summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/cellid.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/cellid.go')
-rw-r--r--vendor/github.com/golang/geo/s2/cellid.go944
1 files changed, 944 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/cellid.go b/vendor/github.com/golang/geo/s2/cellid.go
new file mode 100644
index 000000000..c6cbaf2db
--- /dev/null
+++ b/vendor/github.com/golang/geo/s2/cellid.go
@@ -0,0 +1,944 @@
+// Copyright 2014 Google Inc. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package s2
+
+import (
+ "bytes"
+ "fmt"
+ "io"
+ "math"
+ "sort"
+ "strconv"
+ "strings"
+
+ "github.com/golang/geo/r1"
+ "github.com/golang/geo/r2"
+ "github.com/golang/geo/r3"
+ "github.com/golang/geo/s1"
+)
+
+// CellID uniquely identifies a cell in the S2 cell decomposition.
+// The most significant 3 bits encode the face number (0-5). The
+// remaining 61 bits encode the position of the center of this cell
+// along the Hilbert curve on that face. The zero value and the value
+// (1<<64)-1 are invalid cell IDs. The first compares less than any
+// valid cell ID, the second as greater than any valid cell ID.
+//
+// Sequentially increasing cell IDs follow a continuous space-filling curve
+// over the entire sphere. They have the following properties:
+//
+// - The ID of a cell at level k consists of a 3-bit face number followed
+// by k bit pairs that recursively select one of the four children of
+// each cell. The next bit is always 1, and all other bits are 0.
+// Therefore, the level of a cell is determined by the position of its
+// lowest-numbered bit that is turned on (for a cell at level k, this
+// position is 2 * (maxLevel - k)).
+//
+// - The ID of a parent cell is at the midpoint of the range of IDs spanned
+// by its children (or by its descendants at any level).
+//
+// Leaf cells are often used to represent points on the unit sphere, and
+// this type provides methods for converting directly between these two
+// representations. For cells that represent 2D regions rather than
+// discrete point, it is better to use Cells.
+type CellID uint64
+
+// SentinelCellID is an invalid cell ID guaranteed to be larger than any
+// valid cell ID. It is used primarily by ShapeIndex. The value is also used
+// by some S2 types when encoding data.
+// Note that the sentinel's RangeMin == RangeMax == itself.
+const SentinelCellID = CellID(^uint64(0))
+
+// sortCellIDs sorts the slice of CellIDs in place.
+func sortCellIDs(ci []CellID) {
+ sort.Sort(cellIDs(ci))
+}
+
+// cellIDs implements the Sort interface for slices of CellIDs.
+type cellIDs []CellID
+
+func (c cellIDs) Len() int { return len(c) }
+func (c cellIDs) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
+func (c cellIDs) Less(i, j int) bool { return c[i] < c[j] }
+
+// TODO(dsymonds): Some of these constants should probably be exported.
+const (
+ faceBits = 3
+ numFaces = 6
+
+ // This is the number of levels needed to specify a leaf cell.
+ maxLevel = 30
+
+ // The extra position bit (61 rather than 60) lets us encode each cell as its
+ // Hilbert curve position at the cell center (which is halfway along the
+ // portion of the Hilbert curve that fills that cell).
+ posBits = 2*maxLevel + 1
+
+ // The maximum index of a valid leaf cell plus one. The range of valid leaf
+ // cell indices is [0..maxSize-1].
+ maxSize = 1 << maxLevel
+
+ wrapOffset = uint64(numFaces) << posBits
+)
+
+// CellIDFromFacePosLevel returns a cell given its face in the range
+// [0,5], the 61-bit Hilbert curve position pos within that face, and
+// the level in the range [0,maxLevel]. The position in the cell ID
+// will be truncated to correspond to the Hilbert curve position at
+// the center of the returned cell.
+func CellIDFromFacePosLevel(face int, pos uint64, level int) CellID {
+ return CellID(uint64(face)<<posBits + pos | 1).Parent(level)
+}
+
+// CellIDFromFace returns the cell corresponding to a given S2 cube face.
+func CellIDFromFace(face int) CellID {
+ return CellID((uint64(face) << posBits) + lsbForLevel(0))
+}
+
+// CellIDFromLatLng returns the leaf cell containing ll.
+func CellIDFromLatLng(ll LatLng) CellID {
+ return cellIDFromPoint(PointFromLatLng(ll))
+}
+
+// CellIDFromToken returns a cell given a hex-encoded string of its uint64 ID.
+func CellIDFromToken(s string) CellID {
+ if len(s) > 16 {
+ return CellID(0)
+ }
+ n, err := strconv.ParseUint(s, 16, 64)
+ if err != nil {
+ return CellID(0)
+ }
+ // Equivalent to right-padding string with zeros to 16 characters.
+ if len(s) < 16 {
+ n = n << (4 * uint(16-len(s)))
+ }
+ return CellID(n)
+}
+
+// ToToken returns a hex-encoded string of the uint64 cell id, with leading
+// zeros included but trailing zeros stripped.
