Round(0).Div(dVal).Truncate(2)
-}
-
-// Floor returns the nearest integer value less than or equal to d.
-func (d Decimal) Floor() Decimal {
- d.ensureInitialized()
-
- if d.exp >= 0 {
- return d
- }
-
- exp := big.NewInt(10)
-
- // NOTE(vadim): must negate after casting to prevent int32 overflow
- exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
-
- z := new(big.Int).Div(d.value, exp)
- return Decimal{value: z, exp: 0}
-}
-
-// Ceil returns the nearest integer value greater than or equal to d.
-func (d Decimal) Ceil() Decimal {
- d.ensureInitialized()
-
- if d.exp >= 0 {
- return d
- }
-
- exp := big.NewInt(10)
-
- // NOTE(vadim): must negate after casting to prevent int32 overflow
- exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
-
- z, m := new(big.Int).DivMod(d.value, exp, new(big.Int))
- if m.Cmp(zeroInt) != 0 {
- z.Add(z, oneInt)
- }
- return Decimal{value: z, exp: 0}
-}
-
-// Truncate truncates off digits from the number, without rounding.
-//
-// NOTE: precision is the last digit that will not be truncated (must be >= 0).
-//
-// Example:
-//
-// decimal.NewFromString("123.456").Truncate(2).String() // "123.45"
-//
-func (d Decimal) Truncate(precision int32) Decimal {
- d.ensureInitialized()
- if precision >= 0 && -precision > d.exp {
- return d.rescale(-precision)
- }
- return d
-}
-
-// UnmarshalJSON implements the json.Unmarshaler interface.
-func (d *Decimal) UnmarshalJSON(decimalBytes []byte) error {
- if string(decimalBytes) == "null" {
- return nil
- }
-
- str, err := unquoteIfQuoted(decimalBytes)
- if err != nil {
- return fmt.Errorf("error decoding string '%s': %s", decimalBytes, err)
- }
-
- decimal, err := NewFromString(str)
- *d = decimal
- if err != nil {
- return fmt.Errorf("error decoding string '%s': %s", str, err)
- }
- return nil
-}
-
-// MarshalJSON implements the json.Marshaler interface.
-func (d Decimal) MarshalJSON() ([]byte, error) {
- var str string
- if MarshalJSONWithoutQuotes {
- str = d.String()
- } else {
- str = "\"" + d.String() + "\""
- }
- return []byte(str), nil
-}
-
-// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface. As a string representation
-// is already used when encoding to text, this method stores that string as []byte
-func (d *Decimal) UnmarshalBinary(data []byte) error {
- // Verify we have at least 4 bytes for the exponent. The GOB encoded value
- // may be empty.
- if len(data) < 4 {
- return fmt.Errorf("error decoding binary %v: expected at least 4 bytes, got %d", data, len(data))
- }
-
- // Extract the exponent
- d.exp = int32(binary.BigEndian.Uint32(data[:4]))
-
- // Extract the value
- d.value = new(big.Int)
- if err := d.value.GobDecode(data[4:]); err != nil {
- return fmt.Errorf("error decoding binary %v: %s", data, err)
- }
-
- return nil
-}
-
-// MarshalBinary implements the encoding.BinaryMarshaler interface.
-func (d Decimal) MarshalBinary() (data []byte, err error) {
- // Write the exponent first since it's a fixed size
- v1 := make([]byte, 4)
- binary.BigEndian.PutUint32(v1, uint32(d.exp))
-
- // Add the value
- var v2 []byte
- if v2, err = d.value.GobEncode(); err != nil {
- return
- }
-
- // Return the byte array
- data = append(v1, v2...)
- return
-}
-
-// Scan implements the sql.Scanner interface for database deserialization.
-func (d *Decimal) Scan(value interface{}) error {
- // first try to see if the data is stored in database as a Numeric datatype
- switch v := value.(type) {
-
- case float32:
- *d = NewFromFloat(float64(v))
- return nil
-
- case float64:
- // numeric in sqlite3 sends us float64
- *d = NewFromFloat(v)
- return nil
-
- case int64:
- // at least in sqlite3 when the value is 0 in db, the data is sent
- // to us as an int64 instead of a float64 ...
