summaryrefslogtreecommitdiff
path: root/vendor/github.com/cloudwego/iasm/x86_64/encodings.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/cloudwego/iasm/x86_64/encodings.go')
-rw-r--r--vendor/github.com/cloudwego/iasm/x86_64/encodings.go691
1 files changed, 691 insertions, 0 deletions
diff --git a/vendor/github.com/cloudwego/iasm/x86_64/encodings.go b/vendor/github.com/cloudwego/iasm/x86_64/encodings.go
new file mode 100644
index 000000000..a0d96db92
--- /dev/null
+++ b/vendor/github.com/cloudwego/iasm/x86_64/encodings.go
@@ -0,0 +1,691 @@
+//
+// Copyright 2024 CloudWeGo Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+package x86_64
+
+import (
+ `encoding/binary`
+ `math`
+)
+
+/** Operand Encoding Helpers **/
+
+func imml(v interface{}) byte {
+ return byte(toImmAny(v) & 0x0f)
+}
+
+func relv(v interface{}) int64 {
+ switch r := v.(type) {
+ case *Label : return 0
+ case RelativeOffset : return int64(r)
+ default : panic("invalid relative offset")
+ }
+}
+
+func addr(v interface{}) interface{} {
+ switch a := v.(*MemoryOperand).Addr; a.Type {
+ case Memory : return a.Memory
+ case Offset : return a.Offset
+ case Reference : return a.Reference
+ default : panic("invalid memory operand type")
+ }
+}
+
+func bcode(v interface{}) byte {
+ if m, ok := v.(*MemoryOperand); !ok {
+ panic("v is not a memory operand")
+ } else if m.Broadcast == 0 {
+ return 0
+ } else {
+ return 1
+ }
+}
+
+func vcode(v interface{}) byte {
+ switch r := v.(type) {
+ case XMMRegister : return byte(r)
+ case YMMRegister : return byte(r)
+ case ZMMRegister : return byte(r)
+ case MaskedRegister : return vcode(r.Reg)
+ default : panic("v is not a vector register")
+ }
+}
+
+func kcode(v interface{}) byte {
+ switch r := v.(type) {
+ case KRegister : return byte(r)
+ case XMMRegister : return 0
+ case YMMRegister : return 0
+ case ZMMRegister : return 0
+ case RegisterMask : return byte(r.K)
+ case MaskedRegister : return byte(r.Mask.K)
+ case *MemoryOperand : return toKcodeMem(r)
+ default : panic("v is not a maskable operand")
+ }
+}
+
+func zcode(v interface{}) byte {
+ switch r := v.(type) {
+ case KRegister : return 0
+ case XMMRegister : return 0
+ case YMMRegister : return 0
+ case ZMMRegister : return 0
+ case RegisterMask : return toZcodeRegM(r)
+ case MaskedRegister : return toZcodeRegM(r.Mask)
+ case *MemoryOperand : return toZcodeMem(r)
+ default : panic("v is not a maskable operand")
+ }
+}
+
+func lcode(v interface{}) byte {
+ switch r := v.(type) {
+ case Register8 : return byte(r & 0x07)
+ case Register16 : return byte(r & 0x07)
+ case Register32 : return byte(r & 0x07)
+ case Register64 : return byte(r & 0x07)
+ case KRegister : return byte(r & 0x07)
+ case MMRegister : return byte(r & 0x07)
+ case XMMRegister : return byte(r & 0x07)
+ case YMMRegister : return byte(r & 0x07)
+ case ZMMRegister : return byte(r & 0x07)
+ case MaskedRegister : return lcode(r.Reg)
+ default : panic("v is not a register")
+ }
+}
+
+func hcode(v interface{}) byte {
+ switch r := v.(type) {
+ case Register8 : return byte(r >> 3) & 1
+ case Register16 : return byte(r >> 3) & 1
+ case Register32 : return byte(r >> 3) & 1
+ case Register64 : return byte(r >> 3) & 1
+ case KRegister : return byte(r >> 3) & 1
