diff options
Diffstat (limited to 'vendor/github.com/cilium/ebpf/asm/instruction.go')
-rw-r--r-- | vendor/github.com/cilium/ebpf/asm/instruction.go | 498 |
1 files changed, 498 insertions, 0 deletions
diff --git a/vendor/github.com/cilium/ebpf/asm/instruction.go b/vendor/github.com/cilium/ebpf/asm/instruction.go new file mode 100644 index 000000000..5d9d820e5 --- /dev/null +++ b/vendor/github.com/cilium/ebpf/asm/instruction.go @@ -0,0 +1,498 @@ +package asm + +import ( + "crypto/sha1" + "encoding/binary" + "encoding/hex" + "errors" + "fmt" + "io" + "math" + "strings" + + "github.com/cilium/ebpf/internal/unix" +) + +// InstructionSize is the size of a BPF instruction in bytes +const InstructionSize = 8 + +// RawInstructionOffset is an offset in units of raw BPF instructions. +type RawInstructionOffset uint64 + +// Bytes returns the offset of an instruction in bytes. +func (rio RawInstructionOffset) Bytes() uint64 { + return uint64(rio) * InstructionSize +} + +// Instruction is a single eBPF instruction. +type Instruction struct { + OpCode OpCode + Dst Register + Src Register + Offset int16 + Constant int64 + Reference string + Symbol string +} + +// Sym creates a symbol. +func (ins Instruction) Sym(name string) Instruction { + ins.Symbol = name + return ins +} + +// Unmarshal decodes a BPF instruction. +func (ins *Instruction) Unmarshal(r io.Reader, bo binary.ByteOrder) (uint64, error) { + var bi bpfInstruction + err := binary.Read(r, bo, &bi) + if err != nil { + return 0, err + } + + ins.OpCode = bi.OpCode + ins.Offset = bi.Offset + ins.Constant = int64(bi.Constant) + ins.Dst, ins.Src, err = bi.Registers.Unmarshal(bo) + if err != nil { + return 0, fmt.Errorf("can't unmarshal registers: %s", err) + } + + if !bi.OpCode.isDWordLoad() { + return InstructionSize, nil + } + + var bi2 bpfInstruction + if err := binary.Read(r, bo, &bi2); err != nil { + // No Wrap, to avoid io.EOF clash + return 0, errors.New("64bit immediate is missing second half") + } + if bi2.OpCode != 0 || bi2.Offset != 0 || bi2.Registers != 0 { + return 0, errors.New("64bit immediate has non-zero fields") + } + ins.Constant = int64(uint64(uint32(bi2.Constant))<<32 | uint64(uint32(bi.Constant))) + + return 2 * InstructionSize, nil +} + +// Marshal encodes a BPF instruction. +func (ins Instruction) Marshal(w io.Writer, bo binary.ByteOrder) (uint64, error) { + if ins.OpCode == InvalidOpCode { + return 0, errors.New("invalid opcode") + } + + isDWordLoad := ins.OpCode.isDWordLoad() + + cons := int32(ins.Constant) + if isDWordLoad { + // Encode least significant 32bit first for 64bit operations. + cons = int32(uint32(ins.Constant)) + } + + regs, err := newBPFRegisters(ins.Dst, ins.Src, bo) + if err != nil { + return 0, fmt.Errorf("can't marshal registers: %s", err) + } + + bpfi := bpfInstruction{ + ins.OpCode, + regs, + ins.Offset, + cons, + } + + if err := binary.Write(w, bo, &bpfi); err != nil { + return 0, err + } + + if !isDWordLoad { + return InstructionSize, nil + } + + bpfi = bpfInstruction{ + Constant: int32(ins.Constant >> 32), + } + + if err := binary.Write(w, bo, &bpfi); err != nil { + return 0, err + } + + return 2 * InstructionSize, nil +} + +// RewriteMapPtr changes an instruction to use a new map fd. +// +// Returns an error if the instruction doesn't load a map. +func (ins *Instruction) RewriteMapPtr(fd int) error { + if !ins.OpCode.isDWordLoad() { + return fmt.Errorf("%s is not a 64 bit load", ins.OpCode) + } + + if ins.Src != PseudoMapFD && ins.Src != PseudoMapValue { + return errors.New("not a load from a map") + } + + // Preserve the offset value for direct map loads. + offset := uint64(ins.Constant) & (math.MaxUint32 << 32) + rawFd := uint64(uint32(fd)) + ins.Constant = int64(offset | rawFd) + return nil +} + +func (ins *Instruction) mapPtr() uint32 { + return uint32(uint64(ins.Constant) & math.MaxUint32) +} + +// RewriteMapOffset changes the offset of a direct load from a map. +// +// Returns an error if the instruction is not a direct load. +func (ins *Instruction) RewriteMapOffset(offset uint32) error { + if !ins.OpCode.isDWordLoad() { + return fmt.Errorf("%s is not a 64 bit load", ins.OpCode) + } + + if ins.Src != PseudoMapValue { + return errors.New("not a direct load from a map") + } + + fd := uint64(ins.Constant) & math.MaxUint32 + ins.Constant = int64(uint64(offset)<<32 | fd) + return nil +} + +func (ins *Instruction) mapOffset() uint32 { + return uint32(uint64(ins.Constant) >> 32) +} + +// isLoadFromMap returns true if the instruction loads from a map. +// +// This covers both loading the map pointer and direct map value loads. +func (ins *Instruction) isLoadFromMap() bool { + return ins.OpCode == LoadImmOp(DWord) && (ins.Src == PseudoMapFD || ins.Src == PseudoMapValue) +} + +// IsFunctionCall returns true if the instruction calls another BPF function. +// +// This is not the same thing as a BPF helper call. +func (ins *Instruction) IsFunctionCall() bool { + return ins.OpCode.JumpOp() == Call && ins.Src == PseudoCall +} + +// Format implements fmt.Formatter. +func (ins Instruction) Format(f fmt.State, c rune) { + if c != 'v' { + fmt.Fprintf(f, "{UNRECOGNIZED: %c}", c) + return + } + + op := ins.OpCode + + if op == InvalidOpCode { + fmt.Fprint(f, "INVALID") + return + } + + // Omit trailing space for Exit + if op.JumpOp() == Exit { + fmt.Fprint(f, op) + return + } + + if ins.isLoadFromMap() { + fd := int32(ins.mapPtr()) + switch ins.Src { + case PseudoMapFD: + fmt.Fprintf(f, "LoadMapPtr dst: %s fd: %d", ins.Dst, fd) + + case PseudoMapValue: + fmt.Fprintf(f, "LoadMapValue dst: %s, fd: %d off: %d", ins.Dst, fd, ins.mapOffset()) + } + + goto ref + } + + fmt.Fprintf(f, "%v ", op) + switch cls := op.Class(); cls { + case LdClass, LdXClass, StClass, StXClass: + switch op.Mode() { + case ImmMode: + fmt.Fprintf(f, "dst: %s imm: %d", ins.Dst, ins.Constant) + case AbsMode: + fmt.Fprintf(f, "imm: %d", ins.Constant) + case IndMode: + fmt.Fprintf(f, "dst: %s src: %s imm: %d", ins.Dst, ins.Src, ins.Constant) + case MemMode: + fmt.Fprintf(f, "dst: %s src: %s off: %d imm: %d", ins.Dst, ins.Src, ins.Offset, ins.Constant) + case XAddMode: + fmt.Fprintf(f, "dst: %s src: %s", ins.Dst, ins.Src) + } + + case ALU64Class, ALUClass: + fmt.Fprintf(f, "dst: %s ", ins.Dst) + if op.ALUOp() == Swap || op.Source() == ImmSource { + fmt.Fprintf(f, "imm: %d", ins.Constant) + } else { + fmt.Fprintf(f, "src: %s", ins.Src) + } + + case JumpClass: + switch jop := op.JumpOp(); jop { + case Call: + if ins.Src == PseudoCall { + // bpf-to-bpf call + fmt.Fprint(f, ins.Constant) + } else { + fmt.Fprint(f, BuiltinFunc(ins.Constant)) + } + + default: + fmt.Fprintf(f, "dst: %s off: %d ", ins.Dst, ins.Offset) + if op.Source() == ImmSource { + fmt.Fprintf(f, "imm: %d", ins.Constant) + } else { + fmt.Fprintf(f, "src: %s", ins.Src) + } + } + } + +ref: + if ins.Reference != "" { + fmt.Fprintf(f, " <%s>", ins.Reference) + } +} + +// Instructions is an eBPF program. +type Instructions []Instruction + +func (insns Instructions) String() string { + return fmt.Sprint(insns) +} + +// RewriteMapPtr rewrites all loads of a specific map pointer to a new fd. +// +// Returns an error if the symbol isn't used, see IsUnreferencedSymbol. +func (insns Instructions) RewriteMapPtr(symbol string, fd int) error { + if symbol == "" { + return errors.New("empty symbol") + } + + found := false + for i := range insns { + ins := &insns[i] + if ins.Reference != symbol { + continue + } + + if err := ins.RewriteMapPtr(fd); err != nil { + return err + } + + found = true + } + + if !found { + return &unreferencedSymbolError{symbol} + } + + return nil +} + +// SymbolOffsets returns the set of symbols and their offset in +// the instructions. +func (insns Instructions) SymbolOffsets() (map[string]int, error) { + offsets := make(map[string]int) + + for i, ins := range insns { + if ins.Symbol == "" { + continue + } + + if _, ok := offsets[ins.Symbol]; ok { + return nil, fmt.Errorf("duplicate symbol %s", ins.Symbol) + } + + offsets[ins.Symbol] = i + } + + return offsets, nil +} + +// ReferenceOffsets returns the set of references and their offset in +// the instructions. +func (insns Instructions) ReferenceOffsets() map[string][]int { + offsets := make(map[string][]int) + + for i, ins := range insns { + if ins.Reference == "" { + continue + } + + offsets[ins.Reference] = append(offsets[ins.Reference], i) + } + + return offsets +} + +// Format implements fmt.Formatter. +// +// You can control indentation of symbols by +// specifying a width. Setting a precision controls the