diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s2/min_distance_targets.go')
-rw-r--r-- | vendor/github.com/golang/geo/s2/min_distance_targets.go | 362 |
1 files changed, 362 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/min_distance_targets.go b/vendor/github.com/golang/geo/s2/min_distance_targets.go new file mode 100644 index 000000000..b1948b203 --- /dev/null +++ b/vendor/github.com/golang/geo/s2/min_distance_targets.go @@ -0,0 +1,362 @@ +// Copyright 2019 Google Inc. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package s2 + +import ( + "math" + + "github.com/golang/geo/s1" +) + +// minDistance implements distance interface to find closest distance types. +type minDistance s1.ChordAngle + +func (m minDistance) chordAngle() s1.ChordAngle { return s1.ChordAngle(m) } +func (m minDistance) zero() distance { return minDistance(0) } +func (m minDistance) negative() distance { return minDistance(s1.NegativeChordAngle) } +func (m minDistance) infinity() distance { return minDistance(s1.InfChordAngle()) } +func (m minDistance) less(other distance) bool { return m.chordAngle() < other.chordAngle() } +func (m minDistance) sub(other distance) distance { + return minDistance(m.chordAngle() - other.chordAngle()) +} +func (m minDistance) chordAngleBound() s1.ChordAngle { + return m.chordAngle().Expanded(m.chordAngle().MaxAngleError()) +} + +// updateDistance updates its own value if the other value is less() than it is, +// and reports if it updated. +func (m minDistance) updateDistance(dist distance) (distance, bool) { + if dist.less(m) { + m = minDistance(dist.chordAngle()) + return m, true + } + return m, false +} + +func (m minDistance) fromChordAngle(o s1.ChordAngle) distance { + return minDistance(o) +} + +// MinDistanceToPointTarget is a type for computing the minimum distance to a Point. +type MinDistanceToPointTarget struct { + point Point + dist distance +} + +// NewMinDistanceToPointTarget returns a new target for the given Point. +func NewMinDistanceToPointTarget(point Point) *MinDistanceToPointTarget { + m := minDistance(0) + return &MinDistanceToPointTarget{point: point, dist: &m} +} + +func (m *MinDistanceToPointTarget) capBound() Cap { + return CapFromCenterChordAngle(m.point, s1.ChordAngle(0)) +} + +func (m *MinDistanceToPointTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { + var ok bool + dist, ok = dist.updateDistance(minDistance(ChordAngleBetweenPoints(p, m.point))) + return dist, ok +} + +func (m *MinDistanceToPointTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { + if d, ok := UpdateMinDistance(m.point, edge.V0, edge.V1, dist.chordAngle()); ok { + dist, _ = dist.updateDistance(minDistance(d)) + return dist, true + } + return dist, false +} + +func (m *MinDistanceToPointTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { + var ok bool + dist, ok = dist.updateDistance(minDistance(cell.Distance(m.point))) + return dist, ok +} + +func (m *MinDistanceToPointTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { + // For furthest points, we visit the polygons whose interior contains + // the antipode of the target point. These are the polygons whose + // distance to the target is maxDistance.zero() + q := NewContainsPointQuery(index, VertexModelSemiOpen) + return q.visitContainingShapes(m.point, func(shape Shape) bool { + return v(shape, m.point) + }) +} + +func (m *MinDistanceToPointTarget) setMaxError(maxErr s1.ChordAngle) bool { return false } +func (m *MinDistanceToPointTarget) maxBruteForceIndexSize() int { return 120 } +func (m *MinDistanceToPointTarget) distance() distance { return m.dist } + +// ---------------------------------------------------------- + +// MinDistanceToEdgeTarget is a type for computing the minimum distance to an Edge. +type MinDistanceToEdgeTarget struct { + e Edge + dist distance +} + +// NewMinDistanceToEdgeTarget returns a new target for the given Edge. +func NewMinDistanceToEdgeTarget(e Edge) *MinDistanceToEdgeTarget { + m := minDistance(0) + return &MinDistanceToEdgeTarget{e: e, dist: m} +} + +// capBound returns a Cap that bounds the antipode of the target. (This +// is the set of points whose maxDistance to the target is maxDistance.zero) +func (m *MinDistanceToEdgeTarget) capBound() Cap { + // The following computes a radius equal to half the edge length in an + // efficient and numerically stable way. + d2 := float64(ChordAngleBetweenPoints(m.e.V0, m.e.V1)) + r2 := (0.5 * d2) / (1 + math.Sqrt(1-0.25*d2)) + return CapFromCenterChordAngle(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}, s1.ChordAngleFromSquaredLength(r2)) +} + +func (m *MinDistanceToEdgeTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { + if d, ok := UpdateMinDistance(p, m.e.V0, m.e.V1, dist.chordAngle()); ok { + dist, _ = dist.updateDistance(minDistance(d)) + return dist, true + } + return dist, false +} + +func (m *MinDistanceToEdgeTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { + if d, ok := updateEdgePairMinDistance(m.e.V0, m.e.V1, edge.V0, edge.V1, dist.chordAngle()); ok { + dist, _ = dist.updateDistance(minDistance(d)) + return dist, true + } + return dist, false +} + +func (m *MinDistanceToEdgeTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { + return dist.updateDistance(minDistance(cell.DistanceToEdge(m.e.V0, m.e.V1))) +} + +func (m *MinDistanceToEdgeTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { + // We test the center of the edge in order to ensure that edge targets AB + // and BA yield identical results (which is not guaranteed by the API but + // users might expect). Other options would be to test both endpoints, or + // return different results for AB and BA in some cases. + target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}) + return target.visitContainingShapes(index, v) +} + +func (m *MinDistanceToEdgeTarget) setMaxError(maxErr s1.ChordAngle) bool { return false } +func (m *MinDistanceToEdgeTarget) maxBruteForceIndexSize() int { return 60 } +func (m *MinDistanceToEdgeTarget) distance() distance { return m.dist } + +// ---------------------------------------------------------- + +// MinDistanceToCellTarget is a type for computing the minimum distance to a Cell. +type MinDistanceToCellTarget struct { + cell Cell + dist distance +} + +// NewMinDistanceToCellTarget returns a new target for the given Cell. +func NewMinDistanceToCellTarget(cell Cell) *MinDistanceToCellTarget { + m := minDistance(0) + return &MinDistanceToCellTarget{cell: cell, dist: m} +} + +func (m *MinDistanceToCellTarget) capBound() Cap { + return m.cell.CapBound() +} + +func (m *MinDistanceToCellTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { + return dist.updateDistance(minDistance(m.cell.Distance(p))) +} + +func (m *MinDistanceToCellTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { + return dist.updateDistance(minDistance(m.cell.DistanceToEdge(edge.V0, edge.V1))) +} + +func (m *MinDistanceToCellTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { + return dist.updateDistance(minDistance(m.cell.DistanceToCell(cell))) +} + +func (m *MinDistanceToCellTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { + // The simplest approach is simply to return the polygons that contain the + // cell center. Alternatively, if the index cell is smaller than the target + // cell then we could return all polygons that are present in the + // shapeIndexCell, but since the index is built conservatively this may + // include some polygons that don't quite intersect the cell. So we would + // either need to recheck for intersection more accurately, or weaken the + // VisitContainingShapes contract so that it only guarantees approximate + // intersection, neither of which seems like a good tradeoff. + target := NewMinDistanceToPointTarget(m.cell.Center()) + return target.visitContainingShapes(index, v) +} +func (m *MinDistanceToCellTarget) setMaxError(maxErr s1.ChordAngle) bool { return false } +func (m *MinDistanceToCellTarget) maxBruteForceIndexSize() int { return 30 } +func (m *MinDistanceToCellTarget) distance() distance { return m.dist } + +// ---------------------------------------------------------- + +/* +// MinDistanceToCellUnionTarget is a type for computing the minimum distance to a CellUnion. +type MinDistanceToCellUnionTarget struct { + cu CellUnion + query *ClosestCellQuery + dist distance +} + +// NewMinDistanceToCellUnionTarget returns a new target for the given CellUnion. +func NewMinDistanceToCellUnionTarget(cu CellUnion) *MinDistanceToCellUnionTarget { + m := minDistance(0) + return &MinDistanceToCellUnionTarget{cu: cu, dist: m} +} + +func (m *MinDistanceToCellUnionTarget) capBound() Cap { + return m.cu.CapBound() +} + +func (m *MinDistanceToCellUnionTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { + m.query.opts.DistanceLimit = dist.chordAngle() + target := NewMinDistanceToPointTarget(p) + r := m.query.findEdge(target) + if r.ShapeID < 0 { + return dist, false + } + return minDistance(r.Distance), true +} + +func (m *MinDistanceToCellUnionTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { + // We test the center of the edge in order to ensure