summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/edge_tessellator.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/edge_tessellator.go')
-rw-r--r--vendor/github.com/golang/geo/s2/edge_tessellator.go167
1 files changed, 0 insertions, 167 deletions
diff --git a/vendor/github.com/golang/geo/s2/edge_tessellator.go b/vendor/github.com/golang/geo/s2/edge_tessellator.go
deleted file mode 100644
index 5ad63bea2..000000000
--- a/vendor/github.com/golang/geo/s2/edge_tessellator.go
+++ /dev/null
@@ -1,167 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/r2"
- "github.com/golang/geo/s1"
-)
-
-const (
- // MinTessellationTolerance is the minimum supported tolerance (which
- // corresponds to a distance less than 1 micrometer on the Earth's
- // surface, but is still much larger than the expected projection and
- // interpolation errors).
- MinTessellationTolerance s1.Angle = 1e-13
-)
-
-// EdgeTessellator converts an edge in a given projection (e.g., Mercator) into
-// a chain of spherical geodesic edges such that the maximum distance between
-// the original edge and the geodesic edge chain is at most the requested
-// tolerance. Similarly, it can convert a spherical geodesic edge into a chain
-// of edges in a given 2D projection such that the maximum distance between the
-// geodesic edge and the chain of projected edges is at most the requested tolerance.
-//
-// Method | Input | Output
-// ------------|------------------------|-----------------------
-// Projected | S2 geodesics | Planar projected edges
-// Unprojected | Planar projected edges | S2 geodesics
-type EdgeTessellator struct {
- projection Projection
- tolerance s1.ChordAngle
- wrapDistance r2.Point
-}
-
-// NewEdgeTessellator creates a new edge tessellator for the given projection and tolerance.
-func NewEdgeTessellator(p Projection, tolerance s1.Angle) *EdgeTessellator {
- return &EdgeTessellator{
- projection: p,
- tolerance: s1.ChordAngleFromAngle(maxAngle(tolerance, MinTessellationTolerance)),
- wrapDistance: p.WrapDistance(),
- }
-}
-
-// AppendProjected converts the spherical geodesic edge AB to a chain of planar edges
-// in the given projection and returns the corresponding vertices.
-//
-// If the given projection has one or more coordinate axes that wrap, then
-// every vertex's coordinates will be as close as possible to the previous
-// vertex's coordinates. Note that this may yield vertices whose
-// coordinates are outside the usual range. For example, tessellating the
-// edge (0:170, 0:-170) (in lat:lng notation) yields (0:170, 0:190).
-func (e *EdgeTessellator) AppendProjected(a, b Point, vertices []r2.Point) []r2.Point {
- pa := e.projection.Project(a)
- if len(vertices) == 0 {
- vertices = []r2.Point{pa}
- } else {
- pa = e.wrapDestination(vertices[len(vertices)-1], pa)
- }
-
- pb := e.wrapDestination(pa, e.projection.Project(b))
- return e.appendProjected(pa, a, pb, b, vertices)
-}
-
-// appendProjected splits a geodesic edge AB as necessary and returns the
-// projected vertices appended to the given vertices.
-//
-// The maximum recursion depth is (math.Pi / MinTessellationTolerance) < 45
-func (e *EdgeTessellator) appendProjected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []r2.Point) []r2.Point {
- // It's impossible to robustly test whether a projected edge is close enough
- // to a geodesic edge without knowing the details of the projection
- // function, but the following heuristic works well for a wide range of map
- // projections. The idea is simply to test whether the midpoint of the
- // projected edge is close enough to the midpoint of the geodesic edge.
- //
- // This measures the distance between the two edges by treating them as
- // parametric curves rather than geometric ones. The problem with
- // measuring, say, the minimum distance from the projected midpoint to the
- // geodesic edge is that this is a lower bound on the value we want, because
- // the maximum separation between the two curves is generally not attained
- // at the midpoint of the projected edge. The distance between the curve
- // midpoints is at least an upper bound on the distance from either midpoint
- // to opposite curve. It's not necessarily an upper bound on the maximum
- // distance between the two curves, but it is a powerful requirement because
- // it demands that the two curves stay parametrically close together. This
- // turns out to be much more robust with respect for projections with
- // singularities (e.g., the North and South poles in the rectangular and
- // Mercator projections) because the curve parameterization speed changes
- // rapidly near such singularities.
- mid := Point{a.Add(b.Vector).Normalize()}
- testMid := e.projection.Unproject(e.projection.Interpolate(0.5, pa, pb))
-
- if ChordAngleBetweenPoints(mid, testMid) < e.tolerance {
- return append(vertices, pb)
- }
-
- pmid := e.wrapDestination(pa, e.projection.Project(mid))
- vertices = e.appendProjected(pa, a, pmid, mid, vertices)
- return e.appendProjected(pmid, mid, pb, b, vertices)
-}
-
-// AppendUnprojected converts the planar edge AB in the given projection to a chain of
-// spherical geodesic edges and returns the vertices.
-//
-// Note that to construct a Loop, you must eliminate the duplicate first and last
-// vertex. Note also that if the given projection involves coordinate wrapping
-// (e.g. across the 180 degree meridian) then the first and last vertices may not
-// be exactly the same.
-func (e *EdgeTessellator) AppendUnprojected(pa, pb r2.Point, vertices []Point) []Point {
- pb2 := e.wrapDestination(pa, pb)
- a := e.projection.Unproject(pa)
- b := e.projection.Unproject(pb)
-
- if len(vertices) == 0 {
- vertices = []Point{a}
- }
-
- // Note that coordinate wrapping can create a small amount of error. For
- // example in the edge chain "0:-175, 0:179, 0:-177", the first edge is
- // transformed into "0:-175, 0:-181" while the second is transformed into
- // "0:179, 0:183". The two coordinate pairs for the middle vertex
- // ("0:-181" and "0:179") may not yield exactly the same S2Point.
- return e.appendUnprojected(pa, a, pb2, b, vertices)
-}
-
-// appendUnprojected interpolates a projected edge and appends the corresponding
-// points on the sphere.
-func (e *EdgeTessellator) appendUnprojected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []Point) []Point {
- pmid := e.projection.Interpolate(0.5, pa, pb)
- mid := e.projection.Unproject(pmid)
- testMid := Point{a.Add(b.Vector).Normalize()}
-
- if ChordAngleBetweenPoints(mid, testMid) < e.tolerance {
- return append(vertices, b)
- }
-
- vertices = e.appendUnprojected(pa, a, pmid, mid, vertices)
- return e.appendUnprojected(pmid, mid, pb, b, vertices)
-}
-
-// wrapDestination returns the coordinates of the edge destination wrapped if
-// necessary to obtain the shortest edge.
-func (e *EdgeTessellator) wrapDestination(pa, pb r2.Point) r2.Point {
- x := pb.X
- y := pb.Y
- // The code below ensures that pb is unmodified unless wrapping is required.
- if e.wrapDistance.X > 0 && math.Abs(x-pa.X) > 0.5*e.wrapDistance.X {
- x = pa.X + math.Remainder(x-pa.X, e.wrapDistance.X)
- }
- if e.wrapDistance.Y > 0 && math.Abs(y-pa.Y) > 0.5*e.wrapDistance.Y {
- y = pa.Y + math.Remainder(y-pa.Y, e.wrapDistance.Y)
- }
- return r2.Point{x, y}
-}