summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/exp/slices
diff options
context:
space:
mode:
authorLibravatar kim <89579420+NyaaaWhatsUpDoc@users.noreply.github.com>2024-01-17 14:54:30 +0000
committerLibravatar GitHub <noreply@github.com>2024-01-17 14:54:30 +0000
commit906639ad7eb92e9d631599f78979908930e59c84 (patch)
treedfef6d0a5ba47c49c214e4537a89dee6ad528df8 /vendor/golang.org/x/exp/slices
parent[bugfix] Better Postgres search case insensitivity (#2526) (diff)
downloadgotosocial-906639ad7eb92e9d631599f78979908930e59c84.tar.xz
[chore] update viper version (#2539)
* update viper version * removes our last uses of the slice package * fix tests
Diffstat (limited to 'vendor/golang.org/x/exp/slices')
-rw-r--r--vendor/golang.org/x/exp/slices/cmp.go44
-rw-r--r--vendor/golang.org/x/exp/slices/slices.go353
-rw-r--r--vendor/golang.org/x/exp/slices/sort.go115
-rw-r--r--vendor/golang.org/x/exp/slices/zsortanyfunc.go (renamed from vendor/golang.org/x/exp/slices/zsortfunc.go)154
-rw-r--r--vendor/golang.org/x/exp/slices/zsortordered.go34
5 files changed, 526 insertions, 174 deletions
diff --git a/vendor/golang.org/x/exp/slices/cmp.go b/vendor/golang.org/x/exp/slices/cmp.go
new file mode 100644
index 000000000..fbf1934a0
--- /dev/null
+++ b/vendor/golang.org/x/exp/slices/cmp.go
@@ -0,0 +1,44 @@
+// Copyright 2023 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package slices
+
+import "golang.org/x/exp/constraints"
+
+// min is a version of the predeclared function from the Go 1.21 release.
+func min[T constraints.Ordered](a, b T) T {
+ if a < b || isNaN(a) {
+ return a
+ }
+ return b
+}
+
+// max is a version of the predeclared function from the Go 1.21 release.
+func max[T constraints.Ordered](a, b T) T {
+ if a > b || isNaN(a) {
+ return a
+ }
+ return b
+}
+
+// cmpLess is a copy of cmp.Less from the Go 1.21 release.
+func cmpLess[T constraints.Ordered](x, y T) bool {
+ return (isNaN(x) && !isNaN(y)) || x < y
+}
+
+// cmpCompare is a copy of cmp.Compare from the Go 1.21 release.
+func cmpCompare[T constraints.Ordered](x, y T) int {
+ xNaN := isNaN(x)
+ yNaN := isNaN(y)
+ if xNaN && yNaN {
+ return 0
+ }
+ if xNaN || x < y {
+ return -1
+ }
+ if yNaN || x > y {
+ return +1
+ }
+ return 0
+}
diff --git a/vendor/golang.org/x/exp/slices/slices.go b/vendor/golang.org/x/exp/slices/slices.go
index 2540bd682..5e8158bba 100644
--- a/vendor/golang.org/x/exp/slices/slices.go
+++ b/vendor/golang.org/x/exp/slices/slices.go
@@ -3,23 +3,20 @@
// license that can be found in the LICENSE file.
// Package slices defines various functions useful with slices of any type.
-// Unless otherwise specified, these functions all apply to the elements
-// of a slice at index 0 <= i < len(s).
-//
-// Note that the less function in IsSortedFunc, SortFunc, SortStableFunc requires a
-// strict weak ordering (https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings),
-// or the sorting may fail to sort correctly. A common case is when sorting slices of
-// floating-point numbers containing NaN values.
package slices
-import "golang.org/x/exp/constraints"
+import (
+ "unsafe"
+
+ "golang.org/x/exp/constraints"
+)
// Equal reports whether two slices are equal: the same length and all
// elements equal. If the lengths are different, Equal returns false.
// Otherwise, the elements are compared in increasing index order, and the
// comparison stops at the first unequal pair.
// Floating point NaNs are not considered equal.
-func Equal[E comparable](s1, s2 []E) bool {
+func Equal[S ~[]E, E comparable](s1, s2 S) bool {
if len(s1) != len(s2) {
return false
}
@@ -31,12 +28,12 @@ func Equal[E comparable](s1, s2 []E) bool {
return true
}
-// EqualFunc reports whether two slices are equal using a comparison
+// EqualFunc reports whether two slices are equal using an equality
// function on each pair of elements. If the lengths are different,
// EqualFunc returns false. Otherwise, the elements are compared in
// increasing index order, and the comparison stops at the first index
// for which eq returns false.
-func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
+func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool {
if len(s1) != len(s2) {
return false
}
@@ -49,45 +46,37 @@ func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
return true
}
-// Compare compares the elements of s1 and s2.
-// The elements are compared sequentially, starting at index 0,
+// Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair
+// of elements. The elements are compared sequentially, starting at index 0,
// until one element is not equal to the other.
// The result of comparing the first non-matching elements is returned.
// If both slices are equal until one of them ends, the shorter slice is
// considered less than the longer one.
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
-// Comparisons involving floating point NaNs are ignored.
-func Compare[E constraints.Ordered](s1, s2 []E) int {
- s2len := len(s2)
+func Compare[S ~[]E, E constraints.Ordered](s1, s2 S) int {
for i, v1 := range s1 {
- if i >= s2len {
+ if i >= len(s2) {
return +1
}
v2 := s2[i]
- switch {
- case v1 < v2:
- return -1
- case v1 > v2:
- return +1
+ if c := cmpCompare(v1, v2); c != 0 {
+ return c
}
}
- if len(s1) < s2len {
+ if len(s1) < len(s2) {
return -1
}
return 0
}
-// CompareFunc is like Compare but uses a comparison function
-// on each pair of elements. The elements are compared in increasing
-// index order, and the comparisons stop after the first time cmp
-// returns non-zero.