+ case MMRegister : return byte(r >> 3) & 1
+ case XMMRegister : return byte(r >> 3) & 1
+ case YMMRegister : return byte(r >> 3) & 1
+ case ZMMRegister : return byte(r >> 3) & 1
+ case MaskedRegister : return hcode(r.Reg)
+ default : panic("v is not a register")
+ }
+}
+
+func ecode(v interface{}) byte {
+ switch r := v.(type) {
+ case Register8 : return byte(r >> 4) & 1
+ case Register16 : return byte(r >> 4) & 1
+ case Register32 : return byte(r >> 4) & 1
+ case Register64 : return byte(r >> 4) & 1
+ case KRegister : return byte(r >> 4) & 1
+ case MMRegister : return byte(r >> 4) & 1
+ case XMMRegister : return byte(r >> 4) & 1
+ case YMMRegister : return byte(r >> 4) & 1
+ case ZMMRegister : return byte(r >> 4) & 1
+ case MaskedRegister : return ecode(r.Reg)
+ default : panic("v is not a register")
+ }
+}
+
+func hlcode(v interface{}) byte {
+ switch r := v.(type) {
+ case Register8 : return toHLcodeReg8(r)
+ case Register16 : return byte(r & 0x0f)
+ case Register32 : return byte(r & 0x0f)
+ case Register64 : return byte(r & 0x0f)
+ case KRegister : return byte(r & 0x0f)
+ case MMRegister : return byte(r & 0x0f)
+ case XMMRegister : return byte(r & 0x0f)
+ case YMMRegister : return byte(r & 0x0f)
+ case ZMMRegister : return byte(r & 0x0f)
+ case MaskedRegister : return hlcode(r.Reg)
+ default : panic("v is not a register")
+ }
+}
+
+func ehcode(v interface{}) byte {
+ switch r := v.(type) {
+ case Register8 : return byte(r >> 3) & 0x03
+ case Register16 : return byte(r >> 3) & 0x03
+ case Register32 : return byte(r >> 3) & 0x03
+ case Register64 : return byte(r >> 3) & 0x03
+ case KRegister : return byte(r >> 3) & 0x03
+ case MMRegister : return byte(r >> 3) & 0x03
+ case XMMRegister : return byte(r >> 3) & 0x03
+ case YMMRegister : return byte(r >> 3) & 0x03
+ case ZMMRegister : return byte(r >> 3) & 0x03
+ case MaskedRegister : return ehcode(r.Reg)
+ default : panic("v is not a register")
+ }
+}
+
+func toImmAny(v interface{}) int64 {
+ if x, ok := asInt64(v); ok {
+ return x
+ } else {
+ panic("value is not an integer")
+ }
+}
+
+func toHcodeOpt(v interface{}) byte {
+ if v == nil {
+ return 0
+ } else {
+ return hcode(v)
+ }
+}
+
+func toEcodeVMM(v interface{}, x byte) byte {
+ switch r := v.(type) {
+ case XMMRegister : return ecode(r)
+ case YMMRegister : return ecode(r)
+ case ZMMRegister : return ecode(r)
+ default : return x
+ }
+}
+
+func toKcodeMem(v *MemoryOperand) byte {
+ if !v.Masked {
+ return 0
+ } else {
+ return byte(v.Mask.K)
+ }
+}
+
+func toZcodeMem(v *MemoryOperand) byte {
+ if !v.Masked || v.Mask.Z {
+ return 0
+ } else {
+ return 1
+ }
+}
+
+func toZcodeRegM(v RegisterMask) byte {
+ if v.Z {
+ return 1
+ } else {
+ return 0
+ }
+}
+
+func toHLcodeReg8(v Register8) byte {
+ switch v {
+ case AH: fallthrough
+ case BH: fallthrough
+ case CH: fallthrough
+ case DH: panic("ah/bh/ch/dh registers never use 4-bit encoding")
+ default: return byte(v & 0x0f)
+ }
+}
+
+/** Instruction Encoding Helpers **/
+
+const (
+ _N_inst = 16
+)
+
+const (
+ _F_rel1 = 1 << iota
+ _F_rel4
+)
+
+type _Encoding struct {
+ len int
+ flags int
+ bytes [_N_inst]byte
+ encoder func(m *_Encoding, v []interface{})
+}
+
+// buf ensures len + n <= len(bytes).
