diff options
Diffstat (limited to 'vendor/github.com/cilium/ebpf/elf_reader.go')
-rw-r--r-- | vendor/github.com/cilium/ebpf/elf_reader.go | 930 |
1 files changed, 930 insertions, 0 deletions
diff --git a/vendor/github.com/cilium/ebpf/elf_reader.go b/vendor/github.com/cilium/ebpf/elf_reader.go new file mode 100644 index 000000000..943142c49 --- /dev/null +++ b/vendor/github.com/cilium/ebpf/elf_reader.go @@ -0,0 +1,930 @@ +package ebpf + +import ( + "bufio" + "bytes" + "debug/elf" + "encoding/binary" + "errors" + "fmt" + "io" + "math" + "os" + "strings" + + "github.com/cilium/ebpf/asm" + "github.com/cilium/ebpf/internal" + "github.com/cilium/ebpf/internal/btf" + "github.com/cilium/ebpf/internal/unix" +) + +// elfCode is a convenience to reduce the amount of arguments that have to +// be passed around explicitly. You should treat it's contents as immutable. +type elfCode struct { + *internal.SafeELFFile + sections map[elf.SectionIndex]*elfSection + license string + version uint32 + btf *btf.Spec +} + +// LoadCollectionSpec parses an ELF file into a CollectionSpec. +func LoadCollectionSpec(file string) (*CollectionSpec, error) { + f, err := os.Open(file) + if err != nil { + return nil, err + } + defer f.Close() + + spec, err := LoadCollectionSpecFromReader(f) + if err != nil { + return nil, fmt.Errorf("file %s: %w", file, err) + } + return spec, nil +} + +// LoadCollectionSpecFromReader parses an ELF file into a CollectionSpec. +func LoadCollectionSpecFromReader(rd io.ReaderAt) (*CollectionSpec, error) { + f, err := internal.NewSafeELFFile(rd) + if err != nil { + return nil, err + } + defer f.Close() + + var ( + licenseSection *elf.Section + versionSection *elf.Section + sections = make(map[elf.SectionIndex]*elfSection) + relSections = make(map[elf.SectionIndex]*elf.Section) + ) + + // This is the target of relocations generated by inline assembly. + sections[elf.SHN_UNDEF] = newElfSection(new(elf.Section), undefSection) + + // Collect all the sections we're interested in. This includes relocations + // which we parse later. + for i, sec := range f.Sections { + idx := elf.SectionIndex(i) + + switch { + case strings.HasPrefix(sec.Name, "license"): + licenseSection = sec + case strings.HasPrefix(sec.Name, "version"): + versionSection = sec + case strings.HasPrefix(sec.Name, "maps"): + sections[idx] = newElfSection(sec, mapSection) + case sec.Name == ".maps": + sections[idx] = newElfSection(sec, btfMapSection) + case sec.Name == ".bss" || sec.Name == ".data" || strings.HasPrefix(sec.Name, ".rodata"): + sections[idx] = newElfSection(sec, dataSection) + case sec.Type == elf.SHT_REL: + // Store relocations under the section index of the target + relSections[elf.SectionIndex(sec.Info)] = sec + case sec.Type == elf.SHT_PROGBITS && (sec.Flags&elf.SHF_EXECINSTR) != 0 && sec.Size > 0: + sections[idx] = newElfSection(sec, programSection) + } + } + + license, err := loadLicense(licenseSection) + if err != nil { + return nil, fmt.Errorf("load license: %w", err) + } + + version, err := loadVersion(versionSection, f.ByteOrder) + if err != nil { + return nil, fmt.Errorf("load version: %w", err) + } + + btfSpec, err := btf.LoadSpecFromReader(rd) + if err != nil { + return nil, fmt.Errorf("load BTF: %w", err) + } + + // Assign symbols to all the sections we're interested in. + symbols, err := f.Symbols() + if err != nil { + return nil, fmt.Errorf("load symbols: %v", err) + } + + for _, symbol := range symbols { + idx := symbol.Section + symType := elf.ST_TYPE(symbol.Info) + + section := sections[idx] + if section == nil { + continue + } + + // Older versions of LLVM don't tag symbols correctly, so keep + // all NOTYPE ones. + keep := symType == elf.STT_NOTYPE + switch