summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/min_distance_targets.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/min_distance_targets.go')
-rw-r--r--vendor/github.com/golang/geo/s2/min_distance_targets.go362
1 files changed, 362 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/min_distance_targets.go b/vendor/github.com/golang/geo/s2/min_distance_targets.go
new file mode 100644
index 000000000..b1948b203
--- /dev/null
+++ b/vendor/github.com/golang/geo/s2/min_distance_targets.go
@@ -0,0 +1,362 @@
+// Copyright 2019 Google Inc. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package s2
+
+import (
+ "math"
+
+ "github.com/golang/geo/s1"
+)
+
+// minDistance implements distance interface to find closest distance types.
+type minDistance s1.ChordAngle
+
+func (m minDistance) chordAngle() s1.ChordAngle { return s1.ChordAngle(m) }
+func (m minDistance) zero() distance { return minDistance(0) }
+func (m minDistance) negative() distance { return minDistance(s1.NegativeChordAngle) }
+func (m minDistance) infinity() distance { return minDistance(s1.InfChordAngle()) }
+func (m minDistance) less(other distance) bool { return m.chordAngle() < other.chordAngle() }
+func (m minDistance) sub(other distance) distance {
+ return minDistance(m.chordAngle() - other.chordAngle())
+}
+func (m minDistance) chordAngleBound() s1.ChordAngle {
+ return m.chordAngle().Expanded(m.chordAngle().MaxAngleError())
+}
+
+// updateDistance updates its own value if the other value is less() than it is,
+// and reports if it updated.
+func (m minDistance) updateDistance(dist distance) (distance, bool) {
+ if dist.less(m) {
+ m = minDistance(dist.chordAngle())
+ return m, true
+ }
+ return m, false
+}
+
+func (m minDistance) fromChordAngle(o s1.ChordAngle) distance {
+ return minDistance(o)
+}
+
+// MinDistanceToPointTarget is a type for computing the minimum distance to a Point.
+type MinDistanceToPointTarget struct {
+ point Point
+ dist distance
+}
+
+// NewMinDistanceToPointTarget returns a new target for the given Point.
+func NewMinDistanceToPointTarget(point Point) *MinDistanceToPointTarget {
+ m := minDistance(0)
+ return &MinDistanceToPointTarget{point: point, dist: &m}
+}
+
+func (m *MinDistanceToPointTarget) capBound() Cap {
+ return CapFromCenterChordAngle(m.point, s1.ChordAngle(0))
+}
+
+func (m *MinDistanceToPointTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
+ var ok bool
+ dist, ok = dist.updateDistance(minDistance(ChordAngleBetweenPoints(p, m.point)))
+ return dist, ok
+}
+
+func (m *MinDistanceToPointTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
+ if d, ok := UpdateMinDistance(m.point, edge.V0, edge.V1, dist.chordAngle()); ok {
+ dist, _ = dist.updateDistance(minDistance(d))
+ return dist, true
+ }
+ return dist, false
+}
+
+func (m *MinDistanceToPointTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
+ var ok bool
+ dist, ok = dist.updateDistance(minDistance(cell.Distance(m.point)))
+ return dist, ok
+}
+
+func (m *MinDistanceToPointTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
+ // For furthest points, we visit the polygons whose interior contains
+ // the antipode of the target point. These are the polygons whose
+ // distance to the target is maxDistance.zero()
+ q := NewContainsPointQuery(index, VertexModelSemiOpen)
+ return q.visitContainingShapes(m.point, func(shape Shape) bool {
+ return v(shape, m.point)
+ })
+}
+
+func (m *MinDistanceToPointTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
+func (m *MinDistanceToPointTarget) maxBruteForceIndexSize() int { return 120 }
+func (m *MinDistanceToPointTarget) distance() distance { return m.dist }
+
+// ----------------------------------------------------------
+
+// MinDistanceToEdgeTarget is a type for computing the minimum distance to an Edge.
+type MinDistanceToEdgeTarget struct {
+ e Edge
+ dist distance
+}
+
+// NewMinDistanceToEdgeTarget returns a new target for the given Edge.
+func NewMinDistanceToEdgeTarget(e Edge) *MinDistanceToEdgeTarget {
+ m := minDistance(0)
+ return &MinDistanceToEdgeTarget{e: e, dist: m}
+}
+
+// capBound returns a Cap that bounds the antipode of the target. (This
+// is the set of points whose maxDistance to the target is maxDistance.zero)
+func (m *MinDistanceToEdgeTarget) capBound() Cap {
+ // The following computes a radius equal to half the edge length in an
+ // efficient and numerically stable way.