- *d = New(v, 0)
- return nil
-
- default:
- // default is trying to interpret value stored as string
- str, err := unquoteIfQuoted(v)
- if err != nil {
- return err
- }
- *d, err = NewFromString(str)
- return err
- }
-}
-
-// Value implements the driver.Valuer interface for database serialization.
-func (d Decimal) Value() (driver.Value, error) {
- return d.String(), nil
-}
-
-// UnmarshalText implements the encoding.TextUnmarshaler interface for XML
-// deserialization.
-func (d *Decimal) UnmarshalText(text []byte) error {
- str := string(text)
-
- dec, err := NewFromString(str)
- *d = dec
- if err != nil {
- return fmt.Errorf("error decoding string '%s': %s", str, err)
- }
-
- return nil
-}
-
-// MarshalText implements the encoding.TextMarshaler interface for XML
-// serialization.
-func (d Decimal) MarshalText() (text []byte, err error) {
- return []byte(d.String()), nil
-}
-
-// GobEncode implements the gob.GobEncoder interface for gob serialization.
-func (d Decimal) GobEncode() ([]byte, error) {
- return d.MarshalBinary()
-}
-
-// GobDecode implements the gob.GobDecoder interface for gob serialization.
-func (d *Decimal) GobDecode(data []byte) error {
- return d.UnmarshalBinary(data)
-}
-
-// StringScaled first scales the decimal then calls .String() on it.
-// NOTE: buggy, unintuitive, and DEPRECATED! Use StringFixed instead.
-func (d Decimal) StringScaled(exp int32) string {
- return d.rescale(exp).String()
-}
-
-func (d Decimal) string(trimTrailingZeros bool) string {
- if d.exp >= 0 {
- return d.rescale(0).value.String()
- }
-
- abs := new(big.Int).Abs(d.value)
- str := abs.String()
-
- var intPart, fractionalPart string
-
- // NOTE(vadim): this cast to int will cause bugs if d.exp == INT_MIN
- // and you are on a 32-bit machine. Won't fix this super-edge case.
- dExpInt := int(d.exp)
- if len(str) > -dExpInt {
- intPart = str[:len(str)+dExpInt]
- fractionalPart = str[len(str)+dExpInt:]
- } else {
- intPart = "0"
-
- num0s := -dExpInt - len(str)
- fractionalPart = strings.Repeat("0", num0s) + str
- }
-
- if trimTrailingZeros {
- i := len(fractionalPart) - 1
- for ; i >= 0; i-- {
- if fractionalPart[i] != '0' {
- break
- }
- }
- fractionalPart = fractionalPart[:i+1]
- }
-
- number := intPart
- if len(fractionalPart) > 0 {
- number += "." + fractionalPart
- }
-
- if d.value.Sign() < 0 {
- return "-" + number
- }
-
- return number
-}
-
-func (d *Decimal) ensureInitialized() {
- if d.value == nil {
- d.value = new(big.Int)
- }
-}
-
-// Min returns the smallest Decimal that was passed in the arguments.
-//
-// To call this function with an array, you must do:
-//
-// Min(arr[0], arr[1:]...)
-//
-// This makes it harder to accidentally call Min with 0 arguments.
-func Min(first Decimal, rest ...Decimal) Decimal {
- ans := first
- for _, item := range rest {
- if item.Cmp(ans) < 0 {
- ans = item
- }
- }
- return ans
-}
-
-// Max returns the largest Decimal that was passed in the arguments.
-//
-// To call this function with an array, you must do:
-//
-// Max(arr[0], arr[1:]...)
-//
-// This makes it harder to accidentally call Max with 0 arguments.
-func Max(first Decimal, rest ...Decimal) Decimal {
- ans := first
- for _, item := range rest {
- if item.Cmp(ans) > 0 {
- ans = item
- }
- }
- return ans
-}
-
-// Sum returns the combined total of the provided first and rest Decimals
-func Sum(first Decimal, rest ...Decimal) Decimal {
- total := first
- for _, item := range rest {
- total = total.Add(item)
- }
-
- return total
-}
-
-// Avg returns the average value of the provided first and rest Decimals
-func Avg(first Decimal, rest ...Decimal) Decimal {
- count := New(int64(len(rest)+1), 0)
- sum := Sum(first, rest...)
