diff options
Diffstat (limited to 'vendor/github.com/klauspost/compress/flate/inflate_gen.go')
-rw-r--r-- | vendor/github.com/klauspost/compress/flate/inflate_gen.go | 1283 |
1 files changed, 1283 insertions, 0 deletions
diff --git a/vendor/github.com/klauspost/compress/flate/inflate_gen.go b/vendor/github.com/klauspost/compress/flate/inflate_gen.go new file mode 100644 index 000000000..61342b6b8 --- /dev/null +++ b/vendor/github.com/klauspost/compress/flate/inflate_gen.go @@ -0,0 +1,1283 @@ +// Code generated by go generate gen_inflate.go. DO NOT EDIT. + +package flate + +import ( + "bufio" + "bytes" + "fmt" + "math/bits" + "strings" +) + +// Decode a single Huffman block from f. +// hl and hd are the Huffman states for the lit/length values +// and the distance values, respectively. If hd == nil, using the +// fixed distance encoding associated with fixed Huffman blocks. +func (f *decompressor) huffmanBytesBuffer() { + const ( + stateInit = iota // Zero value must be stateInit + stateDict + ) + fr := f.r.(*bytes.Buffer) + + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + fnb, fb, dict := f.nb, f.b, &f.dict + + switch f.stepState { + case stateInit: + goto readLiteral + case stateDict: + goto copyHistory + } + +readLiteral: + // Read literal and/or (length, distance) according to RFC section 3.2.3. + { + var v int + { + // Inlined v, err := f.huffSym(f.hl) + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hl.maxRead) + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hl.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + v = int(chunk >> huffmanValueShift) + break + } + } + } + + var length int + switch { + case v < 256: + dict.writeByte(byte(v)) + if dict.availWrite() == 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanBytesBuffer + f.stepState = stateInit + f.b, f.nb = fb, fnb + return + } + goto readLiteral + case v == 256: + f.b, f.nb = fb, fnb + f.finishBlock() + return + // otherwise, reference to older data + case v < 265: + length = v - (257 - 3) + case v < maxNumLit: + val := decCodeToLen[(v - 257)] + length = int(val.length) + 3 + n := uint(val.extra) + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits n>0:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + length += int(fb & bitMask32[n]) + fb >>= n & regSizeMaskUint32 + fnb -= n + default: + if debugDecode { + fmt.Println(v, ">= maxNumLit") + } + f.err = CorruptInputError(f.roffset) + f.b, f.nb = fb, fnb + return + } + + var dist uint32 + if f.hd == nil { + for fnb < 5 { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<5:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3))) + fb >>= 5 + fnb -= 5 + } else { + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hd.maxRead) + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hd.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + dist = uint32(chunk >> huffmanValueShift) + break + } + } + } + + switch { + case dist < 4: + dist++ + case dist < maxNumDist: + nb := uint(dist-2) >> 1 + // have 1 bit in bottom of dist, need nb more. + extra := (dist & 1) << (nb & regSizeMaskUint32) + for fnb < nb { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<nb:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + extra |= fb & bitMask32[nb] + fb >>= nb & regSizeMaskUint32 + fnb -= nb + dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra + // slower: dist = bitMask32[nb+1] + 2 + extra + default: + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist too big:", dist, maxNumDist) + } + f.err = CorruptInputError(f.roffset) + return + } + + // No check on length; encoding can be prescient. + if dist > uint32(dict.histSize()) { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist > dict.histSize():", dist, dict.histSize()) + } + f.err = CorruptInputError(f.roffset) + return + } + + f.copyLen, f.copyDist = length, int(dist) + goto copyHistory + } + +copyHistory: + // Perform a backwards copy according to RFC section 3.2.3. + { + cnt := dict.tryWriteCopy(f.copyDist, f.copyLen) + if cnt == 0 { + cnt = dict.writeCopy(f.copyDist, f.copyLen) + } + f.copyLen -= cnt + + if dict.availWrite() == 0 || f.copyLen > 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanBytesBuffer // We need to continue this work + f.stepState = stateDict + f.b, f.nb = fb, fnb + return + } + goto readLiteral + } + // Not reached +} + +// Decode a single Huffman block from f. +// hl and hd are the Huffman states for the lit/length values +// and the distance values, respectively. If hd == nil, using the +// fixed distance encoding associated with fixed Huffman blocks. +func (f *decompressor) huffmanBytesReader() { + const ( + stateInit = iota // Zero value must be stateInit + stateDict + ) + fr := f.r.(*bytes.Reader) + + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + fnb, fb, dict := f.nb, f.b, &f.dict + + switch f.stepState { + case stateInit: + goto readLiteral + case stateDict: + goto copyHistory + } + +readLiteral: + // Read literal and/or (length, distance) according to RFC section 3.2.3. + { + var v int + { + // Inlined v, err := f.huffSym(f.hl) + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hl.maxRead) + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hl.