that edge targets AB + // and BA yield identical results (which is not guaranteed by the API but + // users might expect). Other options would be to test both endpoints, or + // return different results for AB and BA in some cases. + target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}) + return target.visitContainingShapes(index, v) +} +func (m *MinDistanceToCellUnionTarget) setMaxError(maxErr s1.ChordAngle) bool { + m.query.opts.MaxError = maxErr + return true +} +func (m *MinDistanceToCellUnionTarget) maxBruteForceIndexSize() int { return 30 } +func (m *MinDistanceToCellUnionTarget) distance() distance { return m.dist } +*/ + +// ---------------------------------------------------------- + +// MinDistanceToShapeIndexTarget is a type for computing the minimum distance to a ShapeIndex. +type MinDistanceToShapeIndexTarget struct { + index *ShapeIndex + query *EdgeQuery + dist distance +} + +// NewMinDistanceToShapeIndexTarget returns a new target for the given ShapeIndex. +func NewMinDistanceToShapeIndexTarget(index *ShapeIndex) *MinDistanceToShapeIndexTarget { + m := minDistance(0) + return &MinDistanceToShapeIndexTarget{ + index: index, + dist: m, + query: NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions()), + } +} + +func (m *MinDistanceToShapeIndexTarget) capBound() Cap { + // TODO(roberts): Depends on ShapeIndexRegion existing. + // c := makeS2ShapeIndexRegion(m.index).CapBound() + // return CapFromCenterRadius(Point{c.Center.Mul(-1)}, c.Radius()) + panic("not implemented yet") +} + +func (m *MinDistanceToShapeIndexTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) { + m.query.opts.distanceLimit = dist.chordAngle() + target := NewMinDistanceToPointTarget(p) + r := m.query.findEdge(target, m.query.opts) + if r.shapeID < 0 { + return dist, false + } + return r.distance, true +} + +func (m *MinDistanceToShapeIndexTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) { + m.query.opts.distanceLimit = dist.chordAngle() + target := NewMinDistanceToEdgeTarget(edge) + r := m.query.findEdge(target, m.query.opts) + if r.shapeID < 0 { + return dist, false + } + return r.distance, true +} + +func (m *MinDistanceToShapeIndexTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) { + m.query.opts.distanceLimit = dist.chordAngle() + target := NewMinDistanceToCellTarget(cell) + r := m.query.findEdge(target, m.query.opts) + if r.shapeID < 0 { + return dist, false + } + return r.distance, true +} + +// For target types consisting of multiple connected components (such as this one), +// this method should return the polygons containing the antipodal reflection of +// *any* connected component. (It is sufficient to test containment of one vertex per +// connected component, since this allows us to also return any polygon whose +// boundary has distance.zero() to the target.) +func (m *MinDistanceToShapeIndexTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool { + // It is sufficient to find the set of chain starts in the target index + // (i.e., one vertex per connected component of edges) that are contained by + // the query index, except for one special case to handle full polygons. + // + // TODO(roberts): Do this by merge-joining the two ShapeIndexes. + for _, shape := range m.index.shapes { + numChains := shape.NumChains() + // Shapes that don't have any edges require a special case (below). + testedPoint := false + for c := 0; c < numChains; c++ { + chain := shape.Chain(c) + if chain.Length == 0 { + continue + } + testedPoint = true + target := NewMinDistanceToPointTarget(shape.ChainEdge(c, 0).V0) + if !target.visitContainingShapes(index, v) { + return false + } + } + if !testedPoint { + // Special case to handle full polygons. + ref := shape.ReferencePoint() + if !ref.Contained { + continue + } + target := NewMinDistanceToPointTarget(ref.Point) + if !target.visitContainingShapes(index, v) { + return false + } + } + } + return true +} + +func (m *MinDistanceToShapeIndexTarget) setMaxError(maxErr s1.ChordAngle) bool { + m.query.opts.maxError = maxErr + return true +} +func (m *MinDistanceToShapeIndexTarget) maxBruteForceIndexSize() int { return 25 } +func (m *MinDistanceToShapeIndexTarget) distance() distance { return m.dist } +func (m *MinDistanceToShapeIndexTarget) setIncludeInteriors(b bool) { + m.query.opts.includeInteriors = b +} +func (m *MinDistanceToShapeIndexTarget) setUseBruteForce(b bool) { m.query.opts.useBruteForce = b } + +// TODO(roberts): Remaining methods +// +// func (m *MinDistanceToShapeIndexTarget) capBound() Cap { +// CellUnionTarget |