- return sum.Div(count)
-}
-
-// RescalePair rescales two decimals to common exponential value (minimal exp of both decimals)
-func RescalePair(d1 Decimal, d2 Decimal) (Decimal, Decimal) {
- d1.ensureInitialized()
- d2.ensureInitialized()
-
- if d1.exp == d2.exp {
- return d1, d2
- }
-
- baseScale := min(d1.exp, d2.exp)
- if baseScale != d1.exp {
- return d1.rescale(baseScale), d2
- }
- return d1, d2.rescale(baseScale)
-}
-
-func min(x, y int32) int32 {
- if x >= y {
- return y
- }
- return x
-}
-
-func unquoteIfQuoted(value interface{}) (string, error) {
- var bytes []byte
-
- switch v := value.(type) {
- case string:
- bytes = []byte(v)
- case []byte:
- bytes = v
- default:
- return "", fmt.Errorf("could not convert value '%+v' to byte array of type '%T'",
- value, value)
- }
-
- // If the amount is quoted, strip the quotes
- if len(bytes) > 2 && bytes[0] == '"' && bytes[len(bytes)-1] == '"' {
- bytes = bytes[1 : len(bytes)-1]
- }
- return string(bytes), nil
-}
-
-// NullDecimal represents a nullable decimal with compatibility for
-// scanning null values from the database.
-type NullDecimal struct {
- Decimal Decimal
- Valid bool
-}
-
-func NewNullDecimal(d Decimal) NullDecimal {
- return NullDecimal{
- Decimal: d,
- Valid: true,
- }
-}
-
-// Scan implements the sql.Scanner interface for database deserialization.
-func (d *NullDecimal) Scan(value interface{}) error {
- if value == nil {
- d.Valid = false
- return nil
- }
- d.Valid = true
- return d.Decimal.Scan(value)
-}
-
-// Value implements the driver.Valuer interface for database serialization.
-func (d NullDecimal) Value() (driver.Value, error) {
- if !d.Valid {
- return nil, nil
- }
- return d.Decimal.Value()
-}
-
-// UnmarshalJSON implements the json.Unmarshaler interface.
-func (d *NullDecimal) UnmarshalJSON(decimalBytes []byte) error {
- if string(decimalBytes) == "null" {
- d.Valid = false
- return nil
- }
- d.Valid = true
- return d.Decimal.UnmarshalJSON(decimalBytes)
-}
-
-// MarshalJSON implements the json.Marshaler interface.
-func (d NullDecimal) MarshalJSON() ([]byte, error) {
- if !d.Valid {
- return []byte("null"), nil
- }
- return d.Decimal.MarshalJSON()
-}
-
-// UnmarshalText implements the encoding.TextUnmarshaler interface for XML
-// deserialization
-func (d *NullDecimal) UnmarshalText(text []byte) error {
- str := string(text)
-
- // check for empty XML or XML without body e.g., <tag></tag>
- if str == "" {
- d.Valid = false
- return nil
- }
- if err := d.Decimal.UnmarshalText(text); err != nil {
- d.Valid = false
- return err
- }
- d.Valid = true
- return nil
-}
-
-// MarshalText implements the encoding.TextMarshaler interface for XML
-// serialization.
-func (d NullDecimal) MarshalText() (text []byte, err error) {
- if !d.Valid {
- return []byte{}, nil
- }
- return d.Decimal.MarshalText()
-}
-
-// Trig functions
-
-// Atan returns the arctangent, in radians, of x.
