summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/wedge_relations.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/wedge_relations.go')
-rw-r--r--vendor/github.com/golang/geo/s2/wedge_relations.go97
1 files changed, 97 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/wedge_relations.go b/vendor/github.com/golang/geo/s2/wedge_relations.go
new file mode 100644
index 000000000..d637bb68c
--- /dev/null
+++ b/vendor/github.com/golang/geo/s2/wedge_relations.go
@@ -0,0 +1,97 @@
+// Copyright 2017 Google Inc. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package s2
+
+// WedgeRel enumerates the possible relation between two wedges A and B.
+type WedgeRel int
+
+// Define the different possible relationships between two wedges.
+//
+// Given an edge chain (x0, x1, x2), the wedge at x1 is the region to the
+// left of the edges. More precisely, it is the set of all rays from x1x0
+// (inclusive) to x1x2 (exclusive) in the *clockwise* direction.
+const (
+ WedgeEquals WedgeRel = iota // A and B are equal.
+ WedgeProperlyContains // A is a strict superset of B.
+ WedgeIsProperlyContained // A is a strict subset of B.
+ WedgeProperlyOverlaps // A-B, B-A, and A intersect B are non-empty.
+ WedgeIsDisjoint // A and B are disjoint.
+)
+
+// WedgeRelation reports the relation between two non-empty wedges
+// A=(a0, ab1, a2) and B=(b0, ab1, b2).
+func WedgeRelation(a0, ab1, a2, b0, b2 Point) WedgeRel {
+ // There are 6 possible edge orderings at a shared vertex (all
+ // of these orderings are circular, i.e. abcd == bcda):
+ //
+ // (1) a2 b2 b0 a0: A contains B
+ // (2) a2 a0 b0 b2: B contains A
+ // (3) a2 a0 b2 b0: A and B are disjoint
+ // (4) a2 b0 a0 b2: A and B intersect in one wedge
+ // (5) a2 b2 a0 b0: A and B intersect in one wedge
+ // (6) a2 b0 b2 a0: A and B intersect in two wedges
+ //
+ // We do not distinguish between 4, 5, and 6.
+ // We pay extra attention when some of the edges overlap. When edges
+ // overlap, several of these orderings can be satisfied, and we take
+ // the most specific.
+ if a0 == b0 && a2 == b2 {
+ return WedgeEquals
+ }
+
+ // Cases 1, 2, 5, and 6
+ if OrderedCCW(a0, a2, b2, ab1) {
+ // The cases with this vertex ordering are 1, 5, and 6,
+ if OrderedCCW(b2, b0, a0, ab1) {
+ return WedgeProperlyContains
+ }
+
+ // We are in case 5 or 6, or case 2 if a2 == b2.
+ if a2 == b2 {
+ return WedgeIsProperlyContained
+ }
+ return WedgeProperlyOverlaps
+
+ }
+ // We are in case 2, 3, or 4.
+ if OrderedCCW(a0, b0, b2, ab1) {
+ return WedgeIsProperlyContained
+ }
+
+ if OrderedCCW(a0, b0, a2, ab1) {
+ return WedgeIsDisjoint
+ }
+ return WedgeProperlyOverlaps
+}
+
+// WedgeContains reports whether non-empty wedge A=(a0, ab1, a2) contains B=(b0, ab1, b2).
+// Equivalent to WedgeRelation == WedgeProperlyContains || WedgeEquals.
+func WedgeContains(a0, ab1, a2, b0, b2 Point) bool {
+ // For A to contain B (where each loop interior is defined to be its left
+ // side), the CCW edge order around ab1 must be a2 b2 b0 a0. We split
+ // this test into two parts that test three vertices each.
+ return OrderedCCW(a2, b2, b0, ab1) && OrderedCCW(b0, a0, a2, ab1)
+}
+
+// WedgeIntersects reports whether non-empty wedge A=(a0, ab1, a2) intersects B=(b0, ab1, b2).
+// Equivalent but faster than WedgeRelation != WedgeIsDisjoint
+func WedgeIntersects(a0, ab1, a2, b0, b2 Point) bool {
+ // For A not to intersect B (where each loop interior is defined to be
+ // its left side), the CCW edge order around ab1 must be a0 b2 b0 a2.
+ // Note that it's important to write these conditions as negatives
+ // (!OrderedCCW(a,b,c,o) rather than Ordered(c,b,a,o)) to get correct
+ // results when two vertices are the same.
+ return !(OrderedCCW(a0, b2, b0, ab1) && OrderedCCW(b0, a2, a0, ab1))
+}