+func (ci CellID) ToToken() string {
+ s := strings.TrimRight(fmt.Sprintf("%016x", uint64(ci)), "0")
+ if len(s) == 0 {
+ return "X"
+ }
+ return s
+}
+
+// IsValid reports whether ci represents a valid cell.
+func (ci CellID) IsValid() bool {
+ return ci.Face() < numFaces && (ci.lsb()&0x1555555555555555 != 0)
+}
+
+// Face returns the cube face for this cell ID, in the range [0,5].
+func (ci CellID) Face() int { return int(uint64(ci) >> posBits) }
+
+// Pos returns the position along the Hilbert curve of this cell ID, in the range [0,2^posBits-1].
+func (ci CellID) Pos() uint64 { return uint64(ci) & (^uint64(0) >> faceBits) }
+
+// Level returns the subdivision level of this cell ID, in the range [0, maxLevel].
+func (ci CellID) Level() int {
+ return maxLevel - findLSBSetNonZero64(uint64(ci))>>1
+}
+
+// IsLeaf returns whether this cell ID is at the deepest level;
+// that is, the level at which the cells are smallest.
+func (ci CellID) IsLeaf() bool { return uint64(ci)&1 != 0 }
+
+// ChildPosition returns the child position (0..3) of this cell's
+// ancestor at the given level, relative to its parent. The argument
+// should be in the range 1..kMaxLevel. For example,
+// ChildPosition(1) returns the position of this cell's level-1
+// ancestor within its top-level face cell.
+func (ci CellID) ChildPosition(level int) int {
+ return int(uint64(ci)>>uint64(2*(maxLevel-level)+1)) & 3
+}
+
+// lsbForLevel returns the lowest-numbered bit that is on for cells at the given level.
+func lsbForLevel(level int) uint64 { return 1 << uint64(2*(maxLevel-level)) }
+
+// Parent returns the cell at the given level, which must be no greater than the current level.
+func (ci CellID) Parent(level int) CellID {
+ lsb := lsbForLevel(level)
+ return CellID((uint64(ci) & -lsb) | lsb)
+}
+
+// immediateParent is cheaper than Parent, but assumes !ci.isFace().
+func (ci CellID) immediateParent() CellID {
+ nlsb := CellID(ci.lsb() << 2)
+ return (ci & -nlsb) | nlsb
+}
+
+// isFace returns whether this is a top-level (face) cell.
+func (ci CellID) isFace() bool { return uint64(ci)&(lsbForLevel(0)-1) == 0 }
+
+// lsb returns the least significant bit that is set.
+func (ci CellID) lsb() uint64 { return uint64(ci) & -uint64(ci) }
+
+// Children returns the four immediate children of this cell.
+// If ci is a leaf cell, it returns four identical cells that are not the children.
+func (ci CellID) Children() [4]CellID {
+ var ch [4]CellID
+ lsb := CellID(ci.lsb())
+ ch[0] = ci - lsb + lsb>>2
+ lsb >>= 1
+ ch[1] = ch[0] + lsb
+ ch[2] = ch[1] + lsb
+ ch[3] = ch[2] + lsb
+ return ch
+}
+
+func sizeIJ(level int) int {
+ return 1 << uint(maxLevel-level)
+}
+
+// EdgeNeighbors returns the four cells that are adjacent across the cell's four edges.
+// Edges 0, 1, 2, 3 are in the down, right, up, left directions in the face space.
+// All neighbors are guaranteed to be distinct.
+func (ci CellID) EdgeNeighbors() [4]CellID {
+ level := ci.Level()
+ size := sizeIJ(level)
+ f, i, j, _ := ci.faceIJOrientation()
+ return [4]CellID{
+ cellIDFromFaceIJWrap(f, i, j-size).Parent(level),
+ cellIDFromFaceIJWrap(f, i+size, j).Parent(level),
+ cellIDFromFaceIJWrap(f, i, j+size).Parent(level),
+ cellIDFromFaceIJWrap(f, i-size, j).Parent(level),
+ }
+}
+
+// VertexNeighbors returns the neighboring cellIDs with vertex closest to this cell at the given level.
+// (Normally there are four neighbors, but the closest vertex may only have three neighbors if it is one of
+// the 8 cube vertices.)
+func (ci CellID) VertexNeighbors(level int) []CellID {
+ halfSize := sizeIJ(level + 1)
+ size := halfSize << 1
+ f, i, j, _ := ci.faceIJOrientation()
+
+ var isame, jsame bool
+ var ioffset, joffset int
+ if i&halfSize != 0 {
+ ioffset = size
+ isame = (i + size) < maxSize
+ } else {
+ ioffset = -size
+ isame = (i - size) >= 0
+ }
+ if j&halfSize != 0 {
+ joffset = size
+ jsame = (j + size) < maxSize
+ } else {
+ joffset = -size
+ jsame = (j - size) >= 0
+ }
+
+ results := []CellID{
+ ci.Parent(level),
+ cellIDFromFaceIJSame(f, i+ioffset, j, isame).Parent(level),
+ cellIDFromFaceIJSame(f, i, j+joffset, jsame).Parent(level),
+ }
+
+ if isame || jsame {
+ results = append(results, cellIDFromFaceIJSame(f, i+ioffset, j+joffset, isame && jsame).Parent(level))
+ }
+
+ return results
+}
+
+// AllNeighbors returns all neighbors of this cell at the given level. Two
+// cells X and Y are neighbors if their boundaries intersect but their
+// interiors do not. In particular, two cells that intersect at a single
+// point are neighbors. Note that for cells adjacent to a face vertex, the
+// same neighbor may be returned more than once. There could be up to eight
+// neighbors including the diagonal ones that share the vertex.