+// CompareFunc is like [Compare] but uses a custom comparison function on each
+// pair of elements.
// The result is the first non-zero result of cmp; if cmp always
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
// and +1 if len(s1) > len(s2).
-func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
- s2len := len(s2)
+func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int {
for i, v1 := range s1 {
- if i >= s2len {
+ if i >= len(s2) {
return +1
}
v2 := s2[i]
@@ -95,7 +84,7 @@ func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
return c
}
}
- if len(s1) < s2len {
+ if len(s1) < len(s2) {
return -1
}
return 0
@@ -103,7 +92,7 @@ func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
// Index returns the index of the first occurrence of v in s,
// or -1 if not present.
-func Index[E comparable](s []E, v E) int {
+func Index[S ~[]E, E comparable](s S, v E) int {
for i := range s {
if v == s[i] {
return i
@@ -114,7 +103,7 @@ func Index[E comparable](s []E, v E) int {
// IndexFunc returns the first index i satisfying f(s[i]),
// or -1 if none do.
-func IndexFunc[E any](s []E, f func(E) bool) int {
+func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int {
for i := range s {
if f(s[i]) {
return i
@@ -124,39 +113,104 @@ func IndexFunc[E any](s []E, f func(E) bool) int {
}
// Contains reports whether v is present in s.
-func Contains[E comparable](s []E, v E) bool {
+func Contains[S ~[]E, E comparable](s S, v E) bool {
return Index(s, v) >= 0
}
// ContainsFunc reports whether at least one
// element e of s satisfies f(e).
-func ContainsFunc[E any](s []E, f func(E) bool) bool {
+func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool {
return IndexFunc(s, f) >= 0
}
// Insert inserts the values v... into s at index i,
// returning the modified slice.
-// In the returned slice r, r[i] == v[0].
+// The elements at s[i:] are shifted up to make room.
+// In the returned slice r, r[i] == v[0],
+// and r[i+len(v)] == value originally at r[i].
// Insert panics if i is out of range.
// This function is O(len(s) + len(v)).
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
- tot := len(s) + len(v)
- if tot <= cap(s) {
- s2 := s[:tot]
- copy(s2[i+len(v):], s[i:])
+ m := len(v)
+ if m == 0 {
+ return s
+ }
+ n := len(s)
+ if i == n {
+ return append(s, v...)
+ }
+ if n+m > cap(s) {
+ // Use append rather than make so that we bump the size of
+ // the slice up to the next storage class.
+ // This is what Grow does but we don't call Grow because
+ // that might copy the values twice.
+ s2 := append(s[:i], make(S, n+m-i)...)
copy(s2[i:], v)
+ copy(s2[i+m:], s[i:])
return s2
}
- s2 := make(S, tot)
- copy(s2, s[:i])
- copy(s2[i:], v)
- copy(s2[i+len(v):], s[i:])
- return s2
+ s = s[:n+m]
+
+ // before:
+ // s: aaaaaaaabbbbccccccccdddd
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ // after:
+ // s: aaaaaaaavvvvbbbbcccccccc
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ //
+ // a are the values that don't move in s.
+ // v are the values copied in from v.
+ // b and c are the values from s that are shifted up in index.
+ // d are the values that get overwritten, never to be seen again.
+
+ if !overlaps(v, s[i+m:]) {
+ // Easy case - v does not overlap either the c or d regions.
+ // (It might be in some of a or b, or elsewhere entirely.)
+ // The data we copy up doesn't write to v at all, so just do it.
+
+ copy(s[i+m:], s[i:])
+
+ // Now we have
+ // s: aaaaaaaabbbbbbbbcccccccc
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ // Note the b values are duplicated.
+
+ copy(s[i:], v)
+
+ // Now we have
+ // s: aaaaaaaavvvvbbbbcccccccc
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ // That's the result we want.
+ return s
+ }
+
+ // The hard case - v overlaps c or d. We can't just shift up
+ // the data because we'd move or clobber the values we're trying
+ // to insert.
+ // So instead, write v on top of d, then rotate.
+ copy(s[n:], v)
+
+ // Now we have
+ // s: aaaaaaaabbbbccccccccvvvv
+ // ^ ^ ^ ^
+ // i i+m n n+m
+
+ rotateRight(s[i:], m)
+
+ // Now we have
+ // s: aaaaaaaavvvvbbbbcccccccc
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ // That's the result we want.
+ return s
}
// Delete removes the elements s[i:j] from s, returning the modified slice.
// Delete panics if s[i:j] is not a valid slice of s.
-// Delete modifies the contents of the slice s; it does not create a new slice.
// Delete is O(len(s)-j), so if many items must be deleted, it is better to
// make a single call deleting them all together than to delete one at a time.
// Delete might not modify the elements s[len(s)-(j-i):len(s)]. If those
@@ -168,22 +222,113 @@ func Delete[S ~[]E, E any](s S, i, j int) S {
return append(s[:i], s[j:]...)
}
+// DeleteFunc removes any elements from s for which del returns true,
+// returning the modified slice.
+// When DeleteFunc removes m elements, it might not modify the elements
+// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
+// zeroing those elements so that objects they reference can be garbage
+// collected.
+func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S {
+ i := IndexFunc(s, del)
+ if i == -1 {
+ return s
+ }
+ // Don't start copying elements until we find one to delete.
+ for j := i + 1; j < len(s); j++ {
+ if v := s[j]; !del(v) {
+ s[i] = v
+ i++
+ }
+ }
+ return s[:i]
+}
+
// Replace replaces the elements s[i:j] by the given v, and returns the
// modified slice. Replace panics if s[i:j] is not a valid slice of s.
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
_ = s[i:j] // verify that i:j is a valid subslice
+
+ if i == j {
+ return Insert(s, i, v...)
