summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/point.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/point.go')
-rw-r--r--vendor/github.com/golang/geo/s2/point.go258
1 files changed, 258 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/point.go b/vendor/github.com/golang/geo/s2/point.go
new file mode 100644
index 000000000..89e7ae0ed
--- /dev/null
+++ b/vendor/github.com/golang/geo/s2/point.go
@@ -0,0 +1,258 @@
+// Copyright 2014 Google Inc. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package s2
+
+import (
+ "fmt"
+ "io"
+ "math"
+ "sort"
+
+ "github.com/golang/geo/r3"
+ "github.com/golang/geo/s1"
+)
+
+// Point represents a point on the unit sphere as a normalized 3D vector.
+// Fields should be treated as read-only. Use one of the factory methods for creation.
+type Point struct {
+ r3.Vector
+}
+
+// sortPoints sorts the slice of Points in place.
+func sortPoints(e []Point) {
+ sort.Sort(points(e))
+}
+
+// points implements the Sort interface for slices of Point.
+type points []Point
+
+func (p points) Len() int { return len(p) }
+func (p points) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
+func (p points) Less(i, j int) bool { return p[i].Cmp(p[j].Vector) == -1 }
+
+// PointFromCoords creates a new normalized point from coordinates.
+//
+// This always returns a valid point. If the given coordinates can not be normalized
+// the origin point will be returned.
+//
+// This behavior is different from the C++ construction of a S2Point from coordinates
+// (i.e. S2Point(x, y, z)) in that in C++ they do not Normalize.
+func PointFromCoords(x, y, z float64) Point {
+ if x == 0 && y == 0 && z == 0 {
+ return OriginPoint()
+ }
+ return Point{r3.Vector{x, y, z}.Normalize()}
+}
+
+// OriginPoint returns a unique "origin" on the sphere for operations that need a fixed
+// reference point. In particular, this is the "point at infinity" used for
+// point-in-polygon testing (by counting the number of edge crossings).
+//
+// It should *not* be a point that is commonly used in edge tests in order
+// to avoid triggering code to handle degenerate cases (this rules out the
+// north and south poles). It should also not be on the boundary of any
+// low-level S2Cell for the same reason.
+func OriginPoint() Point {
+ return Point{r3.Vector{-0.0099994664350250197, 0.0025924542609324121, 0.99994664350250195}}
+}
+
+// PointCross returns a Point that is orthogonal to both p and op. This is similar to
+// p.Cross(op) (the true cross product) except that it does a better job of
+// ensuring orthogonality when the Point is nearly parallel to op, it returns
+// a non-zero result even when p == op or p == -op and the result is a Point.
+//
+// It satisfies the following properties (f == PointCross):
+//
+// (1) f(p, op) != 0 for all p, op
+// (2) f(op,p) == -f(p,op) unless p == op or p == -op
+// (3) f(-p,op) == -f(p,op) unless p == op or p == -op
+// (4) f(p,-op) == -f(p,op) unless p == op or p == -op
+func (p Point) PointCross(op Point) Point {
+ // NOTE(dnadasi): In the C++ API the equivalent method here was known as "RobustCrossProd",
+ // but PointCross more accurately describes how this method is used.
+ x := p.Add(op.Vector).Cross(op.Sub(p.Vector))
+
+ // Compare exactly to the 0 vector.
+ if x == (r3.Vector{}) {
+ // The only result that makes sense mathematically is to return zero, but
+ // we find it more convenient to return an arbitrary orthogonal vector.
+ return Point{p.Ortho()}
+ }
+
+ return Point{x}
+}
+
+// OrderedCCW returns true if the edges OA, OB, and OC are encountered in that
+// order while sweeping CCW around the point O.
+//
+// You can think of this as testing whether A <= B <= C with respect to the
+// CCW ordering around O that starts at A, or equivalently, whether B is
+// contained in the range of angles (inclusive) that starts at A and extends
+// CCW to C. Properties:
+//
+// (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b
+// (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c
+// (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c
+// (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true
+// (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false
+func OrderedCCW(a, b, c, o Point) bool {
+ sum := 0
+ if RobustSign(b, o, a) != Clockwise {
+ sum++
+ }
+ if RobustSign(c, o, b) != Clockwise {
+ sum++
+ }
+ if RobustSign(a, o, c) == CounterClockwise {
+ sum++
+ }
+ return sum >= 2
+}
+
+// Distance returns the angle between two points.
+func (p Point) Distance(b Point) s1.Angle {
+ return p.Vector.Angle(b.Vector)
+}
+
+// ApproxEqual reports whether the two points are similar enough to be equal.
+func (p Point) ApproxEqual(other Point) bool {
+ return p.approxEqual(other, s1.Angle(epsilon))
+}
+
+// approxEqual reports whether the two points are within the given epsilon.
+func (p Point) approxEqual(other Point, eps s1.Angle) bool {
+ return p.Vector.Angle(other.Vector) <= eps
+}
+
+// ChordAngleBetweenPoints constructs a ChordAngle corresponding to the distance
+// between the two given points. The points must be unit length.