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + v = int(chunk >> huffmanValueShift) + break + } + } + } + + var length int + switch { + case v < 256: + dict.writeByte(byte(v)) + if dict.availWrite() == 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanBytesReader + f.stepState = stateInit + f.b, f.nb = fb, fnb + return + } + goto readLiteral + case v == 256: + f.b, f.nb = fb, fnb + f.finishBlock() + return + // otherwise, reference to older data + case v < 265: + length = v - (257 - 3) + case v < maxNumLit: + val := decCodeToLen[(v - 257)] + length = int(val.length) + 3 + n := uint(val.extra) + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits n>0:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + length += int(fb & bitMask32[n]) + fb >>= n & regSizeMaskUint32 + fnb -= n + default: + if debugDecode { + fmt.Println(v, ">= maxNumLit") + } + f.err = CorruptInputError(f.roffset) + f.b, f.nb = fb, fnb + return + } + + var dist uint32 + if f.hd == nil { + for fnb < 5 { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<5:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3))) + fb >>= 5 + fnb -= 5 + } else { + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hd.maxRead) + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hd.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + dist = uint32(chunk >> huffmanValueShift) + break + } + } + } + + switch { + case dist < 4: + dist++ + case dist < maxNumDist: + nb := uint(dist-2) >> 1 + // have 1 bit in bottom of dist, need nb more. + extra := (dist & 1) << (nb & regSizeMaskUint32) + for fnb < nb { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<nb:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + extra |= fb & bitMask32[nb] + fb >>= nb & regSizeMaskUint32 + fnb -= nb + dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra + // slower: dist = bitMask32[nb+1] + 2 + extra + default: + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist too big:", dist, maxNumDist) + } + f.err = CorruptInputError(f.roffset) + return + } + + // No check on length; encoding can be prescient. + if dist > uint32(dict.histSize()) { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist > dict.histSize():", dist, dict.histSize()) + } + f.err = CorruptInputError(f.roffset) + return + } + + f.copyLen, f.copyDist = length, int(dist) + goto copyHistory + } + +copyHistory: + // Perform a backwards copy according to RFC section 3.2.3. + { + cnt := dict.tryWriteCopy(f.copyDist, f.copyLen) + if cnt == 0 { + cnt = dict.writeCopy(f.copyDist, f.copyLen) + } + f.copyLen -= cnt + + if dict.availWrite() == 0 || f.copyLen > 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanBytesReader // We need to continue this work + f.stepState = stateDict + f.b, f.nb = fb, fnb + return + } + goto readLiteral + } + // Not reached +} + +// Decode a single Huffman block from f. +// hl and hd are the Huffman states for the lit/length values +// and the distance values, respectively. If hd == nil, using the +// fixed distance encoding associated with fixed Huffman blocks. +func (f *decompressor) huffmanBufioReader() { + const ( + stateInit = iota // Zero value must be stateInit + stateDict + ) + fr := f.r.(*bufio.Reader) + + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + fnb, fb, dict := f.nb, f.b, &f.dict + + switch f.stepState { + case stateInit: + goto readLiteral + case stateDict: + goto copyHistory + } + +readLiteral: + // Read literal and/or (length, distance) according to RFC section 3.2.3. + { + var v int + { + // Inlined v, err := f.huffSym(f.hl) + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hl.maxRead) + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hl.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + v = int(chunk >> huffmanValueShift) + break + } + } + } + + var length int + switch { + case v < 256: + dict.writeByte(byte(v)) + if dict.availWrite() == 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanBufioReader + f.stepState = stateInit + f.b, f.nb = fb, fnb + return + } + goto readLiteral + case v == 256: + f.b, f.nb = fb, fnb + f.finishBlock() + return + // otherwise, reference to older data + case v < 265: + length = v - (257 - 3) + case v < maxNumLit: + val := decCodeToLen[(v - 257)] + length = int(val.length) + 3 + n := uint(val.extra) + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits n>0:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + length += int(fb & bitMask32[n]) + fb >>= n & regSizeMaskUint32 + fnb -= n + default: + if debugDecode { + fmt.Println(v, ">= maxNumLit") + } + f.err = CorruptInputError(f.roffset) + f.b, f.nb = fb, fnb + return + } + + var dist uint32 + if f.hd == nil { + for fnb < 5 { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<5:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3))) + fb >>= 5 + fnb -= 5 + } else { + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hd.maxRead) + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hd.