section.kind { + case mapSection, btfMapSection, dataSection: + keep = keep || symType == elf.STT_OBJECT + case programSection: + keep = keep || symType == elf.STT_FUNC + } + if !keep || symbol.Name == "" { + continue + } + + section.symbols[symbol.Value] = symbol + } + + ec := &elfCode{ + SafeELFFile: f, + sections: sections, + license: license, + version: version, + btf: btfSpec, + } + + // Go through relocation sections, and parse the ones for sections we're + // interested in. Make sure that relocations point at valid sections. + for idx, relSection := range relSections { + section := sections[idx] + if section == nil { + continue + } + + rels, err := ec.loadRelocations(relSection, symbols) + if err != nil { + return nil, fmt.Errorf("relocation for section %q: %w", section.Name, err) + } + + for _, rel := range rels { + target := sections[rel.Section] + if target == nil { + return nil, fmt.Errorf("section %q: reference to %q in section %s: %w", section.Name, rel.Name, rel.Section, ErrNotSupported) + } + + if target.Flags&elf.SHF_STRINGS > 0 { + return nil, fmt.Errorf("section %q: string %q is not stack allocated: %w", section.Name, rel.Name, ErrNotSupported) + } + + target.references++ + } + + section.relocations = rels + } + + // Collect all the various ways to define maps. + maps := make(map[string]*MapSpec) + if err := ec.loadMaps(maps); err != nil { + return nil, fmt.Errorf("load maps: %w", err) + } + + if err := ec.loadBTFMaps(maps); err != nil { + return nil, fmt.Errorf("load BTF maps: %w", err) + } + + if err := ec.loadDataSections(maps); err != nil { + return nil, fmt.Errorf("load data sections: %w", err) + } + + // Finally, collect programs and link them. + progs, err := ec.loadPrograms() + if err != nil { + return nil, fmt.Errorf("load programs: %w", err) + } + + return &CollectionSpec{maps, progs}, nil +} + +func loadLicense(sec *elf.Section) (string, error) { + if sec == nil { + return "", nil + } + + data, err := sec.Data() + if err != nil { + return "", fmt.Errorf("section %s: %v", sec.Name, err) + } + return string(bytes.TrimRight(data, "\000")), nil +} + +func loadVersion(sec *elf.Section, bo binary.ByteOrder) (uint32, error) { + if sec == nil { + return 0, nil + } + + var version uint32 + if err := binary.Read(sec.Open(), bo, &version); err != nil { + return 0, fmt.Errorf("section %s: %v", sec.Name, err) + } + return version, nil +} + +type elfSectionKind int + +const ( + undefSection elfSectionKind = iota + mapSection + btfMapSection + programSection + dataSection +) + +type elfSection struct { + *elf.Section + kind elfSectionKind + // Offset from the start of the section to a symbol + symbols map[uint64]elf.Symbol + // Offset from the start of the section to a relocation, which points at + // a symbol in another section. + relocations map[uint64]elf.Symbol + // The number of relocations pointing at this section. + references int +} + +func newElfSection(section *elf.Section, kind elfSectionKind) *elfSection { + return &elfSection{ + section, + kind, + make(map[uint64]elf.Symbol), + make(map[uint64]elf.Symbol), + 0, + } +} + +func (ec *elfCode) loadPrograms() (map[string]*ProgramSpec, error) { + var ( + progs []*ProgramSpec + libs []*ProgramSpec + ) + + for _, sec := range ec.sections { + if sec.kind != programSection { + continue + } + + if len(sec.symbols) == 0 { + return nil, fmt.Errorf("section %v: missing symbols", sec.Name) + } + + funcSym, ok := sec.symbols[0] + if !ok { + return nil, fmt.Errorf("section %v: no label at start", sec.Name) + } + + insns, length, err := ec.loadInstructions(sec) + if err != nil { + return nil, fmt.Errorf("program %s: %w", funcSym.Name, err) + } + + progType, attachType, attachTo := getProgType(sec.Name) + + spec := &ProgramSpec{ + Name: funcSym.Name, + Type: progType, + AttachType: attachType, + AttachTo: attachTo, + License: ec.license, + KernelVersion: ec.version, + Instructions: insns, + ByteOrder: ec.ByteOrder, + } + + if ec.btf != nil { + spec.BTF, err = ec.btf.Program(sec.Name, length) + if err != nil && !errors.Is(err, btf.ErrNoExtendedInfo) { + return nil, fmt.Errorf("program %s: %w", funcSym.Name, err) + } + } + + if spec.Type == UnspecifiedProgram { + // There is no single name we can use for "library" sections, + // since they may contain multiple functions. We'll decode the + // labels they contain later on, and then link sections that way. + libs = append(libs, spec) + } else { + progs = append(progs, spec) + } + } + + res := make(map[string]*ProgramSpec, len(progs)) + for _, prog := range progs { + err := link(prog, libs) + if err != nil { + return nil, fmt.Errorf("program %s: %w", prog.Name, err) + } + res[prog.Name] = prog + } + + return res, nil +} + +func (ec *elfCode) loadInstructions(section *elfSection) (asm.Instructions, uint64, error) { + var ( + r = bufio.NewReader(section.Open()) + insns asm.Instructions + offset uint64 + ) + for { + var ins asm.Instruction + n, err := ins.Unmarshal(r, ec.ByteOrder) + if err == io.EOF { + return insns, offset, nil + } + if err != nil { + return nil, 0, fmt.Errorf("offset %d: %w", offset, err) + } + + ins.Symbol = section.symbols[offset].Name + + if rel, ok := section.relocations[offset]; ok { + if err = ec.relocateInstruction(&ins, rel); err != nil { + return nil, 0, fmt.Errorf("offset %d: relocate instruction: %w", offset, err) + } + } + + insns = append(insns, ins) + offset += n + } +} + +func (ec *elfCode) relocateInstruction(ins *asm.Instruction, rel elf.Symbol) error { + var ( + typ = elf.ST_TYPE(rel.Info) + bind = elf.ST_BIND(rel.Info) + name = rel.Name + ) + + target := ec.sections[rel.Section] + + switch target.kind { + case mapSection, btfMapSection: + if bind != elf.STB_GLOBAL { + return fmt.Errorf("possible erroneous static qualifier on map definition: found reference to %q", name) + } + + if typ != elf.STT_OBJECT && typ != elf.STT_NOTYPE { + // STT_NOTYPE is generated on clang < 8 which doesn't tag + // relocations appropriately. + return fmt.Errorf("map load: incorrect relocation type %v", typ) + } + + ins.Src = asm.PseudoMapFD + + // Mark the instruction as needing an update when creating the + // collection. + if err := ins.RewriteMapPtr(-1); err != nil { + return err + } + + case dataSection: + switch typ { + case elf.STT_SECTION: + if bind != elf.STB_LOCAL { + return fmt.Errorf("direct load: %s: unsupported relocation %s", name, bind) + } + + case elf.STT_OBJECT: + if bind != elf.STB_GLOBAL { + return fmt.Errorf("direct load: %s: unsupported relocation %s", name, bind) + } + + default: + return fmt.Errorf("incorrect relocation type %v for direct map load", typ) + } + + // We rely on using the name of the data section as the reference. It + // would be nicer to keep the real name in case of an STT_OBJECT, but + // it's not clear how to encode that into Instruction. + name = target.Name + + // For some reason, clang encodes the offset of the symbol its + // section in the first basic BPF instruction, while the kernel + // expects it in the second one. + ins.Constant <<= 32 + ins.Src = asm.PseudoMapValue + + // Mark the instruction as needing an update when creating the + // collection. + if err := ins.RewriteMapPtr(-1); err != nil { + return err + } + + case programSection: + if ins.OpCode.JumpOp() != asm.Call { + return fmt.Errorf("not a call instruction: %s", ins) + } + + if ins.Src != asm.PseudoCall { + return fmt.Errorf("call: %s: incorrect source register", name) + } + + switch