summaryrefslogtreecommitdiff
path: root/vendor/github.com/klauspost/compress/flate/inflate_gen.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/klauspost/compress/flate/inflate_gen.go')
-rw-r--r--vendor/github.com/klauspost/compress/flate/inflate_gen.go1283
1 files changed, 1283 insertions, 0 deletions
diff --git a/vendor/github.com/klauspost/compress/flate/inflate_gen.go b/vendor/github.com/klauspost/compress/flate/inflate_gen.go
new file mode 100644
index 000000000..61342b6b8
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/flate/inflate_gen.go
@@ -0,0 +1,1283 @@
+// Code generated by go generate gen_inflate.go. DO NOT EDIT.
+
+package flate
+
+import (
+ "bufio"
+ "bytes"
+ "fmt"
+ "math/bits"
+ "strings"
+)
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBytesBuffer() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.(*bytes.Buffer)
+
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ fnb, fb, dict := f.nb, f.b, &f.dict
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var length int
+ switch {
+ case v < 256:
+ dict.writeByte(byte(v))
+ if dict.availWrite() == 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanBytesBuffer
+ f.stepState = stateInit
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.b, f.nb = fb, fnb
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ case v < maxNumLit:
+ val := decCodeToLen[(v - 257)]
+ length = int(val.length) + 3
+ n := uint(val.extra)
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ length += int(fb & bitMask32[n])
+ fb >>= n & regSizeMaskUint32
+ fnb -= n
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ f.b, f.nb = fb, fnb
+ return
+ }
+
+ var dist uint32
+ if f.hd == nil {
+ for fnb < 5 {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+ fb >>= 5
+ fnb -= 5
+ } else {
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hd.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ dist = uint32(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << (nb & regSizeMaskUint32)
+ for fnb < nb {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ extra |= fb & bitMask32[nb]
+ fb >>= nb & regSizeMaskUint32
+ fnb -= nb
+ dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+ // slower: dist = bitMask32[nb+1] + 2 + extra
+ default:
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > uint32(dict.histSize()) {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, int(dist)
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanBytesBuffer // We need to continue this work
+ f.stepState = stateDict
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ }
+ // Not reached
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBytesReader() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.(*bytes.Reader)
+
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ fnb, fb, dict := f.nb, f.b, &f.dict
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var length int
+ switch {
+ case v < 256:
+ dict.writeByte(byte(v))
+ if dict.availWrite() == 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanBytesReader
+ f.stepState = stateInit
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.b, f.nb = fb, fnb
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ case v < maxNumLit:
+ val := decCodeToLen[(v - 257)]
+ length = int(val.length) + 3
+ n := uint(val.extra)
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ length += int(fb & bitMask32[n])
+ fb >>= n & regSizeMaskUint32
+ fnb -= n
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ f.b, f.nb = fb, fnb
+ return
+ }
+
+ var dist uint32
+ if f.hd == nil {
+ for fnb < 5 {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+ fb >>= 5
+ fnb -= 5
+ } else {
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hd.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ dist = uint32(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << (nb & regSizeMaskUint32)
+ for fnb < nb {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ extra |= fb & bitMask32[nb]
+ fb >>= nb & regSizeMaskUint32
+ fnb -= nb
+ dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+ // slower: dist = bitMask32[nb+1] + 2 + extra
+ default:
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > uint32(dict.histSize()) {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, int(dist)
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanBytesReader // We need to continue this work
+ f.stepState = stateDict
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ }
+ // Not reached
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBufioReader() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.(*bufio.Reader)
+
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ fnb, fb, dict := f.nb, f.b, &f.dict
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var length int
+ switch {
+ case v < 256:
+ dict.writeByte(byte(v))
+ if dict.availWrite() == 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanBufioReader
+ f.stepState = stateInit
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.b, f.nb = fb, fnb
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ case v < maxNumLit:
+ val := decCodeToLen[(v - 257)]
+ length = int(val.length) + 3
+ n := uint(val.extra)
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ length += int(fb & bitMask32[n])
+ fb >>= n & regSizeMaskUint32
+ fnb -= n
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ f.b, f.nb = fb, fnb
+ return
+ }
+
+ var dist uint32
+ if f.hd == nil {
+ for fnb < 5 {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+ fb >>= 5
+ fnb -= 5
+ } else {
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hd.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ dist = uint32(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << (nb & regSizeMaskUint32)
+ for fnb < nb {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ extra |= fb & bitMask32[nb]
+ fb >>= nb & regSizeMaskUint32
+ fnb -= nb
+ dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+ // slower: dist = bitMask32[nb+1] + 2 + extra
+ default:
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > uint32(dict.histSize()) {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, int(dist)
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanBufioReader // We need to continue this work
+ f.stepState = stateDict
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ }
+ // Not reached
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanStringsReader() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.(*strings.Reader)
+
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ fnb, fb, dict := f.nb, f.b, &f.dict
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var length int
+ switch {
+ case v < 256:
+ dict.writeByte(byte(v))
+ if dict.availWrite() == 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanStringsReader
+ f.stepState = stateInit
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.b, f.nb = fb, fnb
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ case v < maxNumLit:
+ val := decCodeToLen[(v - 257)]
+ length = int(val.length) + 3
+ n := uint(val.extra)
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ length += int(fb & bitMask32[n])
+ fb >>= n & regSizeMaskUint32
+ fnb -= n
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ f.b, f.nb = fb, fnb
+ return
+ }
+
+ var dist uint32
+ if f.hd == nil {
+ for fnb < 5 {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+ fb >>= 5
+ fnb -= 5
+ } else {
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hd.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ dist = uint32(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << (nb & regSizeMaskUint32)
+ for fnb < nb {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ extra |= fb & bitMask32[nb]
+ fb >>= nb & regSizeMaskUint32
+ fnb -= nb
+ dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+ // slower: dist = bitMask32[nb+1] + 2 + extra
+ default:
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > uint32(dict.histSize()) {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, int(dist)
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanStringsReader // We need to continue this work
+ f.stepState = stateDict
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ }
+ // Not reached
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanGenericReader() {
+ const (
+ stateInit = iota // Zero value must be stateInit
+ stateDict
+ )
+ fr := f.r.(Reader)
+
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ fnb, fb, dict := f.nb, f.b, &f.dict
+
+ switch f.stepState {
+ case stateInit:
+ goto readLiteral
+ case stateDict:
+ goto copyHistory
+ }
+
+readLiteral:
+ // Read literal and/or (length, distance) according to RFC section 3.2.3.
