diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s1/chordangle.go')
-rw-r--r-- | vendor/github.com/golang/geo/s1/chordangle.go | 320 |
1 files changed, 320 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s1/chordangle.go b/vendor/github.com/golang/geo/s1/chordangle.go new file mode 100644 index 000000000..77d71648f --- /dev/null +++ b/vendor/github.com/golang/geo/s1/chordangle.go @@ -0,0 +1,320 @@ +// Copyright 2015 Google Inc. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package s1 + +import ( + "math" +) + +// ChordAngle represents the angle subtended by a chord (i.e., the straight +// line segment connecting two points on the sphere). Its representation +// makes it very efficient for computing and comparing distances, but unlike +// Angle it is only capable of representing angles between 0 and π radians. +// Generally, ChordAngle should only be used in loops where many angles need +// to be calculated and compared. Otherwise it is simpler to use Angle. +// +// ChordAngle loses some accuracy as the angle approaches π radians. +// There are several different ways to measure this error, including the +// representational error (i.e., how accurately ChordAngle can represent +// angles near π radians), the conversion error (i.e., how much precision is +// lost when an Angle is converted to an ChordAngle), and the measurement +// error (i.e., how accurate the ChordAngle(a, b) constructor is when the +// points A and B are separated by angles close to π radians). All of these +// errors differ by a small constant factor. +// +// For the measurement error (which is the largest of these errors and also +// the most important in practice), let the angle between A and B be (π - x) +// radians, i.e. A and B are within "x" radians of being antipodal. The +// corresponding chord length is +// +// r = 2 * sin((π - x) / 2) = 2 * cos(x / 2) +// +// For values of x not close to π the relative error in the squared chord +// length is at most 4.5 * dblEpsilon (see MaxPointError below). +// The relative error in "r" is thus at most 2.25 * dblEpsilon ~= 5e-16. To +// convert this error into an equivalent angle, we have +// +// |dr / dx| = sin(x / 2) +// +// and therefore +// +// |dx| = dr / sin(x / 2) +// = 5e-16 * (2 * cos(x / 2)) / sin(x / 2) +// = 1e-15 / tan(x / 2) +// +// The maximum error is attained when +// +// x = |dx| +// = 1e-15 / tan(x / 2) +// ~= 1e-15 / (x / 2) +// ~= sqrt(2e-15) +// +// In summary, the measurement error for an angle (π - x) is at most +// +// dx = min(1e-15 / tan(x / 2), sqrt(2e-15)) +// (~= min(2e-15 / x, sqrt(2e-15)) when x is small) +// +// On the Earth's surface (assuming a radius of 6371km), this corresponds to +// the following worst-case measurement errors: +// +// Accuracy: Unless antipodal to within: +// --------- --------------------------- +// 6.4 nanometers 10,000 km (90 degrees) +// 1 micrometer 81.2 kilometers +// 1 millimeter 81.2 meters +// 1 centimeter 8.12 meters +// 28.5 centimeters 28.5 centimeters +// +// The representational and conversion errors referred to earlier are somewhat +// smaller than this. For example, maximum distance between adjacent +// representable ChordAngle values is only 13.5 cm rather than 28.5 cm. To +// see this, observe that the closest representable value to r^2 = 4 is +// r^2 = 4 * (1 - dblEpsilon / 2). Thus r = 2 * (1 - dblEpsilon / 4) and +// the angle between these two representable values is +// +// x = 2 * acos(r / 2) +// = 2 * acos(1 - dblEpsilon / 4) +// ~= 2 * asin(sqrt(dblEpsilon / 2) +// ~= sqrt(2 * dblEpsilon) +// ~= 2.1e-8 +// +// which is 13.5 cm on the Earth's surface. +// +// The worst case rounding error occurs when the value halfway between these +// two representable values is rounded up to 4. This halfway value is +// r^2 = (4 * (1 - dblEpsilon / 4)), thus r = 2 * (1 - dblEpsilon / 8) and +// the