+ d2 := float64(ChordAngleBetweenPoints(m.e.V0, m.e.V1))
+ r2 := (0.5 * d2) / (1 + math.Sqrt(1-0.25*d2))
+ return CapFromCenterChordAngle(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}, s1.ChordAngleFromSquaredLength(r2))
+}
+
+func (m *MinDistanceToEdgeTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
+ if d, ok := UpdateMinDistance(p, m.e.V0, m.e.V1, dist.chordAngle()); ok {
+ dist, _ = dist.updateDistance(minDistance(d))
+ return dist, true
+ }
+ return dist, false
+}
+
+func (m *MinDistanceToEdgeTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
+ if d, ok := updateEdgePairMinDistance(m.e.V0, m.e.V1, edge.V0, edge.V1, dist.chordAngle()); ok {
+ dist, _ = dist.updateDistance(minDistance(d))
+ return dist, true
+ }
+ return dist, false
+}
+
+func (m *MinDistanceToEdgeTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
+ return dist.updateDistance(minDistance(cell.DistanceToEdge(m.e.V0, m.e.V1)))
+}
+
+func (m *MinDistanceToEdgeTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
+ // We test the center of the edge in order to ensure that edge targets AB
+ // and BA yield identical results (which is not guaranteed by the API but
+ // users might expect). Other options would be to test both endpoints, or
+ // return different results for AB and BA in some cases.
+ target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()})
+ return target.visitContainingShapes(index, v)
+}
+
+func (m *MinDistanceToEdgeTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
+func (m *MinDistanceToEdgeTarget) maxBruteForceIndexSize() int { return 60 }
+func (m *MinDistanceToEdgeTarget) distance() distance { return m.dist }
+
+// ----------------------------------------------------------
+
+// MinDistanceToCellTarget is a type for computing the minimum distance to a Cell.
+type MinDistanceToCellTarget struct {
+ cell Cell
+ dist distance
+}
+
+// NewMinDistanceToCellTarget returns a new target for the given Cell.
+func NewMinDistanceToCellTarget(cell Cell) *MinDistanceToCellTarget {
+ m := minDistance(0)
+ return &MinDistanceToCellTarget{cell: cell, dist: m}
+}
+
+func (m *MinDistanceToCellTarget) capBound() Cap {
+ return m.cell.CapBound()
+}
+
+func (m *MinDistanceToCellTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
+ return dist.updateDistance(minDistance(m.cell.Distance(p)))
+}
+
+func (m *MinDistanceToCellTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
+ return dist.updateDistance(minDistance(m.cell.DistanceToEdge(edge.V0, edge.V1)))
+}
+
+func (m *MinDistanceToCellTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
+ return dist.updateDistance(minDistance(m.cell.DistanceToCell(cell)))
+}
+
+func (m *MinDistanceToCellTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
+ // The simplest approach is simply to return the polygons that contain the
+ // cell center. Alternatively, if the index cell is smaller than the target
+ // cell then we could return all polygons that are present in the
+ // shapeIndexCell, but since the index is built conservatively this may
+ // include some polygons that don't quite intersect the cell. So we would
+ // either need to recheck for intersection more accurately, or weaken the
+ // VisitContainingShapes contract so that it only guarantees approximate
+ // intersection, neither of which seems like a good tradeoff.
+ target := NewMinDistanceToPointTarget(m.cell.Center())
+ return target.visitContainingShapes(index, v)
+}
+func (m *MinDistanceToCellTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
+func (m *MinDistanceToCellTarget) maxBruteForceIndexSize() int { return 30 }
+func (m *MinDistanceToCellTarget) distance() distance { return m.dist }
+
+// ----------------------------------------------------------
+
+/*
+// MinDistanceToCellUnionTarget is a type for computing the minimum distance to a CellUnion.
+type MinDistanceToCellUnionTarget struct {
+ cu CellUnion
+ query *ClosestCellQuery
+ dist distance
+}
+
+// NewMinDistanceToCellUnionTarget returns a new target for the given CellUnion.
+func NewMinDistanceToCellUnionTarget(cu CellUnion) *MinDistanceToCellUnionTarget {
+ m := minDistance(0)
+ return &MinDistanceToCellUnionTarget{cu: cu, dist: m}
+}
+
+func (m *MinDistanceToCellUnionTarget) capBound() Cap {
+ return m.cu.CapBound()
+}
+
+func (m *MinDistanceToCellUnionTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
+ m.query.opts.DistanceLimit = dist.chordAngle()
+ target := NewMinDistanceToPointTarget(p)
+ r := m.query.findEdge(target)
+ if r.ShapeID < 0 {
+ return dist, false
+ }
+ return minDistance(r.Distance), true
+}
+
+func (m *MinDistanceToCellUnionTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
+ // We test the center of the edge in order to ensure that edge targets AB
+ // and BA yield identical results (which is not guaranteed by the API but
+ // users might expect). Other options would be to test both endpoints, or
+ // return different results for AB and BA in some cases.