indentation of +// instructions. +// The default character is a tab, which can be overriden by specifying +// the ' ' space flag. +func (insns Instructions) Format(f fmt.State, c rune) { + if c != 's' && c != 'v' { + fmt.Fprintf(f, "{UNKNOWN FORMAT '%c'}", c) + return + } + + // Precision is better in this case, because it allows + // specifying 0 padding easily. + padding, ok := f.Precision() + if !ok { + padding = 1 + } + + indent := strings.Repeat("\t", padding) + if f.Flag(' ') { + indent = strings.Repeat(" ", padding) + } + + symPadding, ok := f.Width() + if !ok { + symPadding = padding - 1 + } + if symPadding < 0 { + symPadding = 0 + } + + symIndent := strings.Repeat("\t", symPadding) + if f.Flag(' ') { + symIndent = strings.Repeat(" ", symPadding) + } + + // Guess how many digits we need at most, by assuming that all instructions + // are double wide. + highestOffset := len(insns) * 2 + offsetWidth := int(math.Ceil(math.Log10(float64(highestOffset)))) + + iter := insns.Iterate() + for iter.Next() { + if iter.Ins.Symbol != "" { + fmt.Fprintf(f, "%s%s:\n", symIndent, iter.Ins.Symbol) + } + fmt.Fprintf(f, "%s%*d: %v\n", indent, offsetWidth, iter.Offset, iter.Ins) + } + + return +} + +// Marshal encodes a BPF program into the kernel format. +func (insns Instructions) Marshal(w io.Writer, bo binary.ByteOrder) error { + for i, ins := range insns { + _, err := ins.Marshal(w, bo) + if err != nil { + return fmt.Errorf("instruction %d: %w", i, err) + } + } + return nil +} + +// Tag calculates the kernel tag for a series of instructions. +// +// It mirrors bpf_prog_calc_tag in the kernel and so can be compared +// to ProgramInfo.Tag to figure out whether a loaded program matches +// certain instructions. +func (insns Instructions) Tag(bo binary.ByteOrder) (string, error) { + h := sha1.New() + for i, ins := range insns { + if ins.isLoadFromMap() { + ins.Constant = 0 + } + _, err := ins.Marshal(h, bo) + if err != nil { + return "", fmt.Errorf("instruction %d: %w", i, err) + } + } + return hex.EncodeToString(h.Sum(nil)[:unix.BPF_TAG_SIZE]), nil +} + +// Iterate allows iterating a BPF program while keeping track of +// various offsets. +// +// Modifying the instruction slice will lead to undefined behaviour. +func (insns Instructions) Iterate() *InstructionIterator { + return &InstructionIterator{insns: insns} +} + +// InstructionIterator iterates over a BPF program. +type InstructionIterator struct { + insns Instructions + // The instruction in question. + Ins *Instruction + // The index of the instruction in the original instruction slice. + Index int + // The offset of the instruction in raw BPF instructions. This accounts + // for double-wide instructions. + Offset RawInstructionOffset +} + +// Next returns true as long as there are any instructions remaining. +func (iter *InstructionIterator) Next() bool { + if len(iter.insns) == 0 { + return false + } + + if iter.Ins != nil { + iter.Index++ + iter.Offset += RawInstructionOffset(iter.Ins.OpCode.rawInstructions()) + } + iter.Ins = &iter.insns[0] + iter.insns = iter.insns[1:] + return true +} + +type bpfInstruction struct { + OpCode OpCode + Registers bpfRegisters + Offset int16 + Constant int32 +} + +type bpfRegisters uint8 + +func newBPFRegisters(dst, src Register, bo binary.ByteOrder) (bpfRegisters, error) { + switch bo { + case binary.LittleEndian: + return bpfRegisters((src << 4) | (dst & 0xF)), nil + case binary.BigEndian: + return bpfRegisters((dst << 4) | (src & 0xF)), nil + default: + return 0, fmt.Errorf("unrecognized ByteOrder %T", bo) + } +} + +func (r bpfRegisters) Unmarshal(bo binary.ByteOrder) (dst, src Register, err error) { + switch bo { + case binary.LittleEndian: + return Register(r & 0xF), Register(r >> 4), nil + case binary.BigEndian: + return Register(r >> 4), Register(r & 0xf), nil + default: + return 0, 0, fmt.Errorf("unrecognized ByteOrder %T", bo) + } +} + +type unreferencedSymbolError struct { + symbol string +} + +func (use *unreferencedSymbolError) Error() string { + return fmt.Sprintf("unreferenced symbol %s", use.symbol) +} + +// IsUnreferencedSymbol returns true if err was caused by +// an unreferenced symbol. +func IsUnreferencedSymbol(err error) bool { + _, ok := err.(*unreferencedSymbolError) + return ok +} |