+//
+// This requires level >= ci.Level().
+func (ci CellID) AllNeighbors(level int) []CellID {
+ var neighbors []CellID
+
+ face, i, j, _ := ci.faceIJOrientation()
+
+ // Find the coordinates of the lower left-hand leaf cell. We need to
+ // normalize (i,j) to a known position within the cell because level
+ // may be larger than this cell's level.
+ size := sizeIJ(ci.Level())
+ i &= -size
+ j &= -size
+
+ nbrSize := sizeIJ(level)
+
+ // We compute the top-bottom, left-right, and diagonal neighbors in one
+ // pass. The loop test is at the end of the loop to avoid 32-bit overflow.
+ for k := -nbrSize; ; k += nbrSize {
+ var sameFace bool
+ if k < 0 {
+ sameFace = (j+k >= 0)
+ } else if k >= size {
+ sameFace = (j+k < maxSize)
+ } else {
+ sameFace = true
+ // Top and bottom neighbors.
+ neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j-nbrSize,
+ j-size >= 0).Parent(level))
+ neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j+size,
+ j+size < maxSize).Parent(level))
+ }
+
+ // Left, right, and diagonal neighbors.
+ neighbors = append(neighbors, cellIDFromFaceIJSame(face, i-nbrSize, j+k,
+ sameFace && i-size >= 0).Parent(level))
+ neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+size, j+k,
+ sameFace && i+size < maxSize).Parent(level))
+
+ if k >= size {
+ break
+ }
+ }
+
+ return neighbors
+}
+
+// RangeMin returns the minimum CellID that is contained within this cell.
+func (ci CellID) RangeMin() CellID { return CellID(uint64(ci) - (ci.lsb() - 1)) }
+
+// RangeMax returns the maximum CellID that is contained within this cell.
+func (ci CellID) RangeMax() CellID { return CellID(uint64(ci) + (ci.lsb() - 1)) }
+
+// Contains returns true iff the CellID contains oci.
+func (ci CellID) Contains(oci CellID) bool {
+ return uint64(ci.RangeMin()) <= uint64(oci) && uint64(oci) <= uint64(ci.RangeMax())
+}
+
+// Intersects returns true iff the CellID intersects oci.
+func (ci CellID) Intersects(oci CellID) bool {
+ return uint64(oci.RangeMin()) <= uint64(ci.RangeMax()) && uint64(oci.RangeMax()) >= uint64(ci.RangeMin())
+}
+
+// String returns the string representation of the cell ID in the form "1/3210".
+func (ci CellID) String() string {
+ if !ci.IsValid() {
+ return "Invalid: " + strconv.FormatInt(int64(ci), 16)
+ }
+ var b bytes.Buffer
+ b.WriteByte("012345"[ci.Face()]) // values > 5 will have been picked off by !IsValid above
+ b.WriteByte('/')
+ for level := 1; level <= ci.Level(); level++ {
+ b.WriteByte("0123"[ci.ChildPosition(level)])
+ }
+ return b.String()
+}
+
+// cellIDFromString returns a CellID from a string in the form "1/3210".
+func cellIDFromString(s string) CellID {
+ level := len(s) - 2
+ if level < 0 || level > maxLevel {
+ return CellID(0)
+ }
+ face := int(s[0] - '0')
+ if face < 0 || face > 5 || s[1] != '/' {
+ return CellID(0)
+ }
+ id := CellIDFromFace(face)
+ for i := 2; i < len(s); i++ {
+ childPos := s[i] - '0'
+ if childPos < 0 || childPos > 3 {
+ return CellID(0)
+ }
+ id = id.Children()[childPos]
+ }
+ return id
+}
+
+// Point returns the center of the s2 cell on the sphere as a Point.
+// The maximum directional error in Point (compared to the exact
+// mathematical result) is 1.5 * dblEpsilon radians, and the maximum length
+// error is 2 * dblEpsilon (the same as Normalize).
+func (ci CellID) Point() Point { return Point{ci.rawPoint().Normalize()} }
+
+// LatLng returns the center of the s2 cell on the sphere as a LatLng.
+func (ci CellID) LatLng() LatLng { return LatLngFromPoint(Point{ci.rawPoint()}) }
+
+// ChildBegin returns the first child in a traversal of the children of this cell, in Hilbert curve order.
+//
+// for ci := c.ChildBegin(); ci != c.ChildEnd(); ci = ci.Next() {
+// ...
+// }
+func (ci CellID) ChildBegin() CellID {
+ ol := ci.lsb()
+ return CellID(uint64(ci) - ol + ol>>2)
+}
+
+// ChildBeginAtLevel returns the first cell in a traversal of children a given level deeper than this cell, in
+// Hilbert curve order. The given level must be no smaller than the cell's level.