+func (self *_Encoding) buf(n int) []byte {
+ if i := self.len; i + n > _N_inst {
+ panic("instruction too long")
+ } else {
+ return self.bytes[i:]
+ }
+}
+
+// emit encodes a single byte.
+func (self *_Encoding) emit(v byte) {
+ self.buf(1)[0] = v
+ self.len++
+}
+
+// imm1 encodes a single byte immediate value.
+func (self *_Encoding) imm1(v int64) {
+ self.emit(byte(v))
+}
+
+// imm2 encodes a two-byte immediate value in little-endian.
+func (self *_Encoding) imm2(v int64) {
+ binary.LittleEndian.PutUint16(self.buf(2), uint16(v))
+ self.len += 2
+}
+
+// imm4 encodes a 4-byte immediate value in little-endian.
+func (self *_Encoding) imm4(v int64) {
+ binary.LittleEndian.PutUint32(self.buf(4), uint32(v))
+ self.len += 4
+}
+
+// imm8 encodes an 8-byte immediate value in little-endian.
+func (self *_Encoding) imm8(v int64) {
+ binary.LittleEndian.PutUint64(self.buf(8), uint64(v))
+ self.len += 8
+}
+
+// vex2 encodes a 2-byte or 3-byte VEX prefix.
+//
+// 2-byte VEX prefix:
+// Requires: VEX.W = 0, VEX.mmmmm = 0b00001 and VEX.B = VEX.X = 0
+// +----------------+
+// Byte 0: | Bits 0-7: 0xc5 |
+// +----------------+
+//
+// +-----------+----------------+----------+--------------+
+// Byte 1: | Bit 7: ~R | Bits 3-6 ~vvvv | Bit 2: L | Bits 0-1: pp |
+// +-----------+----------------+----------+--------------+
+//
+// 3-byte VEX prefix:
+// +----------------+
+// Byte 0: | Bits 0-7: 0xc4 |
+// +----------------+
+//
+// +-----------+-----------+-----------+-------------------+
+// Byte 1: | Bit 7: ~R | Bit 6: ~X | Bit 5: ~B | Bits 0-4: 0b00001 |
+// +-----------+-----------+-----------+-------------------+
+//
+// +----------+-----------------+----------+--------------+
+// Byte 2: | Bit 7: 0 | Bits 3-6: ~vvvv | Bit 2: L | Bits 0-1: pp |
+// +----------+-----------------+----------+--------------+
+//
+func (self *_Encoding) vex2(lpp byte, r byte, rm interface{}, vvvv byte) {
+ var b byte
+ var x byte
+
+ /* VEX.R must be a single-bit mask */
+ if r > 1 {
+ panic("VEX.R must be a 1-bit mask")
+ }
+
+ /* VEX.Lpp must be a 3-bit mask */
+ if lpp &^ 0b111 != 0 {
+ panic("VEX.Lpp must be a 3-bit mask")
+ }
+
+ /* VEX.vvvv must be a 4-bit mask */
+ if vvvv &^ 0b1111 != 0 {
+ panic("VEX.vvvv must be a 4-bit mask")
+ }
+
+ /* encode the RM bits if any */
+ if rm != nil {
+ switch v := rm.(type) {
+ case *Label : break
+ case Register : b = hcode(v)
+ case MemoryAddress : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
+ case RelativeOffset : break
+ default : panic("rm is expected to be a register or a memory address")
+ }
+ }
+
+ /* if VEX.B and VEX.X are zeroes, 2-byte VEX prefix can be used */
+ if x == 0 && b == 0 {
+ self.emit(0xc5)
+ self.emit(0xf8 ^ (r << 7) ^ (vvvv << 3) ^ lpp)
+ } else {
+ self.emit(0xc4)
+ self.emit(0xe1 ^ (r << 7) ^ (x << 6) ^ (b << 5))
+ self.emit(0x78 ^ (vvvv << 3) ^ lpp)
+ }
+}
+
+// vex3 encodes a 3-byte VEX or XOP prefix.
