summaryrefslogtreecommitdiff
path: root/vendor/github.com/cilium/ebpf/linker.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/cilium/ebpf/linker.go')
-rw-r--r--vendor/github.com/cilium/ebpf/linker.go271
1 files changed, 188 insertions, 83 deletions
diff --git a/vendor/github.com/cilium/ebpf/linker.go b/vendor/github.com/cilium/ebpf/linker.go
index f843bb25e..e6276b182 100644
--- a/vendor/github.com/cilium/ebpf/linker.go
+++ b/vendor/github.com/cilium/ebpf/linker.go
@@ -1,133 +1,238 @@
package ebpf
import (
+ "errors"
"fmt"
+ "sync"
"github.com/cilium/ebpf/asm"
- "github.com/cilium/ebpf/internal/btf"
+ "github.com/cilium/ebpf/btf"
)
-// link resolves bpf-to-bpf calls.
+// splitSymbols splits insns into subsections delimited by Symbol Instructions.
+// insns cannot be empty and must start with a Symbol Instruction.
//
-// Each library may contain multiple functions / labels, and is only linked
-// if prog references one of these functions.
-//
-// Libraries also linked.
-func link(prog *ProgramSpec, libs []*ProgramSpec) error {
- var (
- linked = make(map[*ProgramSpec]bool)
- pending = []asm.Instructions{prog.Instructions}
- insns asm.Instructions
- )
- for len(pending) > 0 {
- insns, pending = pending[0], pending[1:]
- for _, lib := range libs {
- if linked[lib] {
- continue
- }
+// The resulting map is indexed by Symbol name.
+func splitSymbols(insns asm.Instructions) (map[string]asm.Instructions, error) {
+ if len(insns) == 0 {
+ return nil, errors.New("insns is empty")
+ }
- needed, err := needSection(insns, lib.Instructions)
- if err != nil {
- return fmt.Errorf("linking %s: %w", lib.Name, err)
- }
+ if insns[0].Symbol() == "" {
+ return nil, errors.New("insns must start with a Symbol")
+ }
- if !needed {
- continue
+ var name string
+ progs := make(map[string]asm.Instructions)
+ for _, ins := range insns {
+ if sym := ins.Symbol(); sym != "" {
+ if progs[sym] != nil {
+ return nil, fmt.Errorf("insns contains duplicate Symbol %s", sym)
}
+ name = sym
+ }
+
+ progs[name] = append(progs[name], ins)
+ }
- linked[lib] = true
- prog.Instructions = append(prog.Instructions, lib.Instructions...)
- pending = append(pending, lib.Instructions)
+ return progs, nil
+}
- if prog.BTF != nil && lib.BTF != nil {
- if err := btf.ProgramAppend(prog.BTF, lib.BTF); err != nil {
- return fmt.Errorf("linking BTF of %s: %w", lib.Name, err)
- }
- }
+// The linker is responsible for resolving bpf-to-bpf calls between programs
+// within an ELF. Each BPF program must be a self-contained binary blob,
+// so when an instruction in one ELF program section wants to jump to
+// a function in another, the linker needs to pull in the bytecode
+// (and BTF info) of the target function and concatenate the instruction
+// streams.
+//
+// Later on in the pipeline, all call sites are fixed up with relative jumps
+// within this newly-created instruction stream to then finally hand off to
+// the kernel with BPF_PROG_LOAD.
+//
+// Each function is denoted by an ELF symbol and the compiler takes care of
+// register setup before each jump instruction.
+
+// hasFunctionReferences returns true if insns contains one or more bpf2bpf
+// function references.
+func hasFunctionReferences(insns asm.Instructions) bool {
+ for _, i := range insns {
+ if i.IsFunctionReference() {
+ return true
}
}
-
- return nil
+ return false
}
-func needSection(insns, section asm.Instructions) (bool, error) {
- // A map of symbols to the libraries which contain them.
- symbols, err := section.SymbolOffsets()
+// applyRelocations collects and applies any CO-RE relocations in insns.
+//
+// Passing a nil target will relocate against the running kernel. insns are
+// modified in place.
+func applyRelocations(insns asm.Instructions, local, target *btf.Spec) error {
+ var relos []*btf.CORERelocation
+ var reloInsns []*asm.Instruction
+ iter := insns.Iterate()
+ for iter.Next() {
+ if relo := btf.CORERelocationMetadata(iter.Ins); relo != nil {
+ relos = append(relos, relo)
+ reloInsns = append(reloInsns, iter.Ins)
+ }
+ }
+
+ if len(relos) == 0 {
+ return nil
+ }
+
+ target, err := maybeLoadKernelBTF(target)
if err != nil {
- return false, err
+ return err
}
- for _, ins := range insns {
- if ins.Reference == "" {
- continue
- }
+ fixups, err := btf.CORERelocate(local, target, relos)
+ if err != nil {
+ return err
+ }
- if ins.OpCode.JumpOp() != asm.Call || ins.Src != asm.PseudoCall {
- continue
+ for i, fixup := range fixups {
+ if err := fixup.Apply(reloInsns[i]); err != nil {
+ return fmt.Errorf("apply fixup %s: %w", &fixup, err)
}
+ }
+
+ return nil
+}
+
+// flattenPrograms resolves bpf-to-bpf calls for a set of programs.
+//
+// Links all programs in names by modifying their ProgramSpec in progs.
+func flattenPrograms(progs map[string]*ProgramSpec, names []string) {
+ // Pre-calculate all function references.
+ refs := make(map[*ProgramSpec][]string)
+ for _, prog := range progs {
+ refs[prog] = prog.Instructions.FunctionReferences()
+ }
+
+ // Create a flattened instruction stream, but don't modify progs yet to
+ // avoid linking multiple times.
