diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s2/wedge_relations.go')
-rw-r--r-- | vendor/github.com/golang/geo/s2/wedge_relations.go | 97 |
1 files changed, 97 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/wedge_relations.go b/vendor/github.com/golang/geo/s2/wedge_relations.go new file mode 100644 index 000000000..d637bb68c --- /dev/null +++ b/vendor/github.com/golang/geo/s2/wedge_relations.go @@ -0,0 +1,97 @@ +// Copyright 2017 Google Inc. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package s2 + +// WedgeRel enumerates the possible relation between two wedges A and B. +type WedgeRel int + +// Define the different possible relationships between two wedges. +// +// Given an edge chain (x0, x1, x2), the wedge at x1 is the region to the +// left of the edges. More precisely, it is the set of all rays from x1x0 +// (inclusive) to x1x2 (exclusive) in the *clockwise* direction. +const ( + WedgeEquals WedgeRel = iota // A and B are equal. + WedgeProperlyContains // A is a strict superset of B. + WedgeIsProperlyContained // A is a strict subset of B. + WedgeProperlyOverlaps // A-B, B-A, and A intersect B are non-empty. + WedgeIsDisjoint // A and B are disjoint. +) + +// WedgeRelation reports the relation between two non-empty wedges +// A=(a0, ab1, a2) and B=(b0, ab1, b2). +func WedgeRelation(a0, ab1, a2, b0, b2 Point) WedgeRel { + // There are 6 possible edge orderings at a shared vertex (all + // of these orderings are circular, i.e. abcd == bcda): + // + // (1) a2 b2 b0 a0: A contains B + // (2) a2 a0 b0 b2: B contains A + // (3) a2 a0 b2 b0: A and B are disjoint + // (4) a2 b0 a0 b2: A and B intersect in one wedge + // (5) a2 b2 a0 b0: A and B intersect in one wedge + // (6) a2 b0 b2 a0: A and B intersect in two wedges + // + // We do not distinguish between 4, 5, and 6. + // We pay extra attention when some of the edges overlap. When edges + // overlap, several of these orderings can be satisfied, and we take + // the most specific. + if a0 == b0 && a2 == b2 { + return WedgeEquals + } + + // Cases 1, 2, 5, and 6 + if OrderedCCW(a0, a2, b2, ab1) { + // The cases with this vertex ordering are 1, 5, and 6, + if OrderedCCW(b2, b0, a0, ab1) { + return WedgeProperlyContains + } + + // We are in case 5 or 6, or case 2 if a2 == b2. + if a2 == b2 { + return WedgeIsProperlyContained + } + return WedgeProperlyOverlaps + + } + // We are in case 2, 3, or 4. + if OrderedCCW(a0, b0, b2, ab1) { + return WedgeIsProperlyContained + } + + if OrderedCCW(a0, b0, a2, ab1) { + return WedgeIsDisjoint + } + return WedgeProperlyOverlaps +} + +// WedgeContains reports whether non-empty wedge A=(a0, ab1, a2) contains B=(b0, ab1, b2). +// Equivalent to WedgeRelation == WedgeProperlyContains || WedgeEquals. +func WedgeContains(a0, ab1, a2, b0, b2 Point) bool { + // For A to contain B (where each loop interior is defined to be its left + // side), the CCW edge order around ab1 must be a2 b2 b0 a0. We split + // this test into two parts that test three vertices each. + return OrderedCCW(a2, b2, b0, ab1) && OrderedCCW(b0, a0, a2, ab1) +} + +// WedgeIntersects reports whether non-empty wedge A=(a0, ab1, a2) intersects B=(b0, ab1, b2). +// Equivalent but faster than WedgeRelation != WedgeIsDisjoint +func WedgeIntersects(a0, ab1, a2, b0, b2 Point) bool { + // For A not to intersect B (where each loop interior is defined to be + // its left side), the CCW edge order around ab1 must be a0 b2 b0 a2. + // Note that it's important to write these conditions as negatives + // (!OrderedCCW(a,b,c,o) rather than Ordered(c,b,a,o)) to get correct + // results when two vertices are the same. + return !(OrderedCCW(a0, b2, b0, ab1) && OrderedCCW(b0, a2, a0, ab1)) +} |