diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s2/edge_tessellator.go')
-rw-r--r-- | vendor/github.com/golang/geo/s2/edge_tessellator.go | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/edge_tessellator.go b/vendor/github.com/golang/geo/s2/edge_tessellator.go new file mode 100644 index 000000000..5ad63bea2 --- /dev/null +++ b/vendor/github.com/golang/geo/s2/edge_tessellator.go @@ -0,0 +1,167 @@ +// Copyright 2018 Google Inc. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package s2 + +import ( + "math" + + "github.com/golang/geo/r2" + "github.com/golang/geo/s1" +) + +const ( + // MinTessellationTolerance is the minimum supported tolerance (which + // corresponds to a distance less than 1 micrometer on the Earth's + // surface, but is still much larger than the expected projection and + // interpolation errors). + MinTessellationTolerance s1.Angle = 1e-13 +) + +// EdgeTessellator converts an edge in a given projection (e.g., Mercator) into +// a chain of spherical geodesic edges such that the maximum distance between +// the original edge and the geodesic edge chain is at most the requested +// tolerance. Similarly, it can convert a spherical geodesic edge into a chain +// of edges in a given 2D projection such that the maximum distance between the +// geodesic edge and the chain of projected edges is at most the requested tolerance. +// +// Method | Input | Output +// ------------|------------------------|----------------------- +// Projected | S2 geodesics | Planar projected edges +// Unprojected | Planar projected edges | S2 geodesics +type EdgeTessellator struct { + projection Projection + tolerance s1.ChordAngle + wrapDistance r2.Point +} + +// NewEdgeTessellator creates a new edge tessellator for the given projection and tolerance. +func NewEdgeTessellator(p Projection, tolerance s1.Angle) *EdgeTessellator { + return &EdgeTessellator{ + projection: p, + tolerance: s1.ChordAngleFromAngle(maxAngle(tolerance, MinTessellationTolerance)), + wrapDistance: p.WrapDistance(), + } +} + +// AppendProjected converts the spherical geodesic edge AB to a chain of planar edges +// in the given projection and returns the corresponding vertices. +// +// If the given projection has one or more coordinate axes that wrap, then +// every vertex's coordinates will be as close as possible to the previous +// vertex's coordinates. Note that this may yield vertices whose +// coordinates are outside the usual range. For example, tessellating the +// edge (0:170, 0:-170) (in lat:lng notation) yields (0:170, 0:190). +func (e *EdgeTessellator) AppendProjected(a, b Point, vertices []r2.Point) []r2.Point { + pa := e.projection.Project(a) + if len(vertices) == 0 { + vertices = []r2.Point{pa} + } else { + pa = e.wrapDestination(vertices[len(vertices)-1], pa) + } + + pb := e.wrapDestination(pa, e.projection.Project(b)) + return e.appendProjected(pa, a, pb, b, vertices) +} + +// appendProjected splits a geodesic edge AB as necessary and returns the +// projected vertices appended to the given vertices. +// +// The maximum recursion depth is (math.Pi / MinTessellationTolerance) < 45 +func (e *EdgeTessellator) appendProjected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []r2.Point) []r2.Point { + // It's impossible to robustly test whether a projected edge is close enough + // to a geodesic edge without knowing the details of the projection + // function, but the following heuristic works well for a wide range of map + // projections. The idea is simply to test whether the midpoint of the + // projected edge is close enough to the midpoint of the geodesic edge. + // + // This measures the distance between the two edges by treating them as + // parametric curves rather than geometric ones. The problem with + // measuring, say, the minimum distance from the projected midpoint to the + // geodesic edge is that this is a lower bound on the value we want, because + // the maximum separation between the two curves is generally not attained + // at the midpoint of the projected edge. The distance between the curve + // midpoints is at least an upper bound on the distance from either midpoint + // to opposite curve. It's not necessarily an upper bound on the maximum + // distance between the two curves, but it is a powerful requirement because + // it demands that the two curves stay parametrically close together. This + // turns out to be much more robust with respect for projections with + // singularities (e.g., the North and South poles in the rectangular and + // Mercator projections) because the curve parameterization speed changes + // rapidly near such singularities. + mid := Point{a.Add(b.Vector).Normalize()} + testMid := e.projection.Unproject(e.projection.Interpolate(0.5, pa, pb)) + + if ChordAngleBetweenPoints(mid, testMid) < e.tolerance { + return append(vertices, pb) + } + + pmid := e.wrapDestination(pa, e.projection.Project(mid)) + vertices = e.appendProjected(pa, a, pmid, mid, vertices) + return e.appendProjected(pmid, mid, pb, b, vertices) +} + +// AppendUnprojected converts the planar edge AB in the given projection to a chain of +// spherical geodesic edges and returns the vertices. +// +// Note that to construct a Loop, you must eliminate the duplicate first and last +// vertex. Note also that if the given projection involves coordinate wrapping +// (e.g. across the 180 degree meridian) then the first and last vertices may not +// be exactly the same. +func (e *EdgeTessellator) AppendUnprojected(pa, pb r2.Point, vertices []Point) []Point { + pb2 := e.wrapDestination(pa, pb) + a := e.projection.Unproject(pa) + b := e.projection.Unproject(pb) + + if len(vertices) == 0 { + vertices = []Point{a} + } + + // Note that coordinate wrapping can create a small amount of error. For + // example in the edge chain "0:-175, 0:179, 0:-177", the first edge is + // transformed into "0:-175, 0:-181" while the second is transformed into + // "0:179, 0:183". The two coordinate pairs for the middle vertex + // ("0:-181" and "0:179") may not yield exactly the same S2Point. + return e.appendUnprojected(pa, a, pb2, b, vertices) +} + +// appendUnprojected interpolates a projected edge and appends the corresponding +// points on the sphere. +func (e *EdgeTessellator) appendUnprojected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []Point) []Point { + pmid := e.projection.Interpolate(0.5, pa, pb) + mid := e.projection.Unproject(pmid) + testMid := Point{a.Add(b.Vector).Normalize()} + + if ChordAngleBetweenPoints(mid, testMid) < e.tolerance { + return append(vertices, b) + } + + vertices = e.appendUnprojected(pa, a, pmid, mid, vertices) + return e.appendUnprojected(pmid, mid, pb, b, vertices) +} + +// wrapDestination returns the coordinates of the edge destination wrapped if +// necessary to obtain the shortest edge. +func (e *EdgeTessellator) wrapDestination(pa, pb r2.Point) r2.Point { + x := pb.X + y := pb.Y + // The code below ensures that pb is unmodified unless wrapping is required. + if e.wrapDistance.X > 0 && math.Abs(x-pa.X) > 0.5*e.wrapDistance.X { + x = pa.X + math.Remainder(x-pa.X, e.wrapDistance.X) + } + if e.wrapDistance.Y > 0 && math.Abs(y-pa.Y) > 0.5*e.wrapDistance.Y { + y = pa.Y + math.Remainder(y-pa.Y, e.wrapDistance.Y) + } + return r2.Point{x, y} +} |