+// See ChildBegin for example use.
+func (ci CellID) ChildBeginAtLevel(level int) CellID {
+ return CellID(uint64(ci) - ci.lsb() + lsbForLevel(level))
+}
+
+// ChildEnd returns the first cell after a traversal of the children of this cell in Hilbert curve order.
+// The returned cell may be invalid.
+func (ci CellID) ChildEnd() CellID {
+ ol := ci.lsb()
+ return CellID(uint64(ci) + ol + ol>>2)
+}
+
+// ChildEndAtLevel returns the first cell after the last child in a traversal of children a given level deeper
+// than this cell, in Hilbert curve order.
+// The given level must be no smaller than the cell's level.
+// The returned cell may be invalid.
+func (ci CellID) ChildEndAtLevel(level int) CellID {
+ return CellID(uint64(ci) + ci.lsb() + lsbForLevel(level))
+}
+
+// Next returns the next cell along the Hilbert curve.
+// This is expected to be used with ChildBegin and ChildEnd,
+// or ChildBeginAtLevel and ChildEndAtLevel.
+func (ci CellID) Next() CellID {
+ return CellID(uint64(ci) + ci.lsb()<<1)
+}
+
+// Prev returns the previous cell along the Hilbert curve.
+func (ci CellID) Prev() CellID {
+ return CellID(uint64(ci) - ci.lsb()<<1)
+}
+
+// NextWrap returns the next cell along the Hilbert curve, wrapping from last to
+// first as necessary. This should not be used with ChildBegin and ChildEnd.
+func (ci CellID) NextWrap() CellID {
+ n := ci.Next()
+ if uint64(n) < wrapOffset {
+ return n
+ }
+ return CellID(uint64(n) - wrapOffset)
+}
+
+// PrevWrap returns the previous cell along the Hilbert curve, wrapping around from
+// first to last as necessary. This should not be used with ChildBegin and ChildEnd.
+func (ci CellID) PrevWrap() CellID {
+ p := ci.Prev()
+ if uint64(p) < wrapOffset {
+ return p
+ }
+ return CellID(uint64(p) + wrapOffset)
+}
+
+// AdvanceWrap advances or retreats the indicated number of steps along the
+// Hilbert curve at the current level and returns the new position. The
+// position wraps between the first and last faces as necessary.
+func (ci CellID) AdvanceWrap(steps int64) CellID {
+ if steps == 0 {
+ return ci
+ }
+
+ // We clamp the number of steps if necessary to ensure that we do not
+ // advance past the End() or before the Begin() of this level.
+ shift := uint(2*(maxLevel-ci.Level()) + 1)
+ if steps < 0 {
+ if min := -int64(uint64(ci) >> shift); steps < min {
+ wrap := int64(wrapOffset >> shift)
+ steps %= wrap
+ if steps < min {
+ steps += wrap
+ }
+ }
+ } else {
+ // Unlike Advance(), we don't want to return End(level).
+ if max := int64((wrapOffset - uint64(ci)) >> shift); steps > max {
+ wrap := int64(wrapOffset >> shift)
+ steps %= wrap
+ if steps > max {
+ steps -= wrap
+ }
+ }
+ }
+
+ // If steps is negative, then shifting it left has undefined behavior.
+ // Cast to uint64 for a 2's complement answer.
+ return CellID(uint64(ci) + (uint64(steps) << shift))
+}
+
+// Encode encodes the CellID.
+func (ci CellID) Encode(w io.Writer) error {
+ e := &encoder{w: w}
+ ci.encode(e)
+ return e.err
+}
+
+func (ci CellID) encode(e *encoder) {
+ e.writeUint64(uint64(ci))
+}
+
+// Decode decodes the CellID.
+func (ci *CellID) Decode(r io.Reader) error {
+ d := &decoder{r: asByteReader(r)}
+ ci.decode(d)
+ return d.err
+}
+
+func (ci *CellID) decode(d *decoder) {
+ *ci = CellID(d.readUint64())
+}
+
+// TODO: the methods below are not exported yet. Settle on the entire API design
+// before doing this. Do we want to mirror the C++ one as closely as possible?
+
+// distanceFromBegin returns the number of steps along the Hilbert curve that
+// this cell is from the first node in the S2 hierarchy at our level. (i.e.,
+// FromFace(0).ChildBeginAtLevel(ci.Level())). This is analogous to Pos(), but
+// for this cell's level.
+// The return value is always non-negative.
+func (ci CellID) distanceFromBegin() int64 {
+ return int64(ci >> uint64(2*(maxLevel-ci.Level())+1))
+}
+
+// rawPoint returns an unnormalized r3 vector from the origin through the center
+// of the s2 cell on the sphere.
+func (ci CellID) rawPoint() r3.Vector {
+ face, si, ti := ci.faceSiTi()
+ return faceUVToXYZ(face, stToUV((0.5/maxSize)*float64(si)), stToUV((0.5/maxSize)*float64(ti)))
+}
+
+// faceSiTi returns the Face/Si/Ti coordinates of the center of the cell.