+ }
+ if j == len(s) {
+ return append(s[:i], v...)
+ }
+
tot := len(s[:i]) + len(v) + len(s[j:])
- if tot <= cap(s) {
- s2 := s[:tot]
- copy(s2[i+len(v):], s[j:])
+ if tot > cap(s) {
+ // Too big to fit, allocate and copy over.
+ s2 := append(s[:i], make(S, tot-i)...) // See Insert
copy(s2[i:], v)
+ copy(s2[i+len(v):], s[j:])
return s2
}
- s2 := make(S, tot)
- copy(s2, s[:i])
- copy(s2[i:], v)
- copy(s2[i+len(v):], s[j:])
- return s2
+
+ r := s[:tot]
+
+ if i+len(v) <= j {
+ // Easy, as v fits in the deleted portion.
+ copy(r[i:], v)
+ if i+len(v) != j {
+ copy(r[i+len(v):], s[j:])
+ }
+ return r
+ }
+
+ // We are expanding (v is bigger than j-i).
+ // The situation is something like this:
+ // (example has i=4,j=8,len(s)=16,len(v)=6)
+ // s: aaaaxxxxbbbbbbbbyy
+ // ^ ^ ^ ^
+ // i j len(s) tot
+ // a: prefix of s
+ // x: deleted range
+ // b: more of s
+ // y: area to expand into
+
+ if !overlaps(r[i+len(v):], v) {
+ // Easy, as v is not clobbered by the first copy.
+ copy(r[i+len(v):], s[j:])
+ copy(r[i:], v)
+ return r
+ }
+
+ // This is a situation where we don't have a single place to which
+ // we can copy v. Parts of it need to go to two different places.
+ // We want to copy the prefix of v into y and the suffix into x, then
+ // rotate |y| spots to the right.
+ //
+ // v[2:] v[:2]
+ // | |
+ // s: aaaavvvvbbbbbbbbvv
+ // ^ ^ ^ ^
+ // i j len(s) tot
+ //
+ // If either of those two destinations don't alias v, then we're good.
+ y := len(v) - (j - i) // length of y portion
+
+ if !overlaps(r[i:j], v) {
+ copy(r[i:j], v[y:])
+ copy(r[len(s):], v[:y])
+ rotateRight(r[i:], y)
+ return r
+ }
+ if !overlaps(r[len(s):], v) {
+ copy(r[len(s):], v[:y])
+ copy(r[i:j], v[y:])
+ rotateRight(r[i:], y)
+ return r
+ }
+
+ // Now we know that v overlaps both x and y.
+ // That means that the entirety of b is *inside* v.
+ // So we don't need to preserve b at all; instead we
+ // can copy v first, then copy the b part of v out of
+ // v to the right destination.
+ k := startIdx(v, s[j:])
+ copy(r[i:], v)
+ copy(r[i+len(v):], r[i+k:])
+ return r
}
// Clone returns a copy of the slice.
@@ -198,7 +343,8 @@ func Clone[S ~[]E, E any](s S) S {
// Compact replaces consecutive runs of equal elements with a single copy.
// This is like the uniq command found on Unix.
-// Compact modifies the contents of the slice s; it does not create a new slice.
+// Compact modifies the contents of the slice s and returns the modified slice,
+// which may have a smaller length.
// When Compact discards m elements in total, it might not modify the elements
// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
// zeroing those elements so that objects they reference can be garbage collected.
@@ -218,7 +364,8 @@ func Compact[S ~[]E, E comparable](s S) S {
return s[:i]
}
-// CompactFunc is like Compact but uses a comparison function.
+// CompactFunc is like [Compact] but uses an equality function to compare elements.
+// For runs of elements that compare equal, CompactFunc keeps the first one.
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
if len(s) < 2 {
return s
@@ -256,3 +403,97 @@ func Grow[S ~[]E, E any](s S, n int) S {
func Clip[S ~[]E, E any](s S) S {
return s[:len(s):len(s)]
}
+
+// Rotation algorithm explanation:
+//
+// rotate left by 2
+// start with
+// 0123456789
+// split up like this
+// 01 234567 89
+// swap first 2 and last 2
+// 89 234567 01
+// join first parts
+// 89234567 01
+// recursively rotate first left part by 2
+// 23456789 01
+// join at the end
+// 2345678901
+//
+// rotate left by 8
+// start with
+// 0123456789
+// split up like this
+// 01 234567 89
+// swap first 2 and last 2
+// 89 234567 01
+// join last parts
+// 89 23456701
+// recursively rotate second part left by 6
+// 89 01234567
+// join at the end
+// 8901234567
+
+// TODO: There are other rotate algorithms.
+// This algorithm has the desirable property that it moves each element exactly twice.
+// The triple-reverse algorithm is simpler and more cache friendly, but takes more writes.
+// The follow-cycles algorithm can be 1-write but it is not very cache friendly.
+
+// rotateLeft rotates b left by n spaces.
+// s_final[i] = s_orig[i+r], wrapping around.
+func rotateLeft[E any](s []E, r int) {
+ for r != 0 && r != len(s) {
+ if r*2 <= len(s) {
+ swap(s[:r], s[len(s)-r:])
+ s = s[:len(s)-r]
+ } else {
+ swap(s[:len(s)-r], s[r:])
+ s, r = s[len(s)-r:], r*2-len(s)
+ }
+ }
+}
+func rotateRight[E any](s []E, r int) {
+ rotateLeft(s, len(s)-r)
+}
+
+// swap swaps the contents of x and y. x and y must be equal length and disjoint.
+func swap[E any](x, y []E) {
+ for i := 0; i < len(x); i++ {
+ x[i], y[i] = y[i], x[i]
+ }
+}
+
+// overlaps reports whether the memory ranges a[0:len(a)] and b[0:len(b)] overlap.