-func (d Decimal) Atan() Decimal {
- if d.Equal(NewFromFloat(0.0)) {
- return d
- }
- if d.GreaterThan(NewFromFloat(0.0)) {
- return d.satan()
- }
- return d.Neg().satan().Neg()
-}
-
-func (d Decimal) xatan() Decimal {
- P0 := NewFromFloat(-8.750608600031904122785e-01)
- P1 := NewFromFloat(-1.615753718733365076637e+01)
- P2 := NewFromFloat(-7.500855792314704667340e+01)
- P3 := NewFromFloat(-1.228866684490136173410e+02)
- P4 := NewFromFloat(-6.485021904942025371773e+01)
- Q0 := NewFromFloat(2.485846490142306297962e+01)
- Q1 := NewFromFloat(1.650270098316988542046e+02)
- Q2 := NewFromFloat(4.328810604912902668951e+02)
- Q3 := NewFromFloat(4.853903996359136964868e+02)
- Q4 := NewFromFloat(1.945506571482613964425e+02)
- z := d.Mul(d)
- b1 := P0.Mul(z).Add(P1).Mul(z).Add(P2).Mul(z).Add(P3).Mul(z).Add(P4).Mul(z)
- b2 := z.Add(Q0).Mul(z).Add(Q1).Mul(z).Add(Q2).Mul(z).Add(Q3).Mul(z).Add(Q4)
- z = b1.Div(b2)
- z = d.Mul(z).Add(d)
- return z
-}
-
-// satan reduces its argument (known to be positive)
-// to the range [0, 0.66] and calls xatan.
-func (d Decimal) satan() Decimal {
- Morebits := NewFromFloat(6.123233995736765886130e-17) // pi/2 = PIO2 + Morebits
- Tan3pio8 := NewFromFloat(2.41421356237309504880) // tan(3*pi/8)
- pi := NewFromFloat(3.14159265358979323846264338327950288419716939937510582097494459)
-
- if d.LessThanOrEqual(NewFromFloat(0.66)) {
- return d.xatan()
- }
- if d.GreaterThan(Tan3pio8) {
- return pi.Div(NewFromFloat(2.0)).Sub(NewFromFloat(1.0).Div(d).xatan()).Add(Morebits)
- }
- return pi.Div(NewFromFloat(4.0)).Add((d.Sub(NewFromFloat(1.0)).Div(d.Add(NewFromFloat(1.0)))).xatan()).Add(NewFromFloat(0.5).Mul(Morebits))
-}
-
-// sin coefficients
-var _sin = [...]Decimal{
- NewFromFloat(1.58962301576546568060e-10), // 0x3de5d8fd1fd19ccd
- NewFromFloat(-2.50507477628578072866e-8), // 0xbe5ae5e5a9291f5d
- NewFromFloat(2.75573136213857245213e-6), // 0x3ec71de3567d48a1
- NewFromFloat(-1.98412698295895385996e-4), // 0xbf2a01a019bfdf03
- NewFromFloat(8.33333333332211858878e-3), // 0x3f8111111110f7d0
- NewFromFloat(-1.66666666666666307295e-1), // 0xbfc5555555555548
-}
-
-// Sin returns the sine of the radian argument x.
-func (d Decimal) Sin() Decimal {
- PI4A := NewFromFloat(7.85398125648498535156e-1) // 0x3fe921fb40000000, Pi/4 split into three parts
- PI4B := NewFromFloat(3.77489470793079817668e-8) // 0x3e64442d00000000,
- PI4C := NewFromFloat(2.69515142907905952645e-15) // 0x3ce8469898cc5170,
- M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
-
- if d.Equal(NewFromFloat(0.0)) {
- return d
- }
- // make argument positive but save the sign
- sign := false
- if d.LessThan(NewFromFloat(0.0)) {
- d = d.Neg()
- sign = true
- }
-
- j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
- y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
-
- // map zeros to origin
- if j&1 == 1 {
- j++
- y = y.Add(NewFromFloat(1.0))
- }
- j &= 7 // octant modulo 2Pi radians (360 degrees)
- // reflect in x axis
- if j > 3 {
- sign = !sign
- j -= 4
- }
- z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
- zz := z.Mul(z)
-
- if j == 1 || j == 2 {
- w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
- y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
- } else {
- y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
- }
- if sign {
- y = y.Neg()
- }
- return y
-}
-
-// cos coefficients
-var _cos = [...]Decimal{
- NewFromFloat(-1.13585365213876817300e-11), // 0xbda8fa49a0861a9b
- NewFromFloat(2.08757008419747316778e-9), // 0x3e21ee9d7b4e3f05
- NewFromFloat(-2.75573141792967388112e-7), // 0xbe927e4f7eac4bc6
- NewFromFloat(2.48015872888517045348e-5), // 0x3efa01a019c844f5
- NewFromFloat(-1.38888888888730564116e-3), // 0xbf56c16c16c14f91
- NewFromFloat(4.16666666666665929218e-2), // 0x3fa555555555554b
-}
-
-// Cos returns the cosine of the radian argument x.