typ { + case elf.STT_NOTYPE, elf.STT_FUNC: + if bind != elf.STB_GLOBAL { + return fmt.Errorf("call: %s: unsupported binding: %s", name, bind) + } + + case elf.STT_SECTION: + if bind != elf.STB_LOCAL { + return fmt.Errorf("call: %s: unsupported binding: %s", name, bind) + } + + // The function we want to call is in the indicated section, + // at the offset encoded in the instruction itself. Reverse + // the calculation to find the real function we're looking for. + // A value of -1 references the first instruction in the section. + offset := int64(int32(ins.Constant)+1) * asm.InstructionSize + if offset < 0 { + return fmt.Errorf("call: %s: invalid offset %d", name, offset) + } + + sym, ok := target.symbols[uint64(offset)] + if !ok { + return fmt.Errorf("call: %s: no symbol at offset %d", name, offset) + } + + ins.Constant = -1 + name = sym.Name + + default: + return fmt.Errorf("call: %s: invalid symbol type %s", name, typ) + } + + case undefSection: + if bind != elf.STB_GLOBAL { + return fmt.Errorf("asm relocation: %s: unsupported binding: %s", name, bind) + } + + if typ != elf.STT_NOTYPE { + return fmt.Errorf("asm relocation: %s: unsupported type %s", name, typ) + } + + // There is nothing to do here but set ins.Reference. + + default: + return fmt.Errorf("relocation to %q: %w", target.Name, ErrNotSupported) + } + + ins.Reference = name + return nil +} + +func (ec *elfCode) loadMaps(maps map[string]*MapSpec) error { + for _, sec := range ec.sections { + if sec.kind != mapSection { + continue + } + + nSym := len(sec.symbols) + if nSym == 0 { + return fmt.Errorf("section %v: no symbols", sec.Name) + } + + if sec.Size%uint64(nSym) != 0 { + return fmt.Errorf("section %v: map descriptors are not of equal size", sec.Name) + } + + var ( + r = bufio.NewReader(sec.Open()) + size = sec.Size / uint64(nSym) + ) + for i, offset := 0, uint64(0); i < nSym; i, offset = i+1, offset+size { + mapSym, ok := sec.symbols[offset] + if !ok { + return fmt.Errorf("section %s: missing symbol for map at offset %d", sec.Name, offset) + } + + if maps[mapSym.Name] != nil { + return fmt.Errorf("section %v: map %v already exists", sec.Name, mapSym) + } + + lr := io.LimitReader(r, int64(size)) + + spec := MapSpec{ + Name: SanitizeName(mapSym.Name, -1), + } + switch { + case binary.Read(lr, ec.ByteOrder, &spec.Type) != nil: + return fmt.Errorf("map %v: missing type", mapSym) + case binary.Read(lr, ec.ByteOrder, &spec.KeySize) != nil: + return fmt.Errorf("map %v: missing key size", mapSym) + case binary.Read(lr, ec.ByteOrder, &spec.ValueSize) != nil: + return fmt.Errorf("map %v: missing value size", mapSym) + case binary.Read(lr, ec.ByteOrder, &spec.MaxEntries) != nil: + return fmt.Errorf("map %v: missing max entries", mapSym) + case binary.Read(lr, ec.ByteOrder, &spec.Flags) != nil: + return fmt.Errorf("map %v: missing flags", mapSym) + } + + if _, err := io.Copy(internal.DiscardZeroes{}, lr); err != nil { + return fmt.Errorf("map %v: unknown and non-zero fields in definition", mapSym) + } + + maps[mapSym.Name] = &spec + } + } + + return nil +} + +func (ec *elfCode) loadBTFMaps(maps map[string]*MapSpec) error { + for _, sec := range ec.sections { + if sec.kind != btfMapSection { + continue + } + + if ec.btf == nil { + return fmt.Errorf("missing BTF") + } + + if len(sec.symbols) == 0 { + return fmt.Errorf("section %v: no symbols", sec.Name) + } + + _, err := io.Copy(internal.DiscardZeroes{}, bufio.NewReader(sec.Open())) + if err != nil { + return fmt.Errorf("section %v: initializing BTF map definitions: %w", sec.Name, internal.ErrNotSupported) + } + + for _, sym := range sec.symbols { + name := sym.Name + if maps[name] != nil { + return fmt.Errorf("section %v: map %v already exists", sec.Name, sym) + } + + // A global Var is created by declaring a struct with a 'structure variable', + // as is common in eBPF C to declare eBPF maps. For example, + // `struct { ... } map_name ...;` emits a global variable `map_name` + // with the type of said struct (which can be anonymous). + var v btf.Var + if err := ec.btf.FindType(name, &v); err != nil { + return fmt.Errorf("cannot find global variable '%s' in BTF: %w", name, err) + } + + mapStruct, ok := v.Type.