summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/max_distance_targets.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/max_distance_targets.go')
-rw-r--r--vendor/github.com/golang/geo/s2/max_distance_targets.go306
1 files changed, 0 insertions, 306 deletions
diff --git a/vendor/github.com/golang/geo/s2/max_distance_targets.go b/vendor/github.com/golang/geo/s2/max_distance_targets.go
deleted file mode 100644
index 589231890..000000000
--- a/vendor/github.com/golang/geo/s2/max_distance_targets.go
+++ /dev/null
@@ -1,306 +0,0 @@
-// Copyright 2019 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/s1"
-)
-
-// maxDistance implements distance as the supplementary distance (Pi - x) to find
-// results that are the furthest using the distance related algorithms.
-type maxDistance s1.ChordAngle
-
-func (m maxDistance) chordAngle() s1.ChordAngle { return s1.ChordAngle(m) }
-func (m maxDistance) zero() distance { return maxDistance(s1.StraightChordAngle) }
-func (m maxDistance) negative() distance { return maxDistance(s1.InfChordAngle()) }
-func (m maxDistance) infinity() distance { return maxDistance(s1.NegativeChordAngle) }
-func (m maxDistance) less(other distance) bool { return m.chordAngle() > other.chordAngle() }
-func (m maxDistance) sub(other distance) distance {
- return maxDistance(m.chordAngle() + other.chordAngle())
-}
-func (m maxDistance) chordAngleBound() s1.ChordAngle {
- return s1.StraightChordAngle - m.chordAngle()
-}
-func (m maxDistance) updateDistance(dist distance) (distance, bool) {
- if dist.less(m) {
- m = maxDistance(dist.chordAngle())
- return m, true
- }
- return m, false
-}
-
-func (m maxDistance) fromChordAngle(o s1.ChordAngle) distance {
- return maxDistance(o)
-}
-
-// MaxDistanceToPointTarget is used for computing the maximum distance to a Point.
-type MaxDistanceToPointTarget struct {
- point Point
- dist distance
-}
-
-// NewMaxDistanceToPointTarget returns a new target for the given Point.
-func NewMaxDistanceToPointTarget(point Point) *MaxDistanceToPointTarget {
- m := maxDistance(0)
- return &MaxDistanceToPointTarget{point: point, dist: &m}
-}
-
-func (m *MaxDistanceToPointTarget) capBound() Cap {
- return CapFromCenterChordAngle(Point{m.point.Mul(-1)}, (s1.ChordAngle(0)))
-}
-
-func (m *MaxDistanceToPointTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(ChordAngleBetweenPoints(p, m.point)))
-}
-
-func (m *MaxDistanceToPointTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- if d, ok := UpdateMaxDistance(m.point, edge.V0, edge.V1, dist.chordAngle()); ok {
- dist, _ = dist.updateDistance(maxDistance(d))
- return dist, true
- }
- return dist, false
-}
-
-func (m *MaxDistanceToPointTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(cell.MaxDistance(m.point)))
-}
-
-func (m *MaxDistanceToPointTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // For furthest points, we visit the polygons whose interior contains
- // the antipode of the target point. These are the polygons whose
- // distance to the target is maxDistance.zero()
- q := NewContainsPointQuery(index, VertexModelSemiOpen)
- return q.visitContainingShapes(Point{m.point.Mul(-1)}, func(shape Shape) bool {
- return v(shape, m.point)
- })
-}
-
-func (m *MaxDistanceToPointTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
-func (m *MaxDistanceToPointTarget) maxBruteForceIndexSize() int { return 300 }
-func (m *MaxDistanceToPointTarget) distance() distance { return m.dist }
-
-// MaxDistanceToEdgeTarget is used for computing the maximum distance to an Edge.
-type MaxDistanceToEdgeTarget struct {
- e Edge
- dist distance
-}
-
-// NewMaxDistanceToEdgeTarget returns a new target for the given Edge.