-func (d Decimal) Cos() Decimal {
-
- PI4A := NewFromFloat(7.85398125648498535156e-1) // 0x3fe921fb40000000, Pi/4 split into three parts
- PI4B := NewFromFloat(3.77489470793079817668e-8) // 0x3e64442d00000000,
- PI4C := NewFromFloat(2.69515142907905952645e-15) // 0x3ce8469898cc5170,
- M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
-
- // make argument positive
- sign := false
- if d.LessThan(NewFromFloat(0.0)) {
- d = d.Neg()
- }
-
- j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
- y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
-
- // map zeros to origin
- if j&1 == 1 {
- j++
- y = y.Add(NewFromFloat(1.0))
- }
- j &= 7 // octant modulo 2Pi radians (360 degrees)
- // reflect in x axis
- if j > 3 {
- sign = !sign
- j -= 4
- }
- if j > 1 {
- sign = !sign
- }
-
- z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
- zz := z.Mul(z)
-
- if j == 1 || j == 2 {
- y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
- } else {
- w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
- y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
- }
- if sign {
- y = y.Neg()
- }
- return y
-}
-
-var _tanP = [...]Decimal{
- NewFromFloat(-1.30936939181383777646e+4), // 0xc0c992d8d24f3f38
- NewFromFloat(1.15351664838587416140e+6), // 0x413199eca5fc9ddd
- NewFromFloat(-1.79565251976484877988e+7), // 0xc1711fead3299176
-}
-var _tanQ = [...]Decimal{
- NewFromFloat(1.00000000000000000000e+0),
- NewFromFloat(1.36812963470692954678e+4), //0x40cab8a5eeb36572
- NewFromFloat(-1.32089234440210967447e+6), //0xc13427bc582abc96
- NewFromFloat(2.50083801823357915839e+7), //0x4177d98fc2ead8ef
- NewFromFloat(-5.38695755929454629881e+7), //0xc189afe03cbe5a31
-}
-
-// Tan returns the tangent of the radian argument x.
-func (d Decimal) Tan() Decimal {
-
- PI4A := NewFromFloat(7.85398125648498535156e-1) // 0x3fe921fb40000000, Pi/4 split into three parts
- PI4B := NewFromFloat(3.77489470793079817668e-8) // 0x3e64442d00000000,
- PI4C := NewFromFloat(2.69515142907905952645e-15) // 0x3ce8469898cc5170,
- M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
-
- if d.Equal(NewFromFloat(0.0)) {
- return d
- }
-
- // make argument positive but save the sign
- sign := false
- if d.LessThan(NewFromFloat(0.0)) {
- d = d.Neg()
- sign = true
- }
-
- j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
- y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
-
- // map zeros to origin
- if j&1 == 1 {
- j++
- y = y.Add(NewFromFloat(1.0))
- }
-
- z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
- zz := z.Mul(z)
-
- if zz.GreaterThan(NewFromFloat(1e-14)) {
- w := zz.Mul(_tanP[0].Mul(zz).Add(_tanP[1]).Mul(zz).Add(_tanP[2]))
- x := zz.Add(_tanQ[1]).Mul(zz).Add(_tanQ[2]).Mul(zz).Add(_tanQ[3]).Mul(zz).Add(_tanQ[4])
- y = z.Add(z.Mul(w.Div(x)))
- } else {
- y = z
- }
- if j&2 == 2 {
- y = NewFromFloat(-1.0).Div(y)
- }
- if sign {
- y = y.Neg()
- }
- return y
-}