+//
+// 3-byte VEX/XOP prefix
+// +-----------------------------------+
+// Byte 0: | Bits 0-7: 0xc4 (VEX) / 0x8f (XOP) |
+// +-----------------------------------+
+//
+// +-----------+-----------+-----------+-----------------+
+// Byte 1: | Bit 7: ~R | Bit 6: ~X | Bit 5: ~B | Bits 0-4: mmmmm |
+// +-----------+-----------+-----------+-----------------+
+//
+// +----------+-----------------+----------+--------------+
+// Byte 2: | Bit 7: W | Bits 3-6: ~vvvv | Bit 2: L | Bits 0-1: pp |
+// +----------+-----------------+----------+--------------+
+//
+func (self *_Encoding) vex3(esc byte, mmmmm byte, wlpp byte, r byte, rm interface{}, vvvv byte) {
+ var b byte
+ var x byte
+
+ /* VEX.R must be a single-bit mask */
+ if r > 1 {
+ panic("VEX.R must be a 1-bit mask")
+ }
+
+ /* VEX.vvvv must be a 4-bit mask */
+ if vvvv &^ 0b1111 != 0 {
+ panic("VEX.vvvv must be a 4-bit mask")
+ }
+
+ /* escape must be a 3-byte VEX (0xc4) or XOP (0x8f) prefix */
+ if esc != 0xc4 && esc != 0x8f {
+ panic("escape must be a 3-byte VEX (0xc4) or XOP (0x8f) prefix")
+ }
+
+ /* VEX.W____Lpp is expected to have no bits set except 0, 1, 2 and 7 */
+ if wlpp &^ 0b10000111 != 0 {
+ panic("VEX.W____Lpp is expected to have no bits set except 0, 1, 2 and 7")
+ }
+
+ /* VEX.m-mmmm is expected to be a 5-bit mask */
+ if mmmmm &^ 0b11111 != 0 {
+ panic("VEX.m-mmmm is expected to be a 5-bit mask")
+ }
+
+ /* encode the RM bits */
+ switch v := rm.(type) {
+ case *Label : break
+ case MemoryAddress : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
+ case RelativeOffset : break
+ default : panic("rm is expected to be a register or a memory address")
+ }
+
+ /* encode the 3-byte VEX or XOP prefix */
+ self.emit(esc)
+ self.emit(0xe0 ^ (r << 7) ^ (x << 6) ^ (b << 5) ^ mmmmm)
+ self.emit(0x78 ^ (vvvv << 3) ^ wlpp)
+}
+
+// evex encodes a 4-byte EVEX prefix.
+func (self *_Encoding) evex(mm byte, w1pp byte, ll byte, rr byte, rm interface{}, vvvvv byte, aaa byte, zz byte, bb byte) {
+ var b byte
+ var x byte
+
+ /* EVEX.b must be a single-bit mask */
+ if bb > 1 {
+ panic("EVEX.b must be a 1-bit mask")
+ }
+
+ /* EVEX.z must be a single-bit mask */
+ if zz > 1 {
+ panic("EVEX.z must be a 1-bit mask")
+ }
+
+ /* EVEX.mm must be a 2-bit mask */
+ if mm &^ 0b11 != 0 {
+ panic("EVEX.mm must be a 2-bit mask")
+ }
+
+ /* EVEX.L'L must be a 2-bit mask */
+ if ll &^ 0b11 != 0 {
+ panic("EVEX.L'L must be a 2-bit mask")
+ }
+
+ /* EVEX.R'R must be a 2-bit mask */
+ if rr &^ 0b11 != 0 {
+ panic("EVEX.R'R must be a 2-bit mask")
+ }
+
+ /* EVEX.aaa must be a 3-bit mask */
+ if aaa &^ 0b111 != 0 {