+func overlaps[E any](a, b []E) bool {
+ if len(a) == 0 || len(b) == 0 {
+ return false
+ }
+ elemSize := unsafe.Sizeof(a[0])
+ if elemSize == 0 {
+ return false
+ }
+ // TODO: use a runtime/unsafe facility once one becomes available. See issue 12445.
+ // Also see crypto/internal/alias/alias.go:AnyOverlap
+ return uintptr(unsafe.Pointer(&a[0])) <= uintptr(unsafe.Pointer(&b[len(b)-1]))+(elemSize-1) &&
+ uintptr(unsafe.Pointer(&b[0])) <= uintptr(unsafe.Pointer(&a[len(a)-1]))+(elemSize-1)
+}
+
+// startIdx returns the index in haystack where the needle starts.
+// prerequisite: the needle must be aliased entirely inside the haystack.
+func startIdx[E any](haystack, needle []E) int {
+ p := &needle[0]
+ for i := range haystack {
+ if p == &haystack[i] {
+ return i
+ }
+ }
+ // TODO: what if the overlap is by a non-integral number of Es?
+ panic("needle not found")
+}
+
+// Reverse reverses the elements of the slice in place.
+func Reverse[S ~[]E, E any](s S) {
+ for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
+ s[i], s[j] = s[j], s[i]
+ }
+}
diff --git a/vendor/golang.org/x/exp/slices/sort.go b/vendor/golang.org/x/exp/slices/sort.go
index 231b6448a..b67897f76 100644
--- a/vendor/golang.org/x/exp/slices/sort.go
+++ b/vendor/golang.org/x/exp/slices/sort.go
@@ -2,6 +2,8 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
+//go:generate go run $GOROOT/src/sort/gen_sort_variants.go -exp
+
package slices
import (
@@ -11,57 +13,116 @@ import (
)
// Sort sorts a slice of any ordered type in ascending order.
-// Sort may fail to sort correctly when sorting slices of floating-point
-// numbers containing Not-a-number (NaN) values.
-// Use slices.SortFunc(x, func(a, b float64) bool {return a < b || (math.IsNaN(a) && !math.IsNaN(b))})
-// instead if the input may contain NaNs.
-func Sort[E constraints.Ordered](x []E) {
+// When sorting floating-point numbers, NaNs are ordered before other values.
+func Sort[S ~[]E, E constraints.Ordered](x S) {
n := len(x)
pdqsortOrdered(x, 0, n, bits.Len(uint(n)))
}
-// SortFunc sorts the slice x in ascending order as determined by the less function.
-// This sort is not guaranteed to be stable.
+// SortFunc sorts the slice x in ascending order as determined by the cmp
+// function. This sort is not guaranteed to be stable.
+// cmp(a, b) should return a negative number when a < b, a positive number when
+// a > b and zero when a == b.
//
-// SortFunc requires that less is a strict weak ordering.
+// SortFunc requires that cmp is a strict weak ordering.
// See https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings.
-func SortFunc[E any](x []E, less func(a, b E) bool) {
+func SortFunc[S ~[]E, E any](x S, cmp func(a, b E) int) {
n := len(x)
- pdqsortLessFunc(x, 0, n, bits.Len(uint(n)), less)
+ pdqsortCmpFunc(x, 0, n, bits.Len(uint(n)), cmp)
}
// SortStableFunc sorts the slice x while keeping the original order of equal
-// elements, using less to compare elements.
-func SortStableFunc[E any](x []E, less func(a, b E) bool) {
- stableLessFunc(x, len(x), less)
+// elements, using cmp to compare elements in the same way as [SortFunc].
+func SortStableFunc[S ~[]E, E any](x S, cmp func(a, b E) int) {
+ stableCmpFunc(x, len(x), cmp)
}
// IsSorted reports whether x is sorted in ascending order.
-func IsSorted[E constraints.Ordered](x []E) bool {
+func IsSorted[S ~[]E, E constraints.Ordered](x S) bool {
for i := len(x) - 1; i > 0; i-- {
- if x[i] < x[i-1] {
+ if cmpLess(x[i], x[i-1]) {
return false
}
}
return true
}
-// IsSortedFunc reports whether x is sorted in ascending order, with less as the
-// comparison function.
-func IsSortedFunc[E any](x []E, less func(a, b E) bool) bool {
+// IsSortedFunc reports whether x is sorted in ascending order, with cmp as the
+// comparison function as defined by [SortFunc].
+func IsSortedFunc[S ~[]E, E any](x S, cmp func(a, b E) int) bool {
for i := len(x) - 1; i > 0; i-- {
- if less(x[i], x[i-1]) {
+ if cmp(x[i], x[i-1]) < 0 {
return false
}
}
return true
}
+// Min returns the minimal value in x. It panics if x is empty.
+// For floating-point numbers, Min propagates NaNs (any NaN value in x
+// forces the output to be NaN).
+func Min[S ~[]E, E constraints.Ordered](x S) E {
+ if len(x) < 1 {
+ panic("slices.Min: empty list")
+ }
+ m := x[0]
+ for i := 1; i < len(x); i++ {
+ m = min(m, x[i])
+ }
+ return m
+}
+
+// MinFunc returns the minimal value in x, using cmp to compare elements.
+// It panics if x is empty. If there is more than one minimal element
+// according to the cmp function, MinFunc returns the first one.
+func MinFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E {
+ if len(x) < 1 {
+ panic("slices.MinFunc: empty list")
+ }
+ m := x[0]
+ for i := 1; i < len(x); i++ {
+ if cmp(x[i], m) < 0 {
+ m = x[i]
+ }
+ }
+ return m
+}
+
+// Max returns the maximal value in x. It panics if x is empty.
+// For floating-point E, Max propagates NaNs (any NaN value in x
+// forces the output to be NaN).