(*btf.Struct) + if !ok { + return fmt.Errorf("expected struct, got %s", v.Type) + } + + mapSpec, err := mapSpecFromBTF(name, mapStruct, false, ec.btf) + if err != nil { + return fmt.Errorf("map %v: %w", name, err) + } + + maps[name] = mapSpec + } + } + + return nil +} + +// mapSpecFromBTF produces a MapSpec based on a btf.Struct def representing +// a BTF map definition. The name and spec arguments will be copied to the +// resulting MapSpec, and inner must be true on any resursive invocations. +func mapSpecFromBTF(name string, def *btf.Struct, inner bool, spec *btf.Spec) (*MapSpec, error) { + + var ( + key, value btf.Type + keySize, valueSize uint32 + mapType, flags, maxEntries uint32 + pinType PinType + innerMapSpec *MapSpec + err error + ) + + for i, member := range def.Members { + switch member.Name { + case "type": + mapType, err = uintFromBTF(member.Type) + if err != nil { + return nil, fmt.Errorf("can't get type: %w", err) + } + + case "map_flags": + flags, err = uintFromBTF(member.Type) + if err != nil { + return nil, fmt.Errorf("can't get BTF map flags: %w", err) + } + + case "max_entries": + maxEntries, err = uintFromBTF(member.Type) + if err != nil { + return nil, fmt.Errorf("can't get BTF map max entries: %w", err) + } + + case "key": + if keySize != 0 { + return nil, errors.New("both key and key_size given") + } + + pk, ok := member.Type.(*btf.Pointer) + if !ok { + return nil, fmt.Errorf("key type is not a pointer: %T", member.Type) + } + + key = pk.Target + + size, err := btf.Sizeof(pk.Target) + if err != nil { + return nil, fmt.Errorf("can't get size of BTF key: %w", err) + } + + keySize = uint32(size) + + case "value": + if valueSize != 0 { + return nil, errors.New("both value and value_size given") + } + + vk, ok := member.Type.(*btf.Pointer) + if !ok { + return nil, fmt.Errorf("value type is not a pointer: %T", member.Type) + } + + value = vk.Target + + size, err := btf.Sizeof(vk.Target) + if err != nil { + return nil, fmt.Errorf("can't get size of BTF value: %w", err) + } + + valueSize = uint32(size) + + case "key_size": + // Key needs to be nil and keySize needs to be 0 for key_size to be + // considered a valid member. + if key != nil || keySize != 0 { + return nil, errors.New("both key and key_size given") + } + + keySize, err = uintFromBTF(member.Type) + if err != nil { + return nil, fmt.Errorf("can't get BTF key size: %w", err) + } + + case "value_size": + // Value needs to be nil and valueSize needs to be 0 for value_size to be + // considered a valid member. + if value != nil || valueSize != 0 { + return nil, errors.New("both value and value_size given") + } + + valueSize, err = uintFromBTF(member.Type) + if err != nil { + return nil, fmt.Errorf("can't get BTF value size: %w", err) + } + + case "pinning": + if inner { + return nil, errors.New("inner maps can't be pinned") + } + + pinning, err := uintFromBTF(member.Type) + if err != nil { + return nil, fmt.Errorf("can't get pinning: %w", err) + } + + pinType = PinType(pinning) + + case "values": + // The 'values' field in BTF map definitions is used for declaring map + // value types that are references to other BPF objects, like other maps + // or programs. It is always expected to be an array of pointers. + if i != len(def.Members)-1 { + return nil, errors.New("'values' must be the last member in a BTF map definition") + } + + if valueSize != 0 && valueSize != 4 { + return nil, errors.New("value_size must be 0 or 4") + } + valueSize = 4 + + valueType, err := resolveBTFArrayMacro(member.Type) + if err != nil { + return nil, fmt.Errorf("can't resolve type of member 'values': %w", err) + } + + switch t := valueType.