+ panic("EVEX.aaa must be a 3-bit mask")
+ }
+
+ /* EVEX.v'vvvv must be a 5-bit mask */
+ if vvvvv &^ 0b11111 != 0 {
+ panic("EVEX.v'vvvv must be a 5-bit mask")
+ }
+
+ /* EVEX.W____1pp is expected to have no bits set except 0, 1, 2, and 7 */
+ if w1pp &^ 0b10000011 != 0b100 {
+ panic("EVEX.W____1pp is expected to have no bits set except 0, 1, 2, and 7")
+ }
+
+ /* extract bits from EVEX.R'R and EVEX.v'vvvv */
+ r1, r0 := rr >> 1, rr & 1
+ v1, v0 := vvvvv >> 4, vvvvv & 0b1111
+
+ /* encode the RM bits if any */
+ if rm != nil {
+ switch m := rm.(type) {
+ case *Label : break
+ case Register : b, x = hcode(m), ecode(m)
+ case MemoryAddress : b, x, v1 = toHcodeOpt(m.Base), toHcodeOpt(m.Index), toEcodeVMM(m.Index, v1)
+ case RelativeOffset : break
+ default : panic("rm is expected to be a register or a memory address")
+ }
+ }
+
+ /* EVEX prefix bytes */
+ p0 := (r0 << 7) | (x << 6) | (b << 5) | (r1 << 4) | mm
+ p1 := (v0 << 3) | w1pp
+ p2 := (zz << 7) | (ll << 5) | (b << 4) | (v1 << 3) | aaa
+
+ /* p0: invert RXBR' (bits 4-7)
+ * p1: invert vvvv (bits 3-6)
+ * p2: invert V' (bit 3) */
+ self.emit(0x62)
+ self.emit(p0 ^ 0xf0)
+ self.emit(p1 ^ 0x78)
+ self.emit(p2 ^ 0x08)
+}
+
+// rexm encodes a mandatory REX prefix.
+func (self *_Encoding) rexm(w byte, r byte, rm interface{}) {
+ var b byte
+ var x byte
+
+ /* REX.R must be 0 or 1 */
+ if r != 0 && r != 1 {
+ panic("REX.R must be 0 or 1")
+ }
+
+ /* REX.W must be 0 or 1 */
+ if w != 0 && w != 1 {
+ panic("REX.W must be 0 or 1")
+ }
+
+ /* encode the RM bits */
+ switch v := rm.(type) {
+ case *Label : break
+ case MemoryAddress : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
+ case RelativeOffset : break
+ default : panic("rm is expected to be a register or a memory address")
+ }
+
+ /* encode the REX prefix */
+ self.emit(0x40 | (w << 3) | (r << 2) | (x << 1) | b)
+}
+
+// rexo encodes an optional REX prefix.
+func (self *_Encoding) rexo(r byte, rm interface{}, force bool) {
+ var b byte
+ var x byte
+
+ /* REX.R must be 0 or 1 */
+ if r != 0 && r != 1 {
+ panic("REX.R must be 0 or 1")
+ }
+
+ /* encode the RM bits */
+ switch v := rm.(type) {
+ case *Label : break
+ case Register : b = hcode(v)
+ case MemoryAddress : b, x = toHcodeOpt(v.Base), toHcodeOpt(v.Index)
+ case RelativeOffset : break
+ default : panic("rm is expected to be a register or a memory address")
+ }
+
+ /* if REX.R, REX.X, and REX.B are all zeroes, REX prefix can be omitted */
+ if force || r != 0 || x != 0 || b != 0 {
+ self.emit(0x40 | (r << 2) | (x << 1) | b)
+ }
+}
+
+// mrsd encodes ModR/M, SIB and Displacement.