+func Max[S ~[]E, E constraints.Ordered](x S) E {
+ if len(x) < 1 {
+ panic("slices.Max: empty list")
+ }
+ m := x[0]
+ for i := 1; i < len(x); i++ {
+ m = max(m, x[i])
+ }
+ return m
+}
+
+// MaxFunc returns the maximal value in x, using cmp to compare elements.
+// It panics if x is empty. If there is more than one maximal element
+// according to the cmp function, MaxFunc returns the first one.
+func MaxFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E {
+ if len(x) < 1 {
+ panic("slices.MaxFunc: empty list")
+ }
+ m := x[0]
+ for i := 1; i < len(x); i++ {
+ if cmp(x[i], m) > 0 {
+ m = x[i]
+ }
+ }
+ return m
+}
+
// BinarySearch searches for target in a sorted slice and returns the position
// where target is found, or the position where target would appear in the
// sort order; it also returns a bool saying whether the target is really found
// in the slice. The slice must be sorted in increasing order.
-func BinarySearch[E constraints.Ordered](x []E, target E) (int, bool) {
+func BinarySearch[S ~[]E, E constraints.Ordered](x S, target E) (int, bool) {
// Inlining is faster than calling BinarySearchFunc with a lambda.
n := len(x)
// Define x[-1] < target and x[n] >= target.
@@ -70,24 +131,24 @@ func BinarySearch[E constraints.Ordered](x []E, target E) (int, bool) {
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
// i ≤ h < j
- if x[h] < target {
+ if cmpLess(x[h], target) {
i = h + 1 // preserves x[i-1] < target
} else {
j = h // preserves x[j] >= target
}
}
// i == j, x[i-1] < target, and x[j] (= x[i]) >= target => answer is i.
- return i, i < n && x[i] == target
+ return i, i < n && (x[i] == target || (isNaN(x[i]) && isNaN(target)))
}
-// BinarySearchFunc works like BinarySearch, but uses a custom comparison
+// BinarySearchFunc works like [BinarySearch], but uses a custom comparison
// function. The slice must be sorted in increasing order, where "increasing"
// is defined by cmp. cmp should return 0 if the slice element matches
// the target, a negative number if the slice element precedes the target,
// or a positive number if the slice element follows the target.
// cmp must implement the same ordering as the slice, such that if
// cmp(a, t) < 0 and cmp(b, t) >= 0, then a must precede b in the slice.
-func BinarySearchFunc[E, T any](x []E, target T, cmp func(E, T) int) (int, bool) {
+func BinarySearchFunc[S ~[]E, E, T any](x S, target T, cmp func(E, T) int) (int, bool) {
n := len(x)
// Define cmp(x[-1], target) < 0 and cmp(x[n], target) >= 0 .
// Invariant: cmp(x[i - 1], target) < 0, cmp(x[j], target) >= 0.
@@ -126,3 +187,9 @@ func (r *xorshift) Next() uint64 {
func nextPowerOfTwo(length int) uint {
return 1 << bits.Len(uint(length))
}
+
+// isNaN reports whether x is a NaN without requiring the math package.
+// This will always return false if T is not floating-point.
+func isNaN[T constraints.Ordered](x T) bool {
+ return x != x
+}
diff --git a/vendor/golang.org/x/exp/slices/zsortfunc.go b/vendor/golang.org/x/exp/slices/zsortanyfunc.go
index 2a632476c..06f2c7a24 100644
--- a/vendor/golang.org/x/exp/slices/zsortfunc.go
+++ b/vendor/golang.org/x/exp/slices/zsortanyfunc.go
@@ -6,28 +6,28 @@
package slices
-// insertionSortLessFunc sorts data[a:b] using insertion sort.
-func insertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
+// insertionSortCmpFunc sorts data[a:b] using insertion sort.
+func insertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
for i := a + 1; i < b; i++ {
- for j := i; j > a && less(data[j], data[j-1]); j-- {
+ for j := i; j > a && (cmp(data[j], data[j-1]) < 0); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
-// siftDownLessFunc implements the heap property on data[lo:hi].
+// siftDownCmpFunc implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
-func siftDownLessFunc[E any](data []E, lo, hi, first int, less func(a, b E) bool) {
+func siftDownCmpFunc[E any](data []E, lo, hi, first int, cmp func(a, b E) int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
- if child+1 < hi && less(data[first+child], data[first+child+1]) {
+ if child+1 < hi && (cmp(data[first+child], data[first+child+1]) < 0) {
child++
}
- if !less(data[first+root], data[first+child]) {
+ if !(cmp(data[first+root], data[first+child]) < 0) {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
@@ -35,30 +35,30 @@ func siftDownLessFunc[E any](data []E, lo, hi, first int, less func(a, b E) bool
}
}
-func heapSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
+func heapSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
- siftDownLessFunc(data, i, hi, first, less)
+ siftDownCmpFunc(data, i, hi, first, cmp)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data[first], data[first+i] = data[first+i], data[first]
- siftDownLessFunc(data, lo, i, first, less)
+ siftDownCmpFunc(data, lo, i, first, cmp)
}
}
-// pdqsortLessFunc sorts data[a:b].
+// pdqsortCmpFunc sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
-func pdqsortLessFunc[E any](data []E, a, b, limit int, less func(a, b E) bool) {
+func pdqsortCmpFunc[E any](data []E, a, b, limit int, cmp func(a, b E) int) {
const maxInsertion = 12
var (
@@ -70,25 +70,25 @@ func pdqsortLessFunc[E any](data []E, a, b, limit int, less func(a, b E) bool) {
length := b - a
if length <= maxInsertion {
- insertionSortLessFunc(data, a, b, less)
+ insertionSortCmpFunc(data, a, b, cmp)
return
}
// Fall back to heapsort if too many bad choices were made.
if limit == 0 {
- heapSortLessFunc(data, a, b, less)
+ heapSortCmpFunc(data, a, b, cmp)
return
}
// If the last partitioning was imbalanced, we need to breaking patterns.
if !wasBalanced {
- breakPatternsLessFunc(data, a, b, less)
+ breakPatternsCmpFunc(data, a, b, cmp)
limit--
}
- pivot, hint := choosePivotLessFunc(data, a, b, less)
+ pivot, hint := choosePivotCmpFunc(data, a, b, cmp)
if hint == decreasingHint {
- reverseRangeLessFunc(data, a, b, less)
+ reverseRangeCmpFunc(data, a, b, cmp)
// The chosen pivot was pivot-a elements after the start of the array.