-func NewMaxDistanceToEdgeTarget(e Edge) *MaxDistanceToEdgeTarget {
- m := maxDistance(0)
- return &MaxDistanceToEdgeTarget{e: e, dist: m}
-}
-
-// capBound returns a Cap that bounds the antipode of the target. (This
-// is the set of points whose maxDistance to the target is maxDistance.zero)
-func (m *MaxDistanceToEdgeTarget) capBound() Cap {
- // The following computes a radius equal to half the edge length in an
- // efficient and numerically stable way.
- d2 := float64(ChordAngleBetweenPoints(m.e.V0, m.e.V1))
- r2 := (0.5 * d2) / (1 + math.Sqrt(1-0.25*d2))
- return CapFromCenterChordAngle(Point{m.e.V0.Add(m.e.V1.Vector).Mul(-1).Normalize()}, s1.ChordAngleFromSquaredLength(r2))
-}
-
-func (m *MaxDistanceToEdgeTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- if d, ok := UpdateMaxDistance(p, m.e.V0, m.e.V1, dist.chordAngle()); ok {
- dist, _ = dist.updateDistance(maxDistance(d))
- return dist, true
- }
- return dist, false
-}
-
-func (m *MaxDistanceToEdgeTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- if d, ok := updateEdgePairMaxDistance(m.e.V0, m.e.V1, edge.V0, edge.V1, dist.chordAngle()); ok {
- dist, _ = dist.updateDistance(maxDistance(d))
- return dist, true
- }
- return dist, false
-}
-
-func (m *MaxDistanceToEdgeTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(cell.MaxDistanceToEdge(m.e.V0, m.e.V1)))
-}
-
-func (m *MaxDistanceToEdgeTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // We only need to test one edge point. That is because the method *must*
- // visit a polygon if it fully contains the target, and *is allowed* to
- // visit a polygon if it intersects the target. If the tested vertex is not
- // contained, we know the full edge is not contained; if the tested vertex is
- // contained, then the edge either is fully contained (must be visited) or it
- // intersects (is allowed to be visited). We visit the center of the edge so
- // that edge AB gives identical results to BA.
- target := NewMaxDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()})
- return target.visitContainingShapes(index, v)
-}
-
-func (m *MaxDistanceToEdgeTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
-func (m *MaxDistanceToEdgeTarget) maxBruteForceIndexSize() int { return 110 }
-func (m *MaxDistanceToEdgeTarget) distance() distance { return m.dist }
-
-// MaxDistanceToCellTarget is used for computing the maximum distance to a Cell.
-type MaxDistanceToCellTarget struct {
- cell Cell
- dist distance
-}
-
-// NewMaxDistanceToCellTarget returns a new target for the given Cell.
-func NewMaxDistanceToCellTarget(cell Cell) *MaxDistanceToCellTarget {
- m := maxDistance(0)
- return &MaxDistanceToCellTarget{cell: cell, dist: m}
-}
-
-func (m *MaxDistanceToCellTarget) capBound() Cap {
- c := m.cell.CapBound()
- return CapFromCenterAngle(Point{c.Center().Mul(-1)}, c.Radius())
-}
-
-func (m *MaxDistanceToCellTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(m.cell.MaxDistance(p)))
-}
-
-func (m *MaxDistanceToCellTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(m.cell.MaxDistanceToEdge(edge.V0, edge.V1)))
-}
-
-func (m *MaxDistanceToCellTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(m.cell.MaxDistanceToCell(cell)))
-}
-
-func (m *MaxDistanceToCellTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // We only need to check one point here - cell center is simplest.
- // See comment at MaxDistanceToEdgeTarget's visitContainingShapes.
- target := NewMaxDistanceToPointTarget(m.cell.Center())
- return target.visitContainingShapes(index, v)
-}
-
-func (m *MaxDistanceToCellTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
-func (m *MaxDistanceToCellTarget) maxBruteForceIndexSize() int { return 100 }
-func (m *MaxDistanceToCellTarget) distance() distance { return m.dist }
-
-// MaxDistanceToShapeIndexTarget is used for computing the maximum distance to a ShapeIndex.
-type MaxDistanceToShapeIndexTarget struct {
- index *ShapeIndex
- query *EdgeQuery
- dist distance
-}
-
-// NewMaxDistanceToShapeIndexTarget returns a new target for the given ShapeIndex.