+func (ci CellID) faceSiTi() (face int, si, ti uint32) {
+ face, i, j, _ := ci.faceIJOrientation()
+ delta := 0
+ if ci.IsLeaf() {
+ delta = 1
+ } else {
+ if (i^(int(ci)>>2))&1 != 0 {
+ delta = 2
+ }
+ }
+ return face, uint32(2*i + delta), uint32(2*j + delta)
+}
+
+// faceIJOrientation uses the global lookupIJ table to unfiddle the bits of ci.
+func (ci CellID) faceIJOrientation() (f, i, j, orientation int) {
+ f = ci.Face()
+ orientation = f & swapMask
+ nbits := maxLevel - 7*lookupBits // first iteration
+
+ // Each iteration maps 8 bits of the Hilbert curve position into
+ // 4 bits of "i" and "j". The lookup table transforms a key of the
+ // form "ppppppppoo" to a value of the form "iiiijjjjoo", where the
+ // letters [ijpo] represents bits of "i", "j", the Hilbert curve
+ // position, and the Hilbert curve orientation respectively.
+ //
+ // On the first iteration we need to be careful to clear out the bits
+ // representing the cube face.
+ for k := 7; k >= 0; k-- {
+ orientation += (int(uint64(ci)>>uint64(k*2*lookupBits+1)) & ((1 << uint(2*nbits)) - 1)) << 2
+ orientation = lookupIJ[orientation]
+ i += (orientation >> (lookupBits + 2)) << uint(k*lookupBits)
+ j += ((orientation >> 2) & ((1 << lookupBits) - 1)) << uint(k*lookupBits)
+ orientation &= (swapMask | invertMask)
+ nbits = lookupBits // following iterations
+ }
+
+ // The position of a non-leaf cell at level "n" consists of a prefix of
+ // 2*n bits that identifies the cell, followed by a suffix of
+ // 2*(maxLevel-n)+1 bits of the form 10*. If n==maxLevel, the suffix is
+ // just "1" and has no effect. Otherwise, it consists of "10", followed
+ // by (maxLevel-n-1) repetitions of "00", followed by "0". The "10" has
+ // no effect, while each occurrence of "00" has the effect of reversing
+ // the swapMask bit.
+ if ci.lsb()&0x1111111111111110 != 0 {
+ orientation ^= swapMask
+ }
+
+ return
+}
+
+// cellIDFromFaceIJ returns a leaf cell given its cube face (range 0..5) and IJ coordinates.
+func cellIDFromFaceIJ(f, i, j int) CellID {
+ // Note that this value gets shifted one bit to the left at the end
+ // of the function.
+ n := uint64(f) << (posBits - 1)
+ // Alternating faces have opposite Hilbert curve orientations; this
+ // is necessary in order for all faces to have a right-handed
+ // coordinate system.
+ bits := f & swapMask
+ // Each iteration maps 4 bits of "i" and "j" into 8 bits of the Hilbert
+ // curve position. The lookup table transforms a 10-bit key of the form
+ // "iiiijjjjoo" to a 10-bit value of the form "ppppppppoo", where the
+ // letters [ijpo] denote bits of "i", "j", Hilbert curve position, and
+ // Hilbert curve orientation respectively.
+ for k := 7; k >= 0; k-- {
+ mask := (1 << lookupBits) - 1
+ bits += ((i >> uint(k*lookupBits)) & mask) << (lookupBits + 2)
+ bits += ((j >> uint(k*lookupBits)) & mask) << 2
+ bits = lookupPos[bits]
+ n |= uint64(bits>>2) << (uint(k) * 2 * lookupBits)
+ bits &= (swapMask | invertMask)
+ }
+ return CellID(n*2 + 1)
+}
+
+func cellIDFromFaceIJWrap(f, i, j int) CellID {
+ // Convert i and j to the coordinates of a leaf cell just beyond the
+ // boundary of this face. This prevents 32-bit overflow in the case
+ // of finding the neighbors of a face cell.
+ i = clampInt(i, -1, maxSize)
+ j = clampInt(j, -1, maxSize)
+
+ // We want to wrap these coordinates onto the appropriate adjacent face.
+ // The easiest way to do this is to convert the (i,j) coordinates to (x,y,z)
+ // (which yields a point outside the normal face boundary), and then call
+ // xyzToFaceUV to project back onto the correct face.
+ //
+ // The code below converts (i,j) to (si,ti), and then (si,ti) to (u,v) using
+ // the linear projection (u=2*s-1 and v=2*t-1). (The code further below
+ // converts back using the inverse projection, s=0.5*(u+1) and t=0.5*(v+1).
+ // Any projection would work here, so we use the simplest.) We also clamp
+ // the (u,v) coordinates so that the point is barely outside the
+ // [-1,1]x[-1,1] face rectangle, since otherwise the reprojection step
+ // (which divides by the new z coordinate) might change the other
+ // coordinates enough so that we end up in the wrong leaf cell.
+ const scale = 1.0 / maxSize
+ limit := math.Nextafter(1, 2)
+ u := math.Max(-limit, math.Min(limit, scale*float64((i<<1)+1-maxSize)))
+ v := math.Max(-limit, math.Min(limit, scale*float64((j<<1)+1-maxSize)))
+
+ // Find the leaf cell coordinates on the adjacent face, and convert
+ // them to a cell id at the appropriate level.