+//
+// ModR/M byte
+// +----------------+---------------+---------------+
+// | Bits 6-7: Mode | Bits 3-5: Reg | Bits 0-2: R/M |
+// +----------------+---------------+---------------+
+//
+// SIB byte
+// +-----------------+-----------------+----------------+
+// | Bits 6-7: Scale | Bits 3-5: Index | Bits 0-2: Base |
+// +-----------------+-----------------+----------------+
+//
+func (self *_Encoding) mrsd(reg byte, rm interface{}, disp8v int32) {
+ var ok bool
+ var mm MemoryAddress
+ var ro RelativeOffset
+
+ /* ModRM encodes the lower 3-bit of the register */
+ if reg > 7 {
+ panic("invalid register bits")
+ }
+
+ /* check the displacement scale */
+ switch disp8v {
+ case 1: break
+ case 2: break
+ case 4: break
+ case 8: break
+ case 16: break
+ case 32: break
+ case 64: break
+ default: panic("invalid displacement size")
+ }
+
+ /* special case: unresolved labels, assuming a zero offset */
+ if _, ok = rm.(*Label); ok {
+ self.emit(0x05 | (reg << 3))
+ self.imm4(0)
+ return
+ }
+
+ /* special case: RIP-relative offset
+ * ModRM.Mode == 0 and ModeRM.R/M == 5 indicates (rip + disp32) addressing */
+ if ro, ok = rm.(RelativeOffset); ok {
+ self.emit(0x05 | (reg << 3))
+ self.imm4(int64(ro))
+ return
+ }
+
+ /* must be a generic memory address */
+ if mm, ok = rm.(MemoryAddress); !ok {
+ panic("rm must be a memory address")
+ }
+
+ /* absolute addressing, encoded as disp(%rbp,%rsp,1) */
+ if mm.Base == nil && mm.Index == nil {
+ self.emit(0x04 | (reg << 3))
+ self.emit(0x25)
+ self.imm4(int64(mm.Displacement))
+ return
+ }
+
+ /* no SIB byte */
+ if mm.Index == nil && lcode(mm.Base) != 0b100 {
+ cc := lcode(mm.Base)
+ dv := mm.Displacement
+
+ /* ModRM.Mode == 0 (no displacement) */
+ if dv == 0 && mm.Base != RBP && mm.Base != R13 {
+ if cc == 0b101 {
+ panic("rbp/r13 is not encodable as a base register (interpreted as disp32 address)")
+ } else {
+ self.emit((reg << 3) | cc)
+ return
+ }
+ }
+
+ /* ModRM.Mode == 1 (8-bit displacement) */
+ if dq := dv / disp8v; dq >= math.MinInt8 && dq <= math.MaxInt8 && dv % disp8v == 0 {
+ self.emit(0x40 | (reg << 3) | cc)
+ self.imm1(int64(dq))
+ return
+ }
+
+ /* ModRM.Mode == 2 (32-bit displacement) */
+ self.emit(0x80 | (reg << 3) | cc)
+ self.imm4(int64(mm.Displacement))
+ return
+ }
+
+ /* all encodings below use ModRM.R/M = 4 (0b100) to indicate the presence of SIB */
+ if mm.Index == RSP {
+ panic("rsp is not encodable as an index register (interpreted as no index)")
+ }
+
+ /* index = 4 (0b100) denotes no-index encoding */
+ var scale byte
+ var index byte = 0x04
+
+ /* encode the scale byte */
+ if mm.Scale != 0 {
+ switch mm.Scale {
+ case 1 : scale = 0
+ case 2 : scale = 1
+ case 4 : scale = 2
+ case 8 : scale = 3
+ default : panic("invalid scale value")
+ }
+ }
+
+ /* encode the index byte */
+ if mm.Index != nil {
+ index = lcode(mm.Index)
+ }
+
+ /* SIB.Base = 5 (0b101) and ModRM.Mode = 0 indicates no-base encoding with disp32 */
+ if mm.Base == nil {
+ self.emit((reg << 3) | 0b100)
+ self.emit((scale << 6) | (index << 3) | 0b101)
+ self.imm4(int64(mm.Displacement))
+ return
+ }
+
+ /* base L-code & displacement value */
+ cc := lcode(mm.Base)
+ dv := mm.Displacement
+
+ /* ModRM.Mode == 0 (no displacement) */
+ if dv == 0 && cc != 0b101 {
+ self.emit((reg << 3) | 0b100)
+ self.emit((scale << 6) | (index << 3) | cc)
+ return
+ }
+
+ /* ModRM.Mode == 1 (8-bit displacement) */
+ if dq := dv / disp8v; dq >= math.MinInt8 && dq <= math.MaxInt8 && dv % disp8v == 0 {
+ self.emit(0x44 | (reg << 3))
+ self.emit((scale << 6) | (index << 3) | cc)
+ self.imm1(int64(dq))
+ return
+ }
+
+ /* ModRM.Mode == 2 (32-bit displacement) */
+ self.emit(0x84 | (reg << 3))
+ self.emit((scale << 6) | (index << 3) | cc)
+ self.imm4(int64(mm.Displacement))
+}
+
+// encode invokes the encoder to encode this instruction.
+func (self *_Encoding) encode(v []interface{}) int {
+ self.len = 0
+ self.encoder(self, v)
+ return self.len
+}