// After reversing it is pivot-a elements before the end of the array.
// The idea came from Rust's implementation.
@@ -98,48 +98,48 @@ func pdqsortLessFunc[E any](data []E, a, b, limit int, less func(a, b E) bool) {
// The slice is likely already sorted.
if wasBalanced && wasPartitioned && hint == increasingHint {
- if partialInsertionSortLessFunc(data, a, b, less) {
+ if partialInsertionSortCmpFunc(data, a, b, cmp) {
return
}
}
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
- if a > 0 && !less(data[a-1], data[pivot]) {
- mid := partitionEqualLessFunc(data, a, b, pivot, less)
+ if a > 0 && !(cmp(data[a-1], data[pivot]) < 0) {
+ mid := partitionEqualCmpFunc(data, a, b, pivot, cmp)
a = mid
continue
}
- mid, alreadyPartitioned := partitionLessFunc(data, a, b, pivot, less)
+ mid, alreadyPartitioned := partitionCmpFunc(data, a, b, pivot, cmp)
wasPartitioned = alreadyPartitioned
leftLen, rightLen := mid-a, b-mid
balanceThreshold := length / 8
if leftLen < rightLen {
wasBalanced = leftLen >= balanceThreshold
- pdqsortLessFunc(data, a, mid, limit, less)
+ pdqsortCmpFunc(data, a, mid, limit, cmp)
a = mid + 1
} else {
wasBalanced = rightLen >= balanceThreshold
- pdqsortLessFunc(data, mid+1, b, limit, less)
+ pdqsortCmpFunc(data, mid+1, b, limit, cmp)
b = mid
}
}
}
-// partitionLessFunc does one quicksort partition.
+// partitionCmpFunc does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p
-func partitionLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool) (newpivot int, alreadyPartitioned bool) {
+func partitionCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int, alreadyPartitioned bool) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
- for i <= j && less(data[i], data[a]) {
+ for i <= j && (cmp(data[i], data[a]) < 0) {
i++
}
- for i <= j && !less(data[j], data[a]) {
+ for i <= j && !(cmp(data[j], data[a]) < 0) {
j--
}
if i > j {
@@ -151,10 +151,10 @@ func partitionLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool)
j--
for {
- for i <= j && less(data[i], data[a]) {
+ for i <= j && (cmp(data[i], data[a]) < 0) {
i++
}
- for i <= j && !less(data[j], data[a]) {
+ for i <= j && !(cmp(data[j], data[a]) < 0) {
j--
}
if i > j {
@@ -168,17 +168,17 @@ func partitionLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool)
return j, false
}
-// partitionEqualLessFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
+// partitionEqualCmpFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
-func partitionEqualLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool) (newpivot int) {
+func partitionEqualCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
- for i <= j && !less(data[a], data[i]) {
+ for i <= j && !(cmp(data[a], data[i]) < 0) {
i++
}
- for i <= j && less(data[a], data[j]) {
+ for i <= j && (cmp(data[a], data[j]) < 0) {
j--
}
if i > j {
@@ -191,15 +191,15 @@ func partitionEqualLessFunc[E any](data []E, a, b, pivot int, less func(a, b E)
return i
}
-// partialInsertionSortLessFunc partially sorts a slice, returns true if the slice is sorted at the end.
-func partialInsertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) bool {
+// partialInsertionSortCmpFunc partially sorts a slice, returns true if the slice is sorted at the end.
+func partialInsertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // don't shift any elements on short arrays
)
i := a + 1
for j := 0; j < maxSteps; j++ {
- for i < b && !less(data[i], data[i-1]) {
+ for i < b && !(cmp(data[i], data[i-1]) < 0) {
i++
}
@@ -216,7 +216,7 @@ func partialInsertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) b
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
- if !less(data[j], data[j-1]) {
+ if !(cmp(data[j], data[j-1]) < 0) {
break
}
data[j], data[j-1] = data[j-1], data[j]
@@ -225,7 +225,7 @@ func partialInsertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) b
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
- if !less(data[j], data[j-1]) {
+ if !(cmp(data[j], data[j-1]) < 0) {
break
}
data[j], data[j-1] = data[j-1], data[j]
@@ -235,9 +235,9 @@ func partialInsertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) b
return false
}
-// breakPatternsLessFunc scatters some elements around in an attempt to break some patterns
+// breakPatternsCmpFunc scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
-func breakPatternsLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
+func breakPatternsCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
length := b - a
if length >= 8 {
random := xorshift(length)
@@ -253,12 +253,12 @@ func breakPatternsLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
}
}
-// choosePivotLessFunc chooses a pivot in data[a:b].
+// choosePivotCmpFunc chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
-func choosePivotLessFunc[E any](data []E, a, b int, less func(a, b E) bool) (pivot int, hint sortedHint) {
+func choosePivotCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) (pivot int, hint sortedHint) {
const (
shortestNinther = 50
maxSwaps = 4 * 3
@@ -276,12 +276,12 @@ func choosePivotLessFunc[E any](data []E, a, b int, less func(a, b E) bool) (piv
if l >= 8 {
if l >= shortestNinther {
// Tukey ninther method, the idea came from Rust's implementation.