+ target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()})
+ return target.visitContainingShapes(index, v)
+}
+func (m *MinDistanceToCellUnionTarget) setMaxError(maxErr s1.ChordAngle) bool {
+ m.query.opts.MaxError = maxErr
+ return true
+}
+func (m *MinDistanceToCellUnionTarget) maxBruteForceIndexSize() int { return 30 }
+func (m *MinDistanceToCellUnionTarget) distance() distance { return m.dist }
+*/
+
+// ----------------------------------------------------------
+
+// MinDistanceToShapeIndexTarget is a type for computing the minimum distance to a ShapeIndex.
+type MinDistanceToShapeIndexTarget struct {
+ index *ShapeIndex
+ query *EdgeQuery
+ dist distance
+}
+
+// NewMinDistanceToShapeIndexTarget returns a new target for the given ShapeIndex.
+func NewMinDistanceToShapeIndexTarget(index *ShapeIndex) *MinDistanceToShapeIndexTarget {
+ m := minDistance(0)
+ return &MinDistanceToShapeIndexTarget{
+ index: index,
+ dist: m,
+ query: NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions()),
+ }
+}
+
+func (m *MinDistanceToShapeIndexTarget) capBound() Cap {
+ // TODO(roberts): Depends on ShapeIndexRegion existing.
+ // c := makeS2ShapeIndexRegion(m.index).CapBound()
+ // return CapFromCenterRadius(Point{c.Center.Mul(-1)}, c.Radius())
+ panic("not implemented yet")
+}
+
+func (m *MinDistanceToShapeIndexTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
+ m.query.opts.distanceLimit = dist.chordAngle()
+ target := NewMinDistanceToPointTarget(p)
+ r := m.query.findEdge(target, m.query.opts)
+ if r.shapeID < 0 {
+ return dist, false
+ }
+ return r.distance, true
+}
+
+func (m *MinDistanceToShapeIndexTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
+ m.query.opts.distanceLimit = dist.chordAngle()
+ target := NewMinDistanceToEdgeTarget(edge)
+ r := m.query.findEdge(target, m.query.opts)
+ if r.shapeID < 0 {
+ return dist, false
+ }
+ return r.distance, true
+}
+
+func (m *MinDistanceToShapeIndexTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
+ m.query.opts.distanceLimit = dist.chordAngle()
+ target := NewMinDistanceToCellTarget(cell)
+ r := m.query.findEdge(target, m.query.opts)
+ if r.shapeID < 0 {
+ return dist, false
+ }
+ return r.distance, true
+}
+
+// For target types consisting of multiple connected components (such as this one),
+// this method should return the polygons containing the antipodal reflection of
+// *any* connected component. (It is sufficient to test containment of one vertex per
+// connected component, since this allows us to also return any polygon whose
+// boundary has distance.zero() to the target.)
+func (m *MinDistanceToShapeIndexTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
+ // It is sufficient to find the set of chain starts in the target index
+ // (i.e., one vertex per connected component of edges) that are contained by
+ // the query index, except for one special case to handle full polygons.
+ //
+ // TODO(roberts): Do this by merge-joining the two ShapeIndexes.
+ for _, shape := range m.index.shapes {
+ numChains := shape.NumChains()
+ // Shapes that don't have any edges require a special case (below).
+ testedPoint := false
+ for c := 0; c < numChains; c++ {
+ chain := shape.Chain(c)
+ if chain.Length == 0 {
+ continue
+ }
+ testedPoint = true
+ target := NewMinDistanceToPointTarget(shape.ChainEdge(c, 0).V0)
+ if !target.visitContainingShapes(index, v) {
+ return false
+ }
+ }
+ if !testedPoint {
+ // Special case to handle full polygons.
+ ref := shape.ReferencePoint()
+ if !ref.Contained {
+ continue
+ }
+ target := NewMinDistanceToPointTarget(ref.Point)
+ if !target.visitContainingShapes(index, v) {
+ return false
+ }
+ }
+ }
+ return true
+}
+
+func (m *MinDistanceToShapeIndexTarget) setMaxError(maxErr s1.ChordAngle) bool {
+ m.query.opts.maxError = maxErr
+ return true
+}
+func (m *MinDistanceToShapeIndexTarget) maxBruteForceIndexSize() int { return 25 }
+func (m *MinDistanceToShapeIndexTarget) distance() distance { return m.dist }
+func (m *MinDistanceToShapeIndexTarget) setIncludeInteriors(b bool) {
+ m.query.opts.includeInteriors = b
+}
+func (m *MinDistanceToShapeIndexTarget) setUseBruteForce(b bool) { m.query.opts.useBruteForce = b }
+
+// TODO(roberts): Remaining methods
+//
+// func (m *MinDistanceToShapeIndexTarget) capBound() Cap {
+// CellUnionTarget