+ f, u, v = xyzToFaceUV(faceUVToXYZ(f, u, v))
+ return cellIDFromFaceIJ(f, stToIJ(0.5*(u+1)), stToIJ(0.5*(v+1)))
+}
+
+func cellIDFromFaceIJSame(f, i, j int, sameFace bool) CellID {
+ if sameFace {
+ return cellIDFromFaceIJ(f, i, j)
+ }
+ return cellIDFromFaceIJWrap(f, i, j)
+}
+
+// ijToSTMin converts the i- or j-index of a leaf cell to the minimum corresponding
+// s- or t-value contained by that cell. The argument must be in the range
+// [0..2**30], i.e. up to one position beyond the normal range of valid leaf
+// cell indices.
+func ijToSTMin(i int) float64 {
+ return float64(i) / float64(maxSize)
+}
+
+// stToIJ converts value in ST coordinates to a value in IJ coordinates.
+func stToIJ(s float64) int {
+ return clampInt(int(math.Floor(maxSize*s)), 0, maxSize-1)
+}
+
+// cellIDFromPoint returns a leaf cell containing point p. Usually there is
+// exactly one such cell, but for points along the edge of a cell, any
+// adjacent cell may be (deterministically) chosen. This is because
+// s2.CellIDs are considered to be closed sets. The returned cell will
+// always contain the given point, i.e.
+//
+// CellFromPoint(p).ContainsPoint(p)
+//
+// is always true.
+func cellIDFromPoint(p Point) CellID {
+ f, u, v := xyzToFaceUV(r3.Vector{p.X, p.Y, p.Z})
+ i := stToIJ(uvToST(u))
+ j := stToIJ(uvToST(v))
+ return cellIDFromFaceIJ(f, i, j)
+}
+
+// ijLevelToBoundUV returns the bounds in (u,v)-space for the cell at the given
+// level containing the leaf cell with the given (i,j)-coordinates.
+func ijLevelToBoundUV(i, j, level int) r2.Rect {
+ cellSize := sizeIJ(level)
+ xLo := i & -cellSize
+ yLo := j & -cellSize
+
+ return r2.Rect{
+ X: r1.Interval{
+ Lo: stToUV(ijToSTMin(xLo)),
+ Hi: stToUV(ijToSTMin(xLo + cellSize)),
+ },
+ Y: r1.Interval{
+ Lo: stToUV(ijToSTMin(yLo)),
+ Hi: stToUV(ijToSTMin(yLo + cellSize)),
+ },
+ }
+}
+
+// Constants related to the bit mangling in the Cell ID.
+const (
+ lookupBits = 4
+ swapMask = 0x01
+ invertMask = 0x02
+)
+
+// The following lookup tables are used to convert efficiently between an
+// (i,j) cell index and the corresponding position along the Hilbert curve.
+//
+// lookupPos maps 4 bits of "i", 4 bits of "j", and 2 bits representing the
+// orientation of the current cell into 8 bits representing the order in which
+// that subcell is visited by the Hilbert curve, plus 2 bits indicating the
+// new orientation of the Hilbert curve within that subcell. (Cell
+// orientations are represented as combination of swapMask and invertMask.)
+//
+// lookupIJ is an inverted table used for mapping in the opposite
+// direction.
+//
+// We also experimented with looking up 16 bits at a time (14 bits of position
+// plus 2 of orientation) but found that smaller lookup tables gave better
+// performance. (2KB fits easily in the primary cache.)
+var (
+ ijToPos = [4][4]int{
+ {0, 1, 3, 2}, // canonical order
+ {0, 3, 1, 2}, // axes swapped
+ {2, 3, 1, 0}, // bits inverted
+ {2, 1, 3, 0}, // swapped & inverted
+ }
+ posToIJ = [4][4]int{
+ {0, 1, 3, 2}, // canonical order: (0,0), (0,1), (1,1), (1,0)
+ {0, 2, 3, 1}, // axes swapped: (0,0), (1,0), (1,1), (0,1)
+ {3, 2, 0, 1}, // bits inverted: (1,1), (1,0), (0,0), (0,1)
+ {3, 1, 0, 2}, // swapped & inverted: (1,1), (0,1), (0,0), (1,0)
+ }
+ posToOrientation = [4]int{swapMask, 0, 0, invertMask | swapMask}
+ lookupIJ [1 << (2*lookupBits + 2)]int
+ lookupPos [1 << (2*lookupBits + 2)]int
+)
+
+func init() {
+ initLookupCell(0, 0, 0, 0, 0, 0)
+ initLookupCell(0, 0, 0, swapMask, 0, swapMask)
+ initLookupCell(0, 0, 0, invertMask, 0, invertMask)
+ initLookupCell(0, 0, 0, swapMask|invertMask, 0, swapMask|invertMask)
+}
+
+// initLookupCell initializes the lookupIJ table at init time.