+func ChordAngleBetweenPoints(x, y Point) s1.ChordAngle {
+ return s1.ChordAngle(math.Min(4.0, x.Sub(y.Vector).Norm2()))
+}
+
+// regularPoints generates a slice of points shaped as a regular polygon with
+// the numVertices vertices, all located on a circle of the specified angular radius
+// around the center. The radius is the actual distance from center to each vertex.
+func regularPoints(center Point, radius s1.Angle, numVertices int) []Point {
+ return regularPointsForFrame(getFrame(center), radius, numVertices)
+}
+
+// regularPointsForFrame generates a slice of points shaped as a regular polygon
+// with numVertices vertices, all on a circle of the specified angular radius around
+// the center. The radius is the actual distance from the center to each vertex.
+func regularPointsForFrame(frame matrix3x3, radius s1.Angle, numVertices int) []Point {
+ // We construct the loop in the given frame coordinates, with the center at
+ // (0, 0, 1). For a loop of radius r, the loop vertices have the form
+ // (x, y, z) where x^2 + y^2 = sin(r) and z = cos(r). The distance on the
+ // sphere (arc length) from each vertex to the center is acos(cos(r)) = r.
+ z := math.Cos(radius.Radians())
+ r := math.Sin(radius.Radians())
+ radianStep := 2 * math.Pi / float64(numVertices)
+ var vertices []Point
+
+ for i := 0; i < numVertices; i++ {
+ angle := float64(i) * radianStep
+ p := Point{r3.Vector{r * math.Cos(angle), r * math.Sin(angle), z}}
+ vertices = append(vertices, Point{fromFrame(frame, p).Normalize()})
+ }
+
+ return vertices
+}
+
+// CapBound returns a bounding cap for this point.
+func (p Point) CapBound() Cap {
+ return CapFromPoint(p)
+}
+
+// RectBound returns a bounding latitude-longitude rectangle from this point.
+func (p Point) RectBound() Rect {
+ return RectFromLatLng(LatLngFromPoint(p))
+}
+
+// ContainsCell returns false as Points do not contain any other S2 types.
+func (p Point) ContainsCell(c Cell) bool { return false }
+
+// IntersectsCell reports whether this Point intersects the given cell.
+func (p Point) IntersectsCell(c Cell) bool {
+ return c.ContainsPoint(p)
+}
+
+// ContainsPoint reports if this Point contains the other Point.
+// (This method is named to satisfy the Region interface.)
+func (p Point) ContainsPoint(other Point) bool {
+ return p.Contains(other)
+}
+
+// CellUnionBound computes a covering of the Point.
+func (p Point) CellUnionBound() []CellID {
+ return p.CapBound().CellUnionBound()
+}
+
+// Contains reports if this Point contains the other Point.
+// (This method matches all other s2 types where the reflexive Contains
+// method does not contain the type's name.)
+func (p Point) Contains(other Point) bool { return p == other }
+
+// Encode encodes the Point.
+func (p Point) Encode(w io.Writer) error {
+ e := &encoder{w: w}
+ p.encode(e)
+ return e.err
+}
+
+func (p Point) encode(e *encoder) {
+ e.writeInt8(encodingVersion)
+ e.writeFloat64(p.X)
+ e.writeFloat64(p.Y)
+ e.writeFloat64(p.Z)
+}
+
+// Decode decodes the Point.
+func (p *Point) Decode(r io.Reader) error {
+ d := &decoder{r: asByteReader(r)}
+ p.decode(d)
+ return d.err
+}
+
+func (p *Point) decode(d *decoder) {
+ version := d.readInt8()
+ if d.err != nil {
+ return
+ }
+ if version != encodingVersion {
+ d.err = fmt.Errorf("only version %d is supported", encodingVersion)
+ return
+ }
+ p.X = d.readFloat64()
+ p.Y = d.readFloat64()
+ p.Z = d.readFloat64()
+}
+
+// Rotate the given point about the given axis by the given angle. p and
+// axis must be unit length; angle has no restrictions (e.g., it can be
+// positive, negative, greater than 360 degrees, etc).
+func Rotate(p, axis Point, angle s1.Angle) Point {
+ // Let M be the plane through P that is perpendicular to axis, and let
+ // center be the point where M intersects axis. We construct a
+ // right-handed orthogonal frame (dx, dy, center) such that dx is the
+ // vector from center to P, and dy has the same length as dx. The
+ // result can then be expressed as (cos(angle)*dx + sin(angle)*dy + center).
+ center := axis.Mul(p.Dot(axis.Vector))
+ dx := p.Sub(center)
+ dy := axis.Cross(p.Vector)
+ // Mathematically the result is unit length, but normalization is necessary
+ // to ensure that numerical errors don't accumulate.
+ return Point{dx.Mul(math.Cos(angle.Radians())).Add(dy.Mul(math.Sin(angle.Radians()))).Add(center).Normalize()}
+}