worst case rounding error is +// +// x = 2 * acos(r / 2) +// = 2 * acos(1 - dblEpsilon / 8) +// ~= 2 * asin(sqrt(dblEpsilon / 4) +// ~= sqrt(dblEpsilon) +// ~= 1.5e-8 +// +// which is 9.5 cm on the Earth's surface. +type ChordAngle float64 + +const ( + // NegativeChordAngle represents a chord angle smaller than the zero angle. + // The only valid operations on a NegativeChordAngle are comparisons, + // Angle conversions, and Successor/Predecessor. + NegativeChordAngle = ChordAngle(-1) + + // RightChordAngle represents a chord angle of 90 degrees (a "right angle"). + RightChordAngle = ChordAngle(2) + + // StraightChordAngle represents a chord angle of 180 degrees (a "straight angle"). + // This is the maximum finite chord angle. + StraightChordAngle = ChordAngle(4) + + // maxLength2 is the square of the maximum length allowed in a ChordAngle. + maxLength2 = 4.0 +) + +// ChordAngleFromAngle returns a ChordAngle from the given Angle. +func ChordAngleFromAngle(a Angle) ChordAngle { + if a < 0 { + return NegativeChordAngle + } + if a.isInf() { + return InfChordAngle() + } + l := 2 * math.Sin(0.5*math.Min(math.Pi, a.Radians())) + return ChordAngle(l * l) +} + +// ChordAngleFromSquaredLength returns a ChordAngle from the squared chord length. +// Note that the argument is automatically clamped to a maximum of 4 to +// handle possible roundoff errors. The argument must be non-negative. +func ChordAngleFromSquaredLength(length2 float64) ChordAngle { + if length2 > maxLength2 { + return StraightChordAngle + } + return ChordAngle(length2) +} + +// Expanded returns a new ChordAngle that has been adjusted by the given error +// bound (which can be positive or negative). Error should be the value +// returned by either MaxPointError or MaxAngleError. For example: +// a := ChordAngleFromPoints(x, y) +// a1 := a.Expanded(a.MaxPointError()) +func (c ChordAngle) Expanded(e float64) ChordAngle { + // If the angle is special, don't change it. Otherwise clamp it to the valid range. + if c.isSpecial() { + return c + } + return ChordAngle(math.Max(0.0, math.Min(maxLength2, float64(c)+e))) +} + +// Angle converts this ChordAngle to an Angle. +func (c ChordAngle) Angle() Angle { + if c < 0 { + return -1 * Radian + } + if c.isInf() { + return InfAngle() + } + return Angle(2 * math.Asin(0.5*math.Sqrt(float64(c)))) +} + +// InfChordAngle returns a chord angle larger than any finite chord angle. +// The only valid operations on an InfChordAngle are comparisons, Angle +// conversions, and Successor/Predecessor. +func InfChordAngle() ChordAngle { + return ChordAngle(math.Inf(1)) +} + +// isInf reports whether this ChordAngle is infinite. +func (c ChordAngle) isInf() bool { + return math.IsInf(float64(c), 1) +} + +// isSpecial reports whether this ChordAngle is one of the special cases. +func (c ChordAngle) isSpecial() bool { + return c < 0 || c.isInf() +} + +// isValid reports whether this ChordAngle is valid or not. +func (c ChordAngle) isValid() bool { + return (c >= 0 && c <= maxLength2) || c.isSpecial() +} + +// Successor returns the smallest representable ChordAngle larger than this one. +// This can be used to convert a "<" comparison to a "<=" comparison. +// +// Note the following special cases: +// NegativeChordAngle.Successor == 0 +// StraightChordAngle.Successor == InfChordAngle +// InfChordAngle.Successor == InfChordAngle +func (c ChordAngle) Successor() ChordAngle { + if c >= maxLength2 { + return InfChordAngle() + } + if c < 0 { + return 0 + } + return ChordAngle(math.Nextafter(float64(c), 10.0)) +} + +// Predecessor returns the largest representable ChordAngle less than this one. +// +// Note the following special cases: +// InfChordAngle.Predecessor == StraightChordAngle +// ChordAngle(0).Predecessor == NegativeChordAngle +// NegativeChordAngle.Predecessor == NegativeChordAngle +func (c ChordAngle) Predecessor() ChordAngle { + if c <= 0 { + return NegativeChordAngle + } + if c > maxLength2 { + return StraightChordAngle + } + + return ChordAngle(math.Nextafter(float64(c), -10.0)) +} + +// MaxPointError returns the maximum error size for a ChordAngle constructed +// from 2 Points x and y, assuming that x and y are normalized to within the +// bounds guaranteed by s2.Point.Normalize. The error is defined with respect to +// the true distance after the points are projected to lie exactly on the sphere. +func (c ChordAngle) MaxPointError() float64 { + // There is a relative error of (2.5*dblEpsilon) when computing the squared + // distance, plus a relative error of 2 * dblEpsilon, plus an absolute error + // of (16 * dblEpsilon**2) because the lengths of the input points may differ + // from 1 by up to (2*dblEpsilon) each. (This is the maximum error in Normalize). + return 4.5*dblEpsilon*float64(c) + 16*dblEpsilon*dblEpsilon +} + +// MaxAngleError returns the maximum error for a ChordAngle constructed +// as an Angle distance. +func (c ChordAngle) MaxAngleError() float64 { + return dblEpsilon * float64(c) +} + +// Add adds the other ChordAngle to this one and returns the resulting value. +// This method assumes the ChordAngles are not special. +func (c ChordAngle) Add(other ChordAngle) ChordAngle { + // Note that this method (and Sub) is much more efficient than converting + // the ChordAngle to an Angle and adding those and converting back. It + // requires only one square root plus a few additions and multiplications. + + // Optimization for the common case where b is an error tolerance + // parameter that happens to be set to zero. + if other == 0 { + return c + } + + // Clamp the angle sum to at most 180 degrees. + if c+other >= maxLength2 { + return StraightChordAngle + } + + // Let a and b be the (non-squared) chord lengths, and let c = a+b. + // Let A, B, and C be the corresponding half-angles (a = 2*sin(A), etc). + // Then the formula below can be derived from c = 2 * sin(A+B) and the + // relationships sin(A+B) = sin(A)*cos(B) + sin(B)*cos(A) + // cos(X) = sqrt(1 - sin^2(X)) + x := float64(c * (1 - 0.25*other)) + y := float64(other * (1 - 0.25*c)) + return ChordAngle(math.Min(maxLength2, x+y+2*math.Sqrt(x*y))) +} + +// Sub subtracts the other ChordAngle from this one and returns the resulting +// value. This method assumes the ChordAngles are not special. +func (c ChordAngle) Sub(other ChordAngle) ChordAngle { + if other == 0 { + return c + } + if c <= other { + return 0 + } + x := float64(c * (1 - 0.25*other)) + y := float64(other * (1 - 0.25*c)) + return ChordAngle(math.Max(0.0, x+y-2*math.Sqrt(x*y))) +} + +// Sin returns the sine of this chord angle. This method is more efficient +// than converting to Angle and performing the computation. +func (c ChordAngle) Sin() float64 { + return math.Sqrt(c.Sin2()) +} + +// Sin2 returns the square of the sine of this chord angle. +// It is more efficient than Sin. +func (c ChordAngle) Sin2() float64 { + // Let a be the (non-squared) chord length, and let A be the corresponding + // half-angle (a = 2*sin(A)). The formula below can be derived from: + // sin(2*A) = 2 * sin(A) * cos(A) + // cos^2(A) = 1 - sin^2(A) + // This is much faster than converting to an angle and computing its sine. + return float64(c * (1 - 0.25*c)) +} + +// Cos returns the cosine of this chord angle. This method is more efficient +// than converting to Angle and performing the computation. +func (c ChordAngle) Cos() float64 { + // cos(2*A) = cos^2(A) - sin^2(A) = 1 - 2*sin^2(A) + return float64(1 - 0.5*c) +} + +// Tan returns the tangent of this chord angle. +func (c ChordAngle) Tan() float64 { + return c.Sin() / c.Cos() +} + +// TODO(roberts): Differences from C++: +// Helpers to/from E5/E6/E7 +// Helpers to/from degrees and radians directly. +// FastUpperBoundFrom(angle Angle) |