+ {
+ var v int
+ {
+ // Inlined v, err := f.huffSym(f.hl)
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hl.maxRead)
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hl.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ v = int(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ var length int
+ switch {
+ case v < 256:
+ dict.writeByte(byte(v))
+ if dict.availWrite() == 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanGenericReader
+ f.stepState = stateInit
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ case v == 256:
+ f.b, f.nb = fb, fnb
+ f.finishBlock()
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ case v < maxNumLit:
+ val := decCodeToLen[(v - 257)]
+ length = int(val.length) + 3
+ n := uint(val.extra)
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits n>0:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ length += int(fb & bitMask32[n])
+ fb >>= n & regSizeMaskUint32
+ fnb -= n
+ default:
+ if debugDecode {
+ fmt.Println(v, ">= maxNumLit")
+ }
+ f.err = CorruptInputError(f.roffset)
+ f.b, f.nb = fb, fnb
+ return
+ }
+
+ var dist uint32
+ if f.hd == nil {
+ for fnb < 5 {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<5:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3)))
+ fb >>= 5
+ fnb -= 5
+ } else {
+ // Since a huffmanDecoder can be empty or be composed of a degenerate tree
+ // with single element, huffSym must error on these two edge cases. In both
+ // cases, the chunks slice will be 0 for the invalid sequence, leading it
+ // satisfy the n == 0 check below.
+ n := uint(f.hd.maxRead)
+ // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
+ // but is smart enough to keep local variables in registers, so use nb and b,
+ // inline call to moreBits and reassign b,nb back to f on return.
+ for {
+ for fnb < n {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ f.err = noEOF(err)
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ chunk := f.hd.chunks[fb&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ }
+ if n <= fnb {
+ if n == 0 {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("huffsym: n==0")
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+ fb = fb >> (n & regSizeMaskUint32)
+ fnb = fnb - n
+ dist = uint32(chunk >> huffmanValueShift)
+ break
+ }
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist < maxNumDist:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << (nb & regSizeMaskUint32)
+ for fnb < nb {
+ c, err := fr.ReadByte()
+ if err != nil {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("morebits f.nb<nb:", err)
+ }
+ f.err = err
+ return
+ }
+ f.roffset++
+ fb |= uint32(c) << (fnb & regSizeMaskUint32)
+ fnb += 8
+ }
+ extra |= fb & bitMask32[nb]
+ fb >>= nb & regSizeMaskUint32
+ fnb -= nb
+ dist = 1<<((nb+1)&regSizeMaskUint32) + 1 + extra
+ // slower: dist = bitMask32[nb+1] + 2 + extra
+ default:
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist too big:", dist, maxNumDist)
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if dist > uint32(dict.histSize()) {
+ f.b, f.nb = fb, fnb
+ if debugDecode {
+ fmt.Println("dist > dict.histSize():", dist, dict.histSize())
+ }
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, int(dist)
+ goto copyHistory
+ }
+
+copyHistory:
+ // Perform a backwards copy according to RFC section 3.2.3.
+ {
+ cnt := dict.tryWriteCopy(f.copyDist, f.copyLen)
+ if cnt == 0 {
+ cnt = dict.writeCopy(f.copyDist, f.copyLen)
+ }
+ f.copyLen -= cnt
+
+ if dict.availWrite() == 0 || f.copyLen > 0 {
+ f.toRead = dict.readFlush()
+ f.step = (*decompressor).huffmanGenericReader // We need to continue this work
+ f.stepState = stateDict
+ f.b, f.nb = fb, fnb
+ return
+ }
+ goto readLiteral
+ }
+ // Not reached
+}
+
+func (f *decompressor) huffmanBlockDecoder() func() {
+ switch f.r.(type) {
+ case *bytes.Buffer:
+ return f.huffmanBytesBuffer
+ case *bytes.Reader:
+ return f.huffmanBytesReader
+ case *bufio.Reader:
+ return f.huffmanBufioReader
+ case *strings.Reader:
+ return f.huffmanStringsReader
+ case Reader:
+ return f.huffmanGenericReader
+ default:
+ return f.huffmanGenericReader
+ }
+}