+func initLookupCell(level, i, j, origOrientation, pos, orientation int) {
+ if level == lookupBits {
+ ij := (i << lookupBits) + j
+ lookupPos[(ij<<2)+origOrientation] = (pos << 2) + orientation
+ lookupIJ[(pos<<2)+origOrientation] = (ij << 2) + orientation
+ return
+ }
+
+ level++
+ i <<= 1
+ j <<= 1
+ pos <<= 2
+ r := posToIJ[orientation]
+ initLookupCell(level, i+(r[0]>>1), j+(r[0]&1), origOrientation, pos, orientation^posToOrientation[0])
+ initLookupCell(level, i+(r[1]>>1), j+(r[1]&1), origOrientation, pos+1, orientation^posToOrientation[1])
+ initLookupCell(level, i+(r[2]>>1), j+(r[2]&1), origOrientation, pos+2, orientation^posToOrientation[2])
+ initLookupCell(level, i+(r[3]>>1), j+(r[3]&1), origOrientation, pos+3, orientation^posToOrientation[3])
+}
+
+// CommonAncestorLevel returns the level of the common ancestor of the two S2 CellIDs.
+func (ci CellID) CommonAncestorLevel(other CellID) (level int, ok bool) {
+ bits := uint64(ci ^ other)
+ if bits < ci.lsb() {
+ bits = ci.lsb()
+ }
+ if bits < other.lsb() {
+ bits = other.lsb()
+ }
+
+ msbPos := findMSBSetNonZero64(bits)
+ if msbPos > 60 {
+ return 0, false
+ }
+ return (60 - msbPos) >> 1, true
+}
+
+// Advance advances or retreats the indicated number of steps along the
+// Hilbert curve at the current level, and returns the new position. The
+// position is never advanced past End() or before Begin().
+func (ci CellID) Advance(steps int64) CellID {
+ if steps == 0 {
+ return ci
+ }
+
+ // We clamp the number of steps if necessary to ensure that we do not
+ // advance past the End() or before the Begin() of this level. Note that
+ // minSteps and maxSteps always fit in a signed 64-bit integer.
+ stepShift := uint(2*(maxLevel-ci.Level()) + 1)
+ if steps < 0 {
+ minSteps := -int64(uint64(ci) >> stepShift)
+ if steps < minSteps {
+ steps = minSteps
+ }
+ } else {
+ maxSteps := int64((wrapOffset + ci.lsb() - uint64(ci)) >> stepShift)
+ if steps > maxSteps {
+ steps = maxSteps
+ }
+ }
+ return ci + CellID(steps)<<stepShift
+}
+
+// centerST return the center of the CellID in (s,t)-space.
+func (ci CellID) centerST() r2.Point {
+ _, si, ti := ci.faceSiTi()
+ return r2.Point{siTiToST(si), siTiToST(ti)}
+}
+
+// sizeST returns the edge length of this CellID in (s,t)-space at the given level.
+func (ci CellID) sizeST(level int) float64 {
+ return ijToSTMin(sizeIJ(level))
+}
+
+// boundST returns the bound of this CellID in (s,t)-space.
+func (ci CellID) boundST() r2.Rect {
+ s := ci.sizeST(ci.Level())
+ return r2.RectFromCenterSize(ci.centerST(), r2.Point{s, s})
+}
+
+// centerUV returns the center of this CellID in (u,v)-space. Note that
+// the center of the cell is defined as the point at which it is recursively
+// subdivided into four children; in general, it is not at the midpoint of
+// the (u,v) rectangle covered by the cell.
+func (ci CellID) centerUV() r2.Point {
+ _, si, ti := ci.faceSiTi()
+ return r2.Point{stToUV(siTiToST(si)), stToUV(siTiToST(ti))}
+}
+
+// boundUV returns the bound of this CellID in (u,v)-space.
+func (ci CellID) boundUV() r2.Rect {
+ _, i, j, _ := ci.faceIJOrientation()
+ return ijLevelToBoundUV(i, j, ci.Level())
+}
+
+// expandEndpoint returns a new u-coordinate u' such that the distance from the
+// line u=u' to the given edge (u,v0)-(u,v1) is exactly the given distance
+// (which is specified as the sine of the angle corresponding to the distance).
+func expandEndpoint(u, maxV, sinDist float64) float64 {
+ // This is based on solving a spherical right triangle, similar to the
+ // calculation in Cap.RectBound.
+ // Given an edge of the form (u,v0)-(u,v1), let maxV = max(abs(v0), abs(v1)).
+ sinUShift := sinDist * math.Sqrt((1+u*u+maxV*maxV)/(1+u*u))
+ cosUShift := math.Sqrt(1 - sinUShift*sinUShift)
+ // The following is an expansion of tan(atan(u) + asin(sinUShift)).
+ return (cosUShift*u + sinUShift) / (cosUShift - sinUShift*u)
+}
+
+// expandedByDistanceUV returns a rectangle expanded in (u,v)-space so that it
+// contains all points within the given distance of the boundary, and return the
+// smallest such rectangle. If the distance is negative, then instead shrink this
+// rectangle so that it excludes all points within the given absolute distance
+// of the boundary.