- i = medianAdjacentLessFunc(data, i, &swaps, less)
- j = medianAdjacentLessFunc(data, j, &swaps, less)
- k = medianAdjacentLessFunc(data, k, &swaps, less)
+ i = medianAdjacentCmpFunc(data, i, &swaps, cmp)
+ j = medianAdjacentCmpFunc(data, j, &swaps, cmp)
+ k = medianAdjacentCmpFunc(data, k, &swaps, cmp)
}
// Find the median among i, j, k and stores it into j.
- j = medianLessFunc(data, i, j, k, &swaps, less)
+ j = medianCmpFunc(data, i, j, k, &swaps, cmp)
}
switch swaps {
@@ -294,29 +294,29 @@ func choosePivotLessFunc[E any](data []E, a, b int, less func(a, b E) bool) (piv
}
}
-// order2LessFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
-func order2LessFunc[E any](data []E, a, b int, swaps *int, less func(a, b E) bool) (int, int) {
- if less(data[b], data[a]) {
+// order2CmpFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
+func order2CmpFunc[E any](data []E, a, b int, swaps *int, cmp func(a, b E) int) (int, int) {
+ if cmp(data[b], data[a]) < 0 {
*swaps++
return b, a
}
return a, b
}
-// medianLessFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
-func medianLessFunc[E any](data []E, a, b, c int, swaps *int, less func(a, b E) bool) int {
- a, b = order2LessFunc(data, a, b, swaps, less)
- b, c = order2LessFunc(data, b, c, swaps, less)
- a, b = order2LessFunc(data, a, b, swaps, less)
+// medianCmpFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
+func medianCmpFunc[E any](data []E, a, b, c int, swaps *int, cmp func(a, b E) int) int {
+ a, b = order2CmpFunc(data, a, b, swaps, cmp)
+ b, c = order2CmpFunc(data, b, c, swaps, cmp)
+ a, b = order2CmpFunc(data, a, b, swaps, cmp)
return b
}
-// medianAdjacentLessFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
-func medianAdjacentLessFunc[E any](data []E, a int, swaps *int, less func(a, b E) bool) int {
- return medianLessFunc(data, a-1, a, a+1, swaps, less)
+// medianAdjacentCmpFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
+func medianAdjacentCmpFunc[E any](data []E, a int, swaps *int, cmp func(a, b E) int) int {
+ return medianCmpFunc(data, a-1, a, a+1, swaps, cmp)
}
-func reverseRangeLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
+func reverseRangeCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
i := a
j := b - 1
for i < j {
@@ -326,37 +326,37 @@ func reverseRangeLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
}
}
-func swapRangeLessFunc[E any](data []E, a, b, n int, less func(a, b E) bool) {
+func swapRangeCmpFunc[E any](data []E, a, b, n int, cmp func(a, b E) int) {
for i := 0; i < n; i++ {
data[a+i], data[b+i] = data[b+i], data[a+i]
}
}
-func stableLessFunc[E any](data []E, n int, less func(a, b E) bool) {
+func stableCmpFunc[E any](data []E, n int, cmp func(a, b E) int) {
blockSize := 20 // must be > 0
a, b := 0, blockSize
for b <= n {
- insertionSortLessFunc(data, a, b, less)
+ insertionSortCmpFunc(data, a, b, cmp)
a = b
b += blockSize
}
- insertionSortLessFunc(data, a, n, less)
+ insertionSortCmpFunc(data, a, n, cmp)
for blockSize < n {
a, b = 0, 2*blockSize
for b <= n {
- symMergeLessFunc(data, a, a+blockSize, b, less)
+ symMergeCmpFunc(data, a, a+blockSize, b, cmp)
a = b
b += 2 * blockSize
}
if m := a + blockSize; m < n {
- symMergeLessFunc(data, a, m, n, less)
+ symMergeCmpFunc(data, a, m, n, cmp)
}
blockSize *= 2
}
}
-// symMergeLessFunc merges the two sorted subsequences data[a:m] and data[m:b] using
+// symMergeCmpFunc merges the two sorted subsequences data[a:m] and data[m:b] using
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
@@ -375,7 +375,7 @@ func stableLessFunc[E any](data []E, n int, less func(a, b E) bool) {
// symMerge assumes non-degenerate arguments: a < m && m < b.
// Having the caller check this condition eliminates many leaf recursion calls,
// which improves performance.
-func symMergeLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
+func symMergeCmpFunc[E any](data []E, a, m, b int, cmp func(a, b E) int) {
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[a] into data[m:b]
// if data[a:m] only contains one element.
@@ -387,7 +387,7 @@ func symMergeLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
j := b
for i < j {
h := int(uint(i+j) >> 1)
- if less(data[h], data[a]) {
+ if cmp(data[h], data[a]) < 0 {
i = h + 1
} else {
j = h
@@ -411,7 +411,7 @@ func symMergeLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
j := m
for i < j {
h := int(uint(i+j) >> 1)
- if !less(data[m], data[h]) {
+ if !(cmp(data[m], data[h]) < 0) {
i = h + 1
} else {
j = h
@@ -438,7 +438,7 @@ func symMergeLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
for start < r {
c := int(uint(start+r) >> 1)
- if !less(data[p-c], data[c]) {
+ if !(cmp(data[p-c], data[c]) < 0) {
start = c + 1
} else {
r = c
@@ -447,33 +447,33 @@ func symMergeLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
end := n - start
if start < m && m < end {
- rotateLessFunc(data, start, m, end, less)
+ rotateCmpFunc(data, start, m, end, cmp)
}
if a < start && start < mid {
- symMergeLessFunc(data, a, start, mid, less)
+ symMergeCmpFunc(data, a, start, mid, cmp)
}
if mid < end && end < b {
- symMergeLessFunc(data, mid, end, b, less)
+ symMergeCmpFunc(data, mid, end, b, cmp)
}
}
-// rotateLessFunc rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
+// rotateCmpFunc rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
// Data of the form 'x u v y' is changed to 'x v u y'.