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + dist = uint32(chunk >> huffmanValueShift) + break + } + } + } + + switch { + case dist < 4: + dist++ + case dist < maxNumDist: + nb := uint(dist-2) >> 1 + // have 1 bit in bottom of dist, need nb more. + extra := (dist & 1) << (nb & regSizeMaskUint32) + for fnb < nb { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<nb:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + extra |= fb & bitMask32[nb] + fb >>= nb & regSizeMaskUint32 + fnb -= nb + dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra + // slower: dist = bitMask32[nb+1] + 2 + extra + default: + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist too big:", dist, maxNumDist) + } + f.err = CorruptInputError(f.roffset) + return + } + + // No check on length; encoding can be prescient. + if dist > uint32(dict.histSize()) { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist > dict.histSize():", dist, dict.histSize()) + } + f.err = CorruptInputError(f.roffset) + return + } + + f.copyLen, f.copyDist = length, int(dist) + goto copyHistory + } + +copyHistory: + // Perform a backwards copy according to RFC section 3.2.3. + { + cnt := dict.tryWriteCopy(f.copyDist, f.copyLen) + if cnt == 0 { + cnt = dict.writeCopy(f.copyDist, f.copyLen) + } + f.copyLen -= cnt + + if dict.availWrite() == 0 || f.copyLen > 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanBufioReader // We need to continue this work + f.stepState = stateDict + f.b, f.nb = fb, fnb + return + } + goto readLiteral + } + // Not reached +} + +// Decode a single Huffman block from f. +// hl and hd are the Huffman states for the lit/length values +// and the distance values, respectively. If hd == nil, using the +// fixed distance encoding associated with fixed Huffman blocks. +func (f *decompressor) huffmanStringsReader() { + const ( + stateInit = iota // Zero value must be stateInit + stateDict + ) + fr := f.r.(*strings.Reader) + + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + fnb, fb, dict := f.nb, f.b, &f.dict + + switch f.stepState { + case stateInit: + goto readLiteral + case stateDict: + goto copyHistory + } + +readLiteral: + // Read literal and/or (length, distance) according to RFC section 3.2.3. + { + var v int + { + // Inlined v, err := f.huffSym(f.hl) + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hl.maxRead) + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hl.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + v = int(chunk >> huffmanValueShift) + break + } + } + } + + var length int + switch { + case v < 256: + dict.writeByte(byte(v)) + if dict.availWrite() == 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanStringsReader + f.stepState = stateInit + f.b, f.nb = fb, fnb + return + } + goto readLiteral + case v == 256: + f.b, f.nb = fb, fnb + f.finishBlock() + return + // otherwise, reference to older data + case v < 265: + length = v - (257 - 3) + case v < maxNumLit: + val := decCodeToLen[(v - 257)] + length = int(val.length) + 3 + n := uint(val.extra) + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits n>0:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + length += int(fb & bitMask32[n]) + fb >>= n & regSizeMaskUint32 + fnb -= n + default: + if debugDecode { + fmt.Println(v, ">= maxNumLit") + } + f.err = CorruptInputError(f.roffset) + f.b, f.nb = fb, fnb + return + } + + var dist uint32 + if f.hd == nil { + for fnb < 5 { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<5:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3))) + fb >>= 5 + fnb -= 5 + } else { + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hd.maxRead) + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hd.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + dist = uint32(chunk >> huffmanValueShift) + break + } + } + } + + switch { + case dist < 4: + dist++ + case dist < maxNumDist: + nb := uint(dist-2) >> 1 + // have 1 bit in bottom of dist, need nb more. + extra := (dist & 1) << (nb & regSizeMaskUint32) + for fnb < nb { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<nb:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + extra |= fb & bitMask32[nb] + fb >>= nb & regSizeMaskUint32 + fnb -= nb + dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra + // slower: dist = bitMask32[nb+1] + 2 + extra + default: + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist too big:", dist, maxNumDist) + } + f.err = CorruptInputError(f.roffset) + return + } + + // No check on length; encoding can be prescient. + if dist > uint32(dict.histSize()) { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist > dict.histSize():", dist, dict.histSize()) + } + f.err = CorruptInputError(f.roffset) + return + } + + f.copyLen, f.copyDist = length, int(dist) + goto copyHistory + } + +copyHistory: + // Perform a backwards copy according to RFC section 3.2.3. + { + cnt := dict.tryWriteCopy(f.copyDist, f.copyLen) + if cnt == 0 { + cnt = dict.writeCopy(f.copyDist, f.copyLen) + } + f.copyLen -= cnt + + if dict.availWrite() == 0 || f.copyLen > 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanStringsReader // We need to continue this work + f.stepState = stateDict + f.b, f.nb = fb, fnb + return + } + goto readLiteral + } + // Not reached +} + +// Decode a single Huffman block from f. +// hl and hd are the Huffman states for the lit/length values +// and the distance values, respectively. If hd == nil, using the +// fixed distance encoding associated with fixed Huffman blocks. +func (f *decompressor) huffmanGenericReader() { + const ( + stateInit = iota // Zero value must be stateInit + stateDict + ) + fr := f.r.