+//
+// Distances are measured *on the sphere*, not in (u,v)-space. For example,
+// you can use this method to expand the (u,v)-bound of an CellID so that
+// it contains all points within 5km of the original cell. You can then
+// test whether a point lies within the expanded bounds like this:
+//
+// if u, v, ok := faceXYZtoUV(face, point); ok && bound.ContainsPoint(r2.Point{u,v}) { ... }
+//
+// Limitations:
+//
+// - Because the rectangle is drawn on one of the six cube-face planes
+// (i.e., {x,y,z} = +/-1), it can cover at most one hemisphere. This
+// limits the maximum amount that a rectangle can be expanded. For
+// example, CellID bounds can be expanded safely by at most 45 degrees
+// (about 5000 km on the Earth's surface).
+//
+// - The implementation is not exact for negative distances. The resulting
+// rectangle will exclude all points within the given distance of the
+// boundary but may be slightly smaller than necessary.
+func expandedByDistanceUV(uv r2.Rect, distance s1.Angle) r2.Rect {
+ // Expand each of the four sides of the rectangle just enough to include all
+ // points within the given distance of that side. (The rectangle may be
+ // expanded by a different amount in (u,v)-space on each side.)
+ maxU := math.Max(math.Abs(uv.X.Lo), math.Abs(uv.X.Hi))
+ maxV := math.Max(math.Abs(uv.Y.Lo), math.Abs(uv.Y.Hi))
+ sinDist := math.Sin(float64(distance))
+ return r2.Rect{
+ X: r1.Interval{expandEndpoint(uv.X.Lo, maxV, -sinDist),
+ expandEndpoint(uv.X.Hi, maxV, sinDist)},
+ Y: r1.Interval{expandEndpoint(uv.Y.Lo, maxU, -sinDist),
+ expandEndpoint(uv.Y.Hi, maxU, sinDist)}}
+}
+
+// MaxTile returns the largest cell with the same RangeMin such that
+// RangeMax < limit.RangeMin. It returns limit if no such cell exists.
+// This method can be used to generate a small set of CellIDs that covers
+// a given range (a tiling). This example shows how to generate a tiling
+// for a semi-open range of leaf cells [start, limit):
+//
+// for id := start.MaxTile(limit); id != limit; id = id.Next().MaxTile(limit)) { ... }
+//
+// Note that in general the cells in the tiling will be of different sizes;
+// they gradually get larger (near the middle of the range) and then
+// gradually get smaller as limit is approached.
+func (ci CellID) MaxTile(limit CellID) CellID {
+ start := ci.RangeMin()
+ if start >= limit.RangeMin() {
+ return limit
+ }
+
+ if ci.RangeMax() >= limit {
+ // The cell is too large, shrink it. Note that when generating coverings
+ // of CellID ranges, this loop usually executes only once. Also because
+ // ci.RangeMin() < limit.RangeMin(), we will always exit the loop by the
+ // time we reach a leaf cell.
+ for {
+ ci = ci.Children()[0]
+ if ci.RangeMax() < limit {
+ break
+ }
+ }
+ return ci
+ }
+
+ // The cell may be too small. Grow it if necessary. Note that generally
+ // this loop only iterates once.
+ for !ci.isFace() {
+ parent := ci.immediateParent()
+ if parent.RangeMin() != start || parent.RangeMax() >= limit {
+ break
+ }
+ ci = parent
+ }
+ return ci
+}
+
+// centerFaceSiTi returns the (face, si, ti) coordinates of the center of the cell.
+// Note that although (si,ti) coordinates span the range [0,2**31] in general,
+// the cell center coordinates are always in the range [1,2**31-1] and
+// therefore can be represented using a signed 32-bit integer.
+func (ci CellID) centerFaceSiTi() (face, si, ti int) {
+ // First we compute the discrete (i,j) coordinates of a leaf cell contained
+ // within the given cell. Given that cells are represented by the Hilbert
+ // curve position corresponding at their center, it turns out that the cell
+ // returned by faceIJOrientation is always one of two leaf cells closest
+ // to the center of the cell (unless the given cell is a leaf cell itself,
+ // in which case there is only one possibility).
+ //
+ // Given a cell of size s >= 2 (i.e. not a leaf cell), and letting (imin,
+ // jmin) be the coordinates of its lower left-hand corner, the leaf cell
+ // returned by faceIJOrientation is either (imin + s/2, jmin + s/2)
+ // (imin + s/2 - 1, jmin + s/2 - 1). The first case is the one we want.
+ // We can distinguish these two cases by looking at the low bit of i or
+ // j. In the second case the low bit is one, unless s == 2 (i.e. the
+ // level just above leaf cells) in which case the low bit is zero.
+ //
+ // In the code below, the expression ((i ^ (int(id) >> 2)) & 1) is true
+ // if we are in the second case described above.
+ face, i, j, _ := ci.faceIJOrientation()
+ delta := 0
+ if ci.IsLeaf() {
+ delta = 1
+ } else if (int64(i)^(int64(ci)>>2))&1 == 1 {
+ delta = 2
+ }
+
+ // Note that (2 * {i,j} + delta) will never overflow a 32-bit integer.
+ return face, 2*i + delta, 2*j + delta
+}