(type) { + case *btf.Struct: + // The values member pointing to an array of structs means we're expecting + // a map-in-map declaration. + if MapType(mapType) != ArrayOfMaps && MapType(mapType) != HashOfMaps { + return nil, errors.New("outer map needs to be an array or a hash of maps") + } + if inner { + return nil, fmt.Errorf("nested inner maps are not supported") + } + + // This inner map spec is used as a map template, but it needs to be + // created as a traditional map before it can be used to do so. + // libbpf names the inner map template '<outer_name>.inner', but we + // opted for _inner to simplify validation logic. (dots only supported + // on kernels 5.2 and up) + // Pass the BTF spec from the parent object, since both parent and + // child must be created from the same BTF blob (on kernels that support BTF). + innerMapSpec, err = mapSpecFromBTF(name+"_inner", t, true, spec) + if err != nil { + return nil, fmt.Errorf("can't parse BTF map definition of inner map: %w", err) + } + + default: + return nil, fmt.Errorf("unsupported value type %q in 'values' field", t) + } + + default: + return nil, fmt.Errorf("unrecognized field %s in BTF map definition", member.Name) + } + } + + bm := btf.NewMap(spec, key, value) + + return &MapSpec{ + Name: SanitizeName(name, -1), + Type: MapType(mapType), + KeySize: keySize, + ValueSize: valueSize, + MaxEntries: maxEntries, + Flags: flags, + BTF: &bm, + Pinning: pinType, + InnerMap: innerMapSpec, + }, nil +} + +// uintFromBTF resolves the __uint macro, which is a pointer to a sized +// array, e.g. for int (*foo)[10], this function will return 10. +func uintFromBTF(typ btf.Type) (uint32, error) { + ptr, ok := typ.(*btf.Pointer) + if !ok { + return 0, fmt.Errorf("not a pointer: %v", typ) + } + + arr, ok := ptr.Target.(*btf.Array) + if !ok { + return 0, fmt.Errorf("not a pointer to array: %v", typ) + } + + return arr.Nelems, nil +} + +// resolveBTFArrayMacro resolves the __array macro, which declares an array +// of pointers to a given type. This function returns the target Type of +// the pointers in the array. +func resolveBTFArrayMacro(typ btf.Type) (btf.Type, error) { + arr, ok := typ.(*btf.Array) + if !ok { + return nil, fmt.Errorf("not an array: %v", typ) + } + + ptr, ok := arr.Type.(*btf.Pointer) + if !ok { + return nil, fmt.Errorf("not an array of pointers: %v", typ) + } + + return ptr.Target, nil +} + +func (ec *elfCode) loadDataSections(maps map[string]*MapSpec) error { + for _, sec := range ec.sections { + if sec.kind != dataSection { + continue + } + + if sec.references == 0 { + // Prune data sections which are not referenced by any + // instructions. + continue + } + + if ec.btf == nil { + return errors.New("data sections require BTF, make sure all consts are marked as static") + } + + btfMap, err := ec.btf.Datasec(sec.Name) + if err != nil { + return err + } + + data, err := sec.Data() + if err != nil { + return fmt.Errorf("data section %s: can't get contents: %w", sec.Name, err) + } + + if uint64(len(data)) > math.MaxUint32 { + return fmt.Errorf("data section %s: contents exceed maximum size", sec.Name) + } + + mapSpec := &MapSpec{ + Name: SanitizeName(sec.Name, -1), + Type: Array, + KeySize: 4, + ValueSize: uint32(len(data)), + MaxEntries: 1, + Contents: []MapKV{{uint32(0), data}}, + BTF: btfMap, + } + + switch sec.Name { + case ".rodata": + mapSpec.Flags = unix.BPF_F_RDONLY_PROG + mapSpec.Freeze = true + case ".bss": + // The kernel already zero-initializes the map + mapSpec.Contents = nil + } + + maps[sec.Name] = mapSpec + } + return nil +} + +func getProgType(sectionName string) (ProgramType, AttachType, string) { + types := map[string]struct { + progType ProgramType + attachType AttachType + }{ + // From https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/libbpf.c + "socket": {SocketFilter, AttachNone}, + "seccomp": {SocketFilter, AttachNone}, + "kprobe/": {Kprobe, AttachNone}, + "uprobe/": {Kprobe, AttachNone}, + "kretprobe/": {Kprobe, AttachNone}, + "uretprobe/": {Kprobe, AttachNone}, + "tracepoint/": {TracePoint, AttachNone}, + "raw_tracepoint/": {RawTracepoint, AttachNone}, + "xdp": {XDP, AttachNone}, + "perf_event": {PerfEvent, AttachNone}, + "lwt_in": {LWTIn, AttachNone}, + "lwt_out": {LWTOut, AttachNone}, + "lwt_xmit": {LWTXmit, AttachNone}, + "lwt_seg6local": {LWTSeg6Local, AttachNone}, + "sockops": {SockOps, AttachCGroupSockOps}, + "sk_skb/stream_parser": {SkSKB, AttachSkSKBStreamParser}, + "sk_skb/stream_verdict": {SkSKB, AttachSkSKBStreamParser}, + "sk_msg": {SkMsg, AttachSkSKBStreamVerdict}, + "lirc_mode2": {LircMode2, AttachLircMode2}, + "flow_dissector": {FlowDissector, AttachFlowDissector}, + "iter/": {Tracing, AttachTraceIter}, + "sk_lookup/": {SkLookup, AttachSkLookup}, + "lsm/": {LSM, AttachLSMMac}, + + "cgroup_skb/ingress": {CGroupSKB, AttachCGroupInetIngress}, + "cgroup_skb/egress": {CGroupSKB, AttachCGroupInetEgress}, + "cgroup/dev": {CGroupDevice, AttachCGroupDevice}, + "cgroup/skb": {CGroupSKB, AttachNone}, + "cgroup/sock": {CGroupSock, AttachCGroupInetSockCreate}, + "cgroup/post_bind4": {CGroupSock, AttachCGroupInet4PostBind}, + "cgroup/post_bind6": {CGroupSock, AttachCGroupInet6PostBind}, + "cgroup/bind4": {CGroupSockAddr, AttachCGroupInet4Bind}, + "cgroup/bind6": {CGroupSockAddr, AttachCGroupInet6Bind}, + "cgroup/connect4": {CGroupSockAddr, AttachCGroupInet4Connect}, + "cgroup/connect6": {CGroupSockAddr, AttachCGroupInet6Connect}, + "cgroup/sendmsg4": {CGroupSockAddr, AttachCGroupUDP4Sendmsg}, + "cgroup/sendmsg6": {CGroupSockAddr, AttachCGroupUDP6Sendmsg}, + "cgroup/recvmsg4": {CGroupSockAddr, AttachCGroupUDP4Recvmsg}, + "cgroup/recvmsg6": {CGroupSockAddr, AttachCGroupUDP6Recvmsg}, + "cgroup/sysctl": {CGroupSysctl, AttachCGroupSysctl}, + "cgroup/getsockopt": {CGroupSockopt, AttachCGroupGetsockopt}, + "cgroup/setsockopt": {CGroupSockopt, AttachCGroupSetsockopt}, + "classifier": {SchedCLS, AttachNone}, + "action": {SchedACT, AttachNone}, + } + + for prefix, t := range types { + if !strings.HasPrefix(sectionName, prefix) { + continue + } + + if !strings.HasSuffix(prefix, "/") { + return t.progType, t.attachType, "" + } + + return t.progType, t.attachType, sectionName[len(prefix):] + } + + return UnspecifiedProgram, AttachNone, "" +} + +func (ec *elfCode) loadRelocations(sec *elf.Section, symbols []elf.Symbol) (map[uint64]elf.Symbol, error) { + rels := make(map[uint64]elf.Symbol) + + if sec.Entsize < 16 { + return nil, fmt.Errorf("section %s: relocations are less than 16 bytes", sec.Name) + } + + r := bufio.NewReader(sec.Open()) + for off := uint64(0); off < sec.Size; off += sec.Entsize { + ent := io.LimitReader(r, int64(sec.Entsize)) + + var rel elf.Rel64 + if binary.Read(ent, ec.ByteOrder, &rel) != nil { + return nil, fmt.Errorf("can't parse relocation at offset %v", off) + } + + symNo := int(elf.R_SYM64(rel.Info) - 1) + if symNo >= len(symbols) { + return nil, fmt.Errorf("offset %d: symbol %d doesn't exist", off, symNo) + } + + symbol := symbols[symNo] + rels[rel.Off] = symbol + } + + return rels, nil +} |