diff options
Diffstat (limited to 'vendor/github.com/klauspost/compress/huff0/compress.go')
-rw-r--r-- | vendor/github.com/klauspost/compress/huff0/compress.go | 742 |
1 files changed, 0 insertions, 742 deletions
diff --git a/vendor/github.com/klauspost/compress/huff0/compress.go b/vendor/github.com/klauspost/compress/huff0/compress.go deleted file mode 100644 index 84aa3d12f..000000000 --- a/vendor/github.com/klauspost/compress/huff0/compress.go +++ /dev/null @@ -1,742 +0,0 @@ -package huff0 - -import ( - "fmt" - "math" - "runtime" - "sync" -) - -// Compress1X will compress the input. -// The output can be decoded using Decompress1X. -// Supply a Scratch object. The scratch object contains state about re-use, -// So when sharing across independent encodes, be sure to set the re-use policy. -func Compress1X(in []byte, s *Scratch) (out []byte, reUsed bool, err error) { - s, err = s.prepare(in) - if err != nil { - return nil, false, err - } - return compress(in, s, s.compress1X) -} - -// Compress4X will compress the input. The input is split into 4 independent blocks -// and compressed similar to Compress1X. -// The output can be decoded using Decompress4X. -// Supply a Scratch object. The scratch object contains state about re-use, -// So when sharing across independent encodes, be sure to set the re-use policy. -func Compress4X(in []byte, s *Scratch) (out []byte, reUsed bool, err error) { - s, err = s.prepare(in) - if err != nil { - return nil, false, err - } - if false { - // TODO: compress4Xp only slightly faster. - const parallelThreshold = 8 << 10 - if len(in) < parallelThreshold || runtime.GOMAXPROCS(0) == 1 { - return compress(in, s, s.compress4X) - } - return compress(in, s, s.compress4Xp) - } - return compress(in, s, s.compress4X) -} - -func compress(in []byte, s *Scratch, compressor func(src []byte) ([]byte, error)) (out []byte, reUsed bool, err error) { - // Nuke previous table if we cannot reuse anyway. - if s.Reuse == ReusePolicyNone { - s.prevTable = s.prevTable[:0] - } - - // Create histogram, if none was provided. - maxCount := s.maxCount - var canReuse = false - if maxCount == 0 { - maxCount, canReuse = s.countSimple(in) - } else { - canReuse = s.canUseTable(s.prevTable) - } - - // We want the output size to be less than this: - wantSize := len(in) - if s.WantLogLess > 0 { - wantSize -= wantSize >> s.WantLogLess - } - - // Reset for next run. - s.clearCount = true - s.maxCount = 0 - if maxCount >= len(in) { - if maxCount > len(in) { - return nil, false, fmt.Errorf("maxCount (%d) > length (%d)", maxCount, len(in)) - } - if len(in) == 1 { - return nil, false, ErrIncompressible - } - // One symbol, use RLE - return nil, false, ErrUseRLE - } - if maxCount == 1 || maxCount < (len(in)>>7) { - // Each symbol present maximum once or too well distributed. - return nil, false, ErrIncompressible - } - if s.Reuse == ReusePolicyMust && !canReuse { - // We must reuse, but we can't. - return nil, false, ErrIncompressible - } - if (s.Reuse == ReusePolicyPrefer || s.Reuse == ReusePolicyMust) && canReuse { - keepTable := s.cTable - keepTL := s.actualTableLog - s.cTable = s.prevTable - s.actualTableLog = s.prevTableLog - s.Out, err = compressor(in) - s.cTable = keepTable - s.actualTableLog = keepTL - if err == nil && len(s.Out) < wantSize { - s.OutData = s.Out - return s.Out, true, nil - } - if s.Reuse == ReusePolicyMust { - return nil, false, ErrIncompressible - } - // Do not attempt to re-use later. - s.prevTable = s.prevTable[:0] - } - - // Calculate new table. - err = s.buildCTable() - if err != nil { - return nil, false, err - } - - if false && !s.canUseTable(s.cTable) { - panic("invalid table generated") - } - - if s.Reuse == ReusePolicyAllow && canReuse { - hSize := len(s.Out) - oldSize := s.prevTable.estimateSize(s.count[:s.symbolLen]) - newSize := s.cTable.estimateSize(s.count[:s.symbolLen]) - if oldSize <= hSize+newSize || hSize+12 >= wantSize { - // Retain cTable even if we re-use. - keepTable := s.cTable - keepTL := s.actualTableLog - - s.cTable = s.prevTable - s.actualTableLog = s.prevTableLog - s.Out, err = compressor(in) - - // Restore ctable. - s.cTable = keepTable - s.actualTableLog = keepTL - if err != nil { - return nil, false, err - } - if len(s.Out) >= wantSize { - return nil, false, ErrIncompressible - } - s.OutData = s.Out - return s.Out, true, nil - } - } - - // Use new table - err = s.cTable.write(s) - if err != nil { - s.OutTable = nil - return nil, false, err - } - s.OutTable = s.Out - - // Compress using new table - s.Out, err = compressor(in) - if err != nil { - s.OutTable = nil - return nil, false, err - } - if len(s.Out) >= wantSize { - s.OutTable = nil - return nil, false, ErrIncompressible - } - // Move current table into previous. - s.prevTable, s.prevTableLog, s.cTable = s.cTable, s.actualTableLog, s.prevTable[:0] - s.OutData = s.Out[len(s.OutTable):] - return s.Out, false, nil -} - -// EstimateSizes will estimate the data sizes -func EstimateSizes(in []byte, s *Scratch) (tableSz, dataSz, reuseSz int, err error) { - s, err = s.prepare(in) - if err != nil { - return 0, 0, 0, err - } - - // Create histogram, if none was provided. - tableSz, dataSz, reuseSz = -1, -1, -1 - maxCount := s.maxCount - var canReuse = false - if maxCount == 0 { - maxCount, canReuse = s.countSimple(in) - } else { - canReuse = s.canUseTable(s.prevTable) - } - - // We want the output size to be less than this: - wantSize := len(in) - if s.WantLogLess > 0 { - wantSize -= wantSize >> s.WantLogLess - } - - // Reset for next run. - s.clearCount = true - s.maxCount = 0 - if maxCount >= len(in) { - if maxCount > len(in) { - return 0, 0, 0, fmt.Errorf("maxCount (%d) > length (%d)", maxCount, len(in)) - } - if len(in) == 1 { - return 0, 0, 0, ErrIncompressible - } - // One symbol, use RLE - return 0, 0, 0, ErrUseRLE - } - if maxCount == 1 || maxCount < (len(in)>>7) { - // Each symbol present maximum once or too well distributed. - return 0, 0, 0, ErrIncompressible - } - - // Calculate new table. - err = s.buildCTable() - if err != nil { - return 0, 0, 0, err - } - - if false && !s.canUseTable(s.cTable) { - panic("invalid table generated") - } - - tableSz, err = s.cTable.estTableSize(s) - if err != nil { - return 0, 0, 0, err - } - if canReuse { - reuseSz = s.prevTable.estimateSize(s.count[:s.symbolLen]) - } - dataSz = s.cTable.estimateSize(s.count[:s.symbolLen]) - - // Restore - return tableSz, dataSz, reuseSz, nil -} - -func (s *Scratch) compress1X(src []byte) ([]byte, error) { - return s.compress1xDo(s.Out, src), nil -} - -func (s *Scratch) compress1xDo(dst, src []byte) []byte { - var bw = bitWriter{out: dst} - - // N is length divisible by 4. - n := len(src) - n -= n & 3 - cTable := s.cTable[:256] - - // Encode last bytes. - for i := len(src) & 3; i > 0; i-- { - bw.encSymbol(cTable, src[n+i-1]) - } - n -= 4 - if s.actualTableLog <= 8 { - for ; n >= 0; n -= 4 { - tmp := src[n : n+4] - // tmp should be len 4 - bw.flush32() - bw.encFourSymbols(cTable[tmp[3]], cTable[tmp[2]], cTable[tmp[1]], cTable[tmp[0]]) - } - } else { - for ; n >= 0; n -= 4 { - tmp := src[n : n+4] - // tmp should be len 4 - bw.flush32() - bw.encTwoSymbols(cTable, tmp[3], tmp[2]) - bw.flush32() - bw.encTwoSymbols(cTable, tmp[1], tmp[0]) - } - } - bw.close() - return bw.out -} - -var sixZeros [6]byte - -func (s *Scratch) compress4X(src []byte) ([]byte, error) { - if len(src) < 12 { - return nil, ErrIncompressible - } - segmentSize := (len(src) + 3) / 4 - - // Add placeholder for output length - offsetIdx := len(s.Out) - s.Out = append(s.Out, sixZeros[:]...) - - for i := 0; i < 4; i++ { - toDo := src - if len(toDo) > segmentSize { - toDo = toDo[:segmentSize] - } - src = src[len(toDo):] - - idx := len(s.Out) - s.Out = s.compress1xDo(s.Out, toDo) - if len(s.Out)-idx > math.MaxUint16 { - // We cannot store the size in the jump table - return nil, ErrIncompressible - } - // Write compressed length as little endian before block. - if i < 3 { - // Last length is not written. - length := len(s.Out) - idx - s.Out[i*2+offsetIdx] = byte(length) - s.Out[i*2+offsetIdx+1] = byte(length >> 8) - } - } - - return s.Out, nil -} - -// compress4Xp will compress 4 streams using separate goroutines. -func (s *Scratch) compress4Xp(src []byte) ([]byte, error) { - if len(src) < 12 { - return nil, ErrIncompressible - } - // Add placeholder for output length - s.Out = s.Out[:6] - - segmentSize := (len(src) + 3) / 4 - var wg sync.WaitGroup - wg.Add(4) - for i := 0; i < 4; i++ { - toDo := src - if len(toDo) > segmentSize { - toDo = toDo[:segmentSize] - } - src = src[len(toDo):] - - // Separate goroutine for each block. - go func(i int) { - s.tmpOut[i] = s.compress1xDo(s.tmpOut[i][:0], toDo) - wg.Done() - }(i) - } - wg.Wait() - for i := 0; i < 4; i++ { - o := s.tmpOut[i] - if len(o) > math.MaxUint16 { - // We cannot store the size in the jump table - return nil, ErrIncompressible - } - // Write compressed length as little endian before block. - if i < 3 { - // Last length is not written. - s.Out[i*2] = byte(len(o)) - s.Out[i*2+1] = byte(len(o) >> 8) - } - - // Write output. - s.Out = append(s.Out, o...) - } - return s.Out, nil -} - -// countSimple will create a simple histogram in s.count. -// Returns the biggest count. -// Does not update s.clearCount. -func (s *Scratch) countSimple(in []byte) (max int, reuse bool) { - reuse = true - _ = s.count // Assert that s != nil to speed up the following loop. - for _, v := range in { - s.count[v]++ - } - m := uint32(0) - if len(s.prevTable) > 0 { - for i, v := range s.count[:] { - if v == 0 { - continue - } - if v > m { - m = v - } - s.symbolLen = uint16(i) + 1 - if i >= len(s.prevTable) { - reuse = false - } else if s.prevTable[i].nBits == 0 { - reuse = false - } - } - return int(m), reuse - } - for i, v := range s.count[:] { - if v == 0 { - continue - } - if v > m { - m = v - } - s.symbolLen = uint16(i) + 1 - } - return int(m), false -} - -func (s *Scratch) canUseTable(c cTable) bool { - if len(c) < int(s.symbolLen) { - return false - } - for i, v := range s.count[:s.symbolLen] { - if v != 0 && c[i].nBits == 0 { - return false - } - } - return true -} - -//lint:ignore U1000 used for debugging -func (s *Scratch) validateTable(c cTable) bool { - if len(c) < int(s.symbolLen) { - return false - } - for i, v := range s.count[:s.symbolLen] { - if v != 0 { - if c[i].nBits == 0 { - return false - } - if c[i].nBits > s.actualTableLog { - return false - } - } - } - return true -} - -// minTableLog provides the minimum logSize to safely represent a distribution. -func (s *Scratch) minTableLog() uint8 { - minBitsSrc := highBit32(uint32(s.srcLen)) + 1 - minBitsSymbols := highBit32(uint32(s.symbolLen-1)) + 2 - if minBitsSrc < minBitsSymbols { - return uint8(minBitsSrc) - } - return uint8(minBitsSymbols) -} - -// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog -func (s *Scratch) optimalTableLog() { - tableLog := s.TableLog - minBits := s.minTableLog() - maxBitsSrc := uint8(highBit32(uint32(s.srcLen-1))) - 1 - if maxBitsSrc < tableLog { - // Accuracy can be reduced - tableLog = maxBitsSrc - } - if minBits > tableLog { - tableLog = minBits - } - // Need a minimum to safely represent all symbol values - if tableLog < minTablelog { - tableLog = minTablelog - } - if tableLog > tableLogMax { - tableLog = tableLogMax - } - s.actualTableLog = tableLog -} - -type cTableEntry struct { - val uint16 - nBits uint8 - // We have 8 bits extra -} - -const huffNodesMask = huffNodesLen - 1 - -func (s *Scratch) buildCTable() error { - s.optimalTableLog() - s.huffSort() - if