-func NewMaxDistanceToShapeIndexTarget(index *ShapeIndex) *MaxDistanceToShapeIndexTarget {
- m := maxDistance(0)
- return &MaxDistanceToShapeIndexTarget{
- index: index,
- dist: m,
- query: NewFurthestEdgeQuery(index, NewFurthestEdgeQueryOptions()),
- }
-}
-
-// capBound returns a Cap that bounds the antipode of the target. This
-// is the set of points whose maxDistance to the target is maxDistance.zero()
-func (m *MaxDistanceToShapeIndexTarget) capBound() Cap {
- // TODO(roberts): Depends on ShapeIndexRegion
- // c := makeShapeIndexRegion(m.index).CapBound()
- // return CapFromCenterRadius(Point{c.Center.Mul(-1)}, c.Radius())
- panic("not implemented yet")
-}
-
-func (m *MaxDistanceToShapeIndexTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- m.query.opts.distanceLimit = dist.chordAngle()
- target := NewMaxDistanceToPointTarget(p)
- r := m.query.findEdge(target, m.query.opts)
- if r.shapeID < 0 {
- return dist, false
- }
- return r.distance, true
-}
-
-func (m *MaxDistanceToShapeIndexTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- m.query.opts.distanceLimit = dist.chordAngle()
- target := NewMaxDistanceToEdgeTarget(edge)
- r := m.query.findEdge(target, m.query.opts)
- if r.shapeID < 0 {
- return dist, false
- }
- return r.distance, true
-}
-
-func (m *MaxDistanceToShapeIndexTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- m.query.opts.distanceLimit = dist.chordAngle()
- target := NewMaxDistanceToCellTarget(cell)
- r := m.query.findEdge(target, m.query.opts)
- if r.shapeID < 0 {
- return dist, false
- }
- return r.distance, true
-}
-
-// visitContainingShapes returns the polygons containing the antipodal
-// reflection of *any* connected component for target types consisting of
-// multiple connected components. It is sufficient to test containment of
-// one vertex per connected component, since this allows us to also return
-// any polygon whose boundary has distance.zero() to the target.
-func (m *MaxDistanceToShapeIndexTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // It is sufficient to find the set of chain starts in the target index
- // (i.e., one vertex per connected component of edges) that are contained by
- // the query index, except for one special case to handle full polygons.
- //
- // TODO(roberts): Do this by merge-joining the two ShapeIndexes and share
- // the code with BooleanOperation.
- for _, shape := range m.index.shapes {
- numChains := shape.NumChains()
- // Shapes that don't have any edges require a special case (below).
- testedPoint := false
- for c := 0; c < numChains; c++ {
- chain := shape.Chain(c)
- if chain.Length == 0 {
- continue
- }
- testedPoint = true
- target := NewMaxDistanceToPointTarget(shape.ChainEdge(c, 0).V0)
- if !target.visitContainingShapes(index, v) {
- return false
- }
- }
- if !testedPoint {
- // Special case to handle full polygons.
- ref := shape.ReferencePoint()
- if !ref.Contained {
- continue
- }
- target := NewMaxDistanceToPointTarget(ref.Point)
- if !target.visitContainingShapes(index, v) {
- return false
- }
- }
- }
- return true
-}
-
-func (m *MaxDistanceToShapeIndexTarget) setMaxError(maxErr s1.ChordAngle) bool {
- m.query.opts.maxError = maxErr
- return true
-}
-func (m *MaxDistanceToShapeIndexTarget) maxBruteForceIndexSize() int { return 70 }
-func (m *MaxDistanceToShapeIndexTarget) distance() distance { return m.dist }
-func (m *MaxDistanceToShapeIndexTarget) setIncludeInteriors(b bool) {
- m.query.opts.includeInteriors = b
-}
-func (m *MaxDistanceToShapeIndexTarget) setUseBruteForce(b bool) { m.query.opts.useBruteForce = b }
-
-// TODO(roberts): Remaining methods
-//
-// func (m *MaxDistanceToShapeIndexTarget) capBound() Cap {
-// CellUnionTarget