// rotate performs at most b-a many calls to data.Swap,
// and it assumes non-degenerate arguments: a < m && m < b.
-func rotateLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
+func rotateCmpFunc[E any](data []E, a, m, b int, cmp func(a, b E) int) {
i := m - a
j := b - m
for i != j {
if i > j {
- swapRangeLessFunc(data, m-i, m, j, less)
+ swapRangeCmpFunc(data, m-i, m, j, cmp)
i -= j
} else {
- swapRangeLessFunc(data, m-i, m+j-i, i, less)
+ swapRangeCmpFunc(data, m-i, m+j-i, i, cmp)
j -= i
}
}
// i == j
- swapRangeLessFunc(data, m-i, m, i, less)
+ swapRangeCmpFunc(data, m-i, m, i, cmp)
}
diff --git a/vendor/golang.org/x/exp/slices/zsortordered.go b/vendor/golang.org/x/exp/slices/zsortordered.go
index efaa1c8b7..99b47c398 100644
--- a/vendor/golang.org/x/exp/slices/zsortordered.go
+++ b/vendor/golang.org/x/exp/slices/zsortordered.go
@@ -11,7 +11,7 @@ import "golang.org/x/exp/constraints"
// insertionSortOrdered sorts data[a:b] using insertion sort.
func insertionSortOrdered[E constraints.Ordered](data []E, a, b int) {
for i := a + 1; i < b; i++ {
- for j := i; j > a && (data[j] < data[j-1]); j-- {
+ for j := i; j > a && cmpLess(data[j], data[j-1]); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
@@ -26,10 +26,10 @@ func siftDownOrdered[E constraints.Ordered](data []E, lo, hi, first int) {
if child >= hi {
break
}
- if child+1 < hi && (data[first+child] < data[first+child+1]) {
+ if child+1 < hi && cmpLess(data[first+child], data[first+child+1]) {
child++
}
- if !(data[first+root] < data[first+child]) {
+ if !cmpLess(data[first+root], data[first+child]) {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
@@ -107,7 +107,7 @@ func pdqsortOrdered[E constraints.Ordered](data []E, a, b, limit int) {
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
- if a > 0 && !(data[a-1] < data[pivot]) {
+ if a > 0 && !cmpLess(data[a-1], data[pivot]) {
mid := partitionEqualOrdered(data, a, b, pivot)
a = mid
continue
@@ -138,10 +138,10 @@ func partitionOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivo
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
- for i <= j && (data[i] < data[a]) {
+ for i <= j && cmpLess(data[i], data[a]) {
i++
}
- for i <= j && !(data[j] < data[a]) {
+ for i <= j && !cmpLess(data[j], data[a]) {
j--
}
if i > j {
@@ -153,10 +153,10 @@ func partitionOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivo
j--
for {
- for i <= j && (data[i] < data[a]) {
+ for i <= j && cmpLess(data[i], data[a]) {
i++
}
- for i <= j && !(data[j] < data[a]) {
+ for i <= j && !cmpLess(data[j], data[a]) {
j--
}
if i > j {
@@ -177,10 +177,10 @@ func partitionEqualOrdered[E constraints.Ordered](data []E, a, b, pivot int) (ne
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
- for i <= j && !(data[a] < data[i]) {
+ for i <= j && !cmpLess(data[a], data[i]) {
i++
}
- for i <= j && (data[a] < data[j]) {
+ for i <= j && cmpLess(data[a], data[j]) {
j--
}
if i > j {
@@ -201,7 +201,7 @@ func partialInsertionSortOrdered[E constraints.Ordered](data []E, a, b int) bool
)
i := a + 1
for j := 0; j < maxSteps; j++ {
- for i < b && !(data[i] < data[i-1]) {
+ for i < b && !cmpLess(data[i], data[i-1]) {
i++
}
@@ -218,7 +218,7 @@ func partialInsertionSortOrdered[E constraints.Ordered](data []E, a, b int) bool
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
- if !(data[j] < data[j-1]) {
+ if !cmpLess(data[j], data[j-1]) {
break
}
data[j], data[j-1] = data[j-1], data[j]
@@ -227,7 +227,7 @@ func partialInsertionSortOrdered[E constraints.Ordered](data []E, a, b int) bool
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
- if !(data[j] < data[j-1]) {
+ if !cmpLess(data[j], data[j-1]) {
break
}
data[j], data[j-1] = data[j-1], data[j]
@@ -298,7 +298,7 @@ func choosePivotOrdered[E constraints.Ordered](data []E, a, b int) (pivot int, h
// order2Ordered returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2Ordered[E constraints.Ordered](data []E, a, b int, swaps *int) (int, int) {
- if data[b] < data[a] {
+ if cmpLess(data[b], data[a]) {
*swaps++
return b, a
}
@@ -389,7 +389,7 @@ func symMergeOrdered[E constraints.Ordered](data []E, a, m, b int) {
j := b
for i < j {
h := int(uint(i+j) >> 1)
- if data[h] < data[a] {
+ if cmpLess(data[h], data[a]) {
i = h + 1
} else {
j = h
@@ -413,7 +413,7 @@ func symMergeOrdered[E constraints.Ordered](data []E, a, m, b int) {
j := m
for i < j {
h := int(uint(i+j) >> 1)
- if !(data[m] < data[h]) {
+ if !cmpLess(data[m], data[h]) {
i = h + 1
} else {
j = h
@@ -440,7 +440,7 @@ func symMergeOrdered[E constraints.Ordered](data []E, a, m, b int) {
for start < r {
c := int(uint(start+r) >> 1)
- if !(data[p-c] < data[c]) {
+ if !cmpLess(data[p-c], data[c]) {
start = c + 1
} else {
r = c