(Reader) + + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + fnb, fb, dict := f.nb, f.b, &f.dict + + switch f.stepState { + case stateInit: + goto readLiteral + case stateDict: + goto copyHistory + } + +readLiteral: + // Read literal and/or (length, distance) according to RFC section 3.2.3. + { + var v int + { + // Inlined v, err := f.huffSym(f.hl) + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hl.maxRead) + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hl.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hl.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hl.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + v = int(chunk >> huffmanValueShift) + break + } + } + } + + var length int + switch { + case v < 256: + dict.writeByte(byte(v)) + if dict.availWrite() == 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanGenericReader + f.stepState = stateInit + f.b, f.nb = fb, fnb + return + } + goto readLiteral + case v == 256: + f.b, f.nb = fb, fnb + f.finishBlock() + return + // otherwise, reference to older data + case v < 265: + length = v - (257 - 3) + case v < maxNumLit: + val := decCodeToLen[(v - 257)] + length = int(val.length) + 3 + n := uint(val.extra) + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits n>0:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + length += int(fb & bitMask32[n]) + fb >>= n & regSizeMaskUint32 + fnb -= n + default: + if debugDecode { + fmt.Println(v, ">= maxNumLit") + } + f.err = CorruptInputError(f.roffset) + f.b, f.nb = fb, fnb + return + } + + var dist uint32 + if f.hd == nil { + for fnb < 5 { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<5:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + dist = uint32(bits.Reverse8(uint8(fb & 0x1F << 3))) + fb >>= 5 + fnb -= 5 + } else { + // Since a huffmanDecoder can be empty or be composed of a degenerate tree + // with single element, huffSym must error on these two edge cases. In both + // cases, the chunks slice will be 0 for the invalid sequence, leading it + // satisfy the n == 0 check below. + n := uint(f.hd.maxRead) + // Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, + // but is smart enough to keep local variables in registers, so use nb and b, + // inline call to moreBits and reassign b,nb back to f on return. + for { + for fnb < n { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + f.err = noEOF(err) + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + chunk := f.hd.chunks[fb&(huffmanNumChunks-1)] + n = uint(chunk & huffmanCountMask) + if n > huffmanChunkBits { + chunk = f.hd.links[chunk>>huffmanValueShift][(fb>>huffmanChunkBits)&f.hd.linkMask] + n = uint(chunk & huffmanCountMask) + } + if n <= fnb { + if n == 0 { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("huffsym: n==0") + } + f.err = CorruptInputError(f.roffset) + return + } + fb = fb >> (n & regSizeMaskUint32) + fnb = fnb - n + dist = uint32(chunk >> huffmanValueShift) + break + } + } + } + + switch { + case dist < 4: + dist++ + case dist < maxNumDist: + nb := uint(dist-2) >> 1 + // have 1 bit in bottom of dist, need nb more. + extra := (dist & 1) << (nb & regSizeMaskUint32) + for fnb < nb { + c, err := fr.ReadByte() + if err != nil { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("morebits f.nb<nb:", err) + } + f.err = err + return + } + f.roffset++ + fb |= uint32(c) << (fnb & regSizeMaskUint32) + fnb += 8 + } + extra |= fb & bitMask32[nb] + fb >>= nb & regSizeMaskUint32 + fnb -= nb + dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra + // slower: dist = bitMask32[nb+1] + 2 + extra + default: + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist too big:", dist, maxNumDist) + } + f.err = CorruptInputError(f.roffset) + return + } + + // No check on length; encoding can be prescient. + if dist > uint32(dict.histSize()) { + f.b, f.nb = fb, fnb + if debugDecode { + fmt.Println("dist > dict.histSize():", dist, dict.histSize()) + } + f.err = CorruptInputError(f.roffset) + return + } + + f.copyLen, f.copyDist = length, int(dist) + goto copyHistory + } + +copyHistory: + // Perform a backwards copy according to RFC section 3.2.3. + { + cnt := dict.tryWriteCopy(f.copyDist, f.copyLen) + if cnt == 0 { + cnt = dict.writeCopy(f.copyDist, f.copyLen) + } + f.copyLen -= cnt + + if dict.availWrite() == 0 || f.copyLen > 0 { + f.toRead = dict.readFlush() + f.step = (*decompressor).huffmanGenericReader // We need to continue this work + f.stepState = stateDict + f.b, f.nb = fb, fnb + return + } + goto readLiteral + } + // Not reached +} + +func (f *decompressor) huffmanBlockDecoder() func() { + switch f.r.(type) { + case *bytes.Buffer: + return f.huffmanBytesBuffer + case *bytes.Reader: + return f.huffmanBytesReader + case *bufio.Reader: + return f.huffmanBufioReader + case *strings.Reader: + return f.huffmanStringsReader + case Reader: + return f.huffmanGenericReader + default: + return f.huffmanGenericReader + } +} |