+ flattened := make([]asm.Instructions, 0, len(names))
+ for _, name := range names {
+ flattened = append(flattened, flattenInstructions(name, progs, refs))
+ }
+
+ // Finally, assign the flattened instructions.
+ for i, name := range names {
+ progs[name].Instructions = flattened[i]
+ }
+}
+
+// flattenInstructions resolves bpf-to-bpf calls for a single program.
+//
+// Flattens the instructions of prog by concatenating the instructions of all
+// direct and indirect dependencies.
+//
+// progs contains all referenceable programs, while refs contain the direct
+// dependencies of each program.
+func flattenInstructions(name string, progs map[string]*ProgramSpec, refs map[*ProgramSpec][]string) asm.Instructions {
+ prog := progs[name]
+
+ insns := make(asm.Instructions, len(prog.Instructions))
+ copy(insns, prog.Instructions)
+
+ // Add all direct references of prog to the list of to be linked programs.
+ pending := make([]string, len(refs[prog]))
+ copy(pending, refs[prog])
- if ins.Constant != -1 {
- // This is already a valid call, no need to link again.
+ // All references for which we've appended instructions.
+ linked := make(map[string]bool)
+
+ // Iterate all pending references. We can't use a range since pending is
+ // modified in the body below.
+ for len(pending) > 0 {
+ var ref string
+ ref, pending = pending[0], pending[1:]
+
+ if linked[ref] {
+ // We've already linked this ref, don't append instructions again.
continue
}
- if _, ok := symbols[ins.Reference]; !ok {
- // Symbol isn't available in this section
+ progRef := progs[ref]
+ if progRef == nil {
+ // We don't have instructions that go with this reference. This
+ // happens when calling extern functions.
continue
}
- // At this point we know that at least one function in the
- // library is called from insns, so we have to link it.
- return true, nil
+ insns = append(insns, progRef.Instructions...)
+ linked[ref] = true
+
+ // Make sure we link indirect references.
+ pending = append(pending, refs[progRef]...)
}
- // None of the functions in the section are called.
- return false, nil
+ return insns
}
-func fixupJumpsAndCalls(insns asm.Instructions) error {
- symbolOffsets := make(map[string]asm.RawInstructionOffset)
+// fixupAndValidate is called by the ELF reader right before marshaling the
+// instruction stream. It performs last-minute adjustments to the program and
+// runs some sanity checks before sending it off to the kernel.
+func fixupAndValidate(insns asm.Instructions) error {
iter := insns.Iterate()
for iter.Next() {
ins := iter.Ins
- if ins.Symbol == "" {
- continue
+ // Map load was tagged with a Reference, but does not contain a Map pointer.
+ if ins.IsLoadFromMap() && ins.Reference() != "" && ins.Map() == nil {
+ return fmt.Errorf("instruction %d: map %s: %w", iter.Index, ins.Reference(), asm.ErrUnsatisfiedMapReference)
}
- if _, ok := symbolOffsets[ins.Symbol]; ok {
- return fmt.Errorf("duplicate symbol %s", ins.Symbol)
- }
+ fixupProbeReadKernel(ins)
+ }
- symbolOffsets[ins.Symbol] = iter.Offset
+ return nil
+}
+
+// fixupProbeReadKernel replaces calls to bpf_probe_read_{kernel,user}(_str)
+// with bpf_probe_read(_str) on kernels that don't support it yet.
+func fixupProbeReadKernel(ins *asm.Instruction) {
+ if !ins.IsBuiltinCall() {
+ return
}
- iter = insns.Iterate()
- for iter.Next() {
- i := iter.Index
- offset := iter.Offset
- ins := iter.Ins
+ // Kernel supports bpf_probe_read_kernel, nothing to do.
+ if haveProbeReadKernel() == nil {
+ return
+ }
- switch {
- case ins.IsFunctionCall() && ins.Constant == -1:
- // Rewrite bpf to bpf call
- callOffset, ok := symbolOffsets[ins.Reference]
- if !ok {
- return fmt.Errorf("instruction %d: reference to missing symbol %q", i, ins.Reference)
- }
+ switch asm.BuiltinFunc(ins.Constant) {
+ case asm.FnProbeReadKernel, asm.FnProbeReadUser:
+ ins.Constant = int64(asm.FnProbeRead)
+ case asm.FnProbeReadKernelStr, asm.FnProbeReadUserStr:
+ ins.Constant = int64(asm.FnProbeReadStr)
+ }
+}
- ins.Constant = int64(callOffset - offset - 1)
+var kernelBTF struct {
+ sync.Mutex
+ spec *btf.Spec
+}
- case ins.OpCode.Class() == asm.JumpClass && ins.Offset == -1:
- // Rewrite jump to label
- jumpOffset, ok := symbolOffsets[ins.Reference]
- if !ok {
- return fmt.Errorf("instruction %d: reference to missing symbol %q", i, ins.Reference)
- }
+// maybeLoadKernelBTF loads the current kernel's BTF if spec is nil, otherwise
+// it returns spec unchanged.
+//
+// The kernel BTF is cached for the lifetime of the process.
+func maybeLoadKernelBTF(spec *btf.Spec) (*btf.Spec, error) {
+ if spec != nil {
+ return spec, nil
+ }
- ins.Offset = int16(jumpOffset - offset - 1)
- }
+ kernelBTF.Lock()
+ defer kernelBTF.Unlock()
+
+ if kernelBTF.spec != nil {
+ return kernelBTF.spec, nil
}
- return nil
+ var err error
+ kernelBTF.spec, err = btf.LoadKernelSpec()
+ return kernelBTF.spec, err
}