cap(s.cTable) < maxSymbolValue+1 { - s.cTable = make([]cTableEntry, s.symbolLen, maxSymbolValue+1) - } else { - s.cTable = s.cTable[:s.symbolLen] - for i := range s.cTable { - s.cTable[i] = cTableEntry{} - } - } - - var startNode = int16(s.symbolLen) - nonNullRank := s.symbolLen - 1 - - nodeNb := startNode - huffNode := s.nodes[1 : huffNodesLen+1] - - // This overlays the slice above, but allows "-1" index lookups. - // Different from reference implementation. - huffNode0 := s.nodes[0 : huffNodesLen+1] - - for huffNode[nonNullRank].count() == 0 { - nonNullRank-- - } - - lowS := int16(nonNullRank) - nodeRoot := nodeNb + lowS - 1 - lowN := nodeNb - huffNode[nodeNb].setCount(huffNode[lowS].count() + huffNode[lowS-1].count()) - huffNode[lowS].setParent(nodeNb) - huffNode[lowS-1].setParent(nodeNb) - nodeNb++ - lowS -= 2 - for n := nodeNb; n <= nodeRoot; n++ { - huffNode[n].setCount(1 << 30) - } - // fake entry, strong barrier - huffNode0[0].setCount(1 << 31) - - // create parents - for nodeNb <= nodeRoot { - var n1, n2 int16 - if huffNode0[lowS+1].count() < huffNode0[lowN+1].count() { - n1 = lowS - lowS-- - } else { - n1 = lowN - lowN++ - } - if huffNode0[lowS+1].count() < huffNode0[lowN+1].count() { - n2 = lowS - lowS-- - } else { - n2 = lowN - lowN++ - } - - huffNode[nodeNb].setCount(huffNode0[n1+1].count() + huffNode0[n2+1].count()) - huffNode0[n1+1].setParent(nodeNb) - huffNode0[n2+1].setParent(nodeNb) - nodeNb++ - } - - // distribute weights (unlimited tree height) - huffNode[nodeRoot].setNbBits(0) - for n := nodeRoot - 1; n >= startNode; n-- { - huffNode[n].setNbBits(huffNode[huffNode[n].parent()].nbBits() + 1) - } - for n := uint16(0); n <= nonNullRank; n++ { - huffNode[n].setNbBits(huffNode[huffNode[n].parent()].nbBits() + 1) - } - s.actualTableLog = s.setMaxHeight(int(nonNullRank)) - maxNbBits := s.actualTableLog - - // fill result into tree (val, nbBits) - if maxNbBits > tableLogMax { - return fmt.Errorf("internal error: maxNbBits (%d) > tableLogMax (%d)", maxNbBits, tableLogMax) - } - var nbPerRank [tableLogMax + 1]uint16 - var valPerRank [16]uint16 - for _, v := range huffNode[:nonNullRank+1] { - nbPerRank[v.nbBits()]++ - } - // determine stating value per rank - { - min := uint16(0) - for n := maxNbBits; n > 0; n-- { - // get starting value within each rank - valPerRank[n] = min - min += nbPerRank[n] - min >>= 1 - } - } - - // push nbBits per symbol, symbol order - for _, v := range huffNode[:nonNullRank+1] { - s.cTable[v.symbol()].nBits = v.nbBits() - } - - // assign value within rank, symbol order - t := s.cTable[:s.symbolLen] - for n, val := range t { - nbits := val.nBits & 15 - v := valPerRank[nbits] - t[n].val = v - valPerRank[nbits] = v + 1 - } - - return nil -} - -// huffSort will sort symbols, decreasing order. -func (s *Scratch) huffSort() { - type rankPos struct { - base uint32 - current uint32 - } - - // Clear nodes - nodes := s.nodes[:huffNodesLen+1] - s.nodes = nodes - nodes = nodes[1 : huffNodesLen+1] - - // Sort into buckets based on length of symbol count. - var rank [32]rankPos - for _, v := range s.count[:s.symbolLen] { - r := highBit32(v+1) & 31 - rank[r].base++ - } - // maxBitLength is log2(BlockSizeMax) + 1 - const maxBitLength = 18 + 1 - for n := maxBitLength; n > 0; n-- { - rank[n-1].base += rank[n].base - } - for n := range rank[:maxBitLength] { - rank[n].current = rank[n].base - } - for n, c := range s.count[:s.symbolLen] { - r := (highBit32(c+1) + 1) & 31 - pos := rank[r].current - rank[r].current++ - prev := nodes[(pos-1)&huffNodesMask] - for pos > rank[r].base && c > prev.count() { - nodes[pos&huffNodesMask] = prev - pos-- - prev = nodes[(pos-1)&huffNodesMask] - } - nodes[pos&huffNodesMask] = makeNodeElt(c, byte(n)) - } -} - -func (s *Scratch) setMaxHeight(lastNonNull int) uint8 { - maxNbBits := s.actualTableLog - huffNode := s.nodes[1 : huffNodesLen+1] - //huffNode = huffNode[: huffNodesLen] - - largestBits := huffNode[lastNonNull].nbBits() - - // early exit : no elt > maxNbBits - if largestBits <= maxNbBits { - return largestBits - } - totalCost := int(0) - baseCost := int(1) << (largestBits - maxNbBits) - n := uint32(lastNonNull) - - for huffNode[n].nbBits() > maxNbBits { - totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits())) - huffNode[n].setNbBits(maxNbBits) - n-- - } - // n stops at huffNode[n].nbBits <= maxNbBits - - for huffNode[n].nbBits() == maxNbBits { - n-- - } - // n end at index of smallest symbol using < maxNbBits - - // renorm totalCost - totalCost >>= largestBits - maxNbBits /* note : totalCost is necessarily a multiple of baseCost */ - - // repay normalized cost - { - const noSymbol = 0xF0F0F0F0 - var rankLast [tableLogMax + 2]uint32 - - for i := range rankLast[:] { - rankLast[i] = noSymbol - } - - // Get pos of last (smallest) symbol per rank - { - currentNbBits := maxNbBits - for pos := int(n); pos >= 0; pos-- { - if huffNode[pos].nbBits() >= currentNbBits { - continue - } - currentNbBits = huffNode[pos].nbBits() // < maxNbBits - rankLast[maxNbBits-currentNbBits] = uint32(pos) - } - } - - for totalCost > 0 { - nBitsToDecrease := uint8(highBit32(uint32(totalCost))) + 1 - - for ; nBitsToDecrease > 1; nBitsToDecrease-- { - highPos := rankLast[nBitsToDecrease] - lowPos := rankLast[nBitsToDecrease-1] - if highPos == noSymbol { - continue - } - if lowPos == noSymbol { - break - } - highTotal := huffNode[highPos].count() - lowTotal := 2 * huffNode[lowPos].count() - if highTotal <= lowTotal { - break - } - } - // only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) - // HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary - // FIXME: try to remove - for (nBitsToDecrease <= tableLogMax) && (rankLast[nBitsToDecrease] == noSymbol) { - nBitsToDecrease++ - } - totalCost -= 1 << (nBitsToDecrease - 1) - if rankLast[nBitsToDecrease-1] == noSymbol { - // this rank is no longer empty - rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease] - } - huffNode[rankLast[nBitsToDecrease]].setNbBits(1 + - huffNode[rankLast[nBitsToDecrease]].nbBits()) - if rankLast[nBitsToDecrease] == 0 { - /* special case, reached largest symbol */ - rankLast[nBitsToDecrease] = noSymbol - } else { - rankLast[nBitsToDecrease]-- - if huffNode[rankLast[nBitsToDecrease]].nbBits() != maxNbBits-nBitsToDecrease { - rankLast[nBitsToDecrease] = noSymbol /* this rank is now empty */ - } - } - } - - for totalCost < 0 { /* Sometimes, cost correction overshoot */ - if rankLast[1] == noSymbol { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */ - for huffNode[n].nbBits() == maxNbBits { - n-- - } - huffNode[n+1].setNbBits(huffNode[n+1].nbBits() - 1) - rankLast[1] = n + 1 - totalCost++ - continue - } - huffNode[rankLast[1]+1].setNbBits(huffNode[rankLast[1]+1].nbBits() - 1) - rankLast[1]++ - totalCost++ - } - } - return maxNbBits -} - -// A nodeElt is the fields -// -// count uint32 -// parent uint16 -// symbol byte -// nbBits uint8 -// -// in some order, all squashed into an integer so that the compiler -// always loads and stores entire nodeElts instead of separate fields. -type nodeElt uint64 - -func makeNodeElt(count uint32, symbol byte) nodeElt { - return nodeElt(count) | nodeElt(symbol)<<48 -} - -func (e *nodeElt) count() uint32 { return uint32(*e) } -func (e *nodeElt) parent() uint16 { return uint16(*e >> 32) } -func (e *nodeElt) symbol() byte { return byte(*e >> 48) } -func (e *nodeElt) nbBits() uint8 { return uint8(*e >> 56) } - -func (e *nodeElt) setCount(c uint32) { *e = (*e)&0xffffffff00000000 | nodeElt(c) } -func (e *nodeElt) setParent(p int16) { *e = (*e)&0xffff0000ffffffff | nodeElt(uint16(p))<<32 } -func (e *nodeElt) setNbBits(n uint8) { *e = (*e)&0x00ffffffffffffff | nodeElt(n)<<56 } |