diff options
author | 2021-08-12 21:03:24 +0200 | |
---|---|---|
committer | 2021-08-12 21:03:24 +0200 | |
commit | 98263a7de64269898a2f81207e38943b5c8e8653 (patch) | |
tree | 743c90f109a6c5d27832d1dcef2388d939f0f77a /vendor/github.com/ugorji/go/codec/helper.go | |
parent | Text duplication fix (#137) (diff) | |
download | gotosocial-98263a7de64269898a2f81207e38943b5c8e8653.tar.xz |
Grand test fixup (#138)
* start fixing up tests
* fix up tests + automate with drone
* fiddle with linting
* messing about with drone.yml
* some more fiddling
* hmmm
* add cache
* add vendor directory
* verbose
* ci updates
* update some little things
* update sig
Diffstat (limited to 'vendor/github.com/ugorji/go/codec/helper.go')
-rw-r--r-- | vendor/github.com/ugorji/go/codec/helper.go | 2972 |
1 files changed, 2972 insertions, 0 deletions
diff --git a/vendor/github.com/ugorji/go/codec/helper.go b/vendor/github.com/ugorji/go/codec/helper.go new file mode 100644 index 000000000..68025c5d8 --- /dev/null +++ b/vendor/github.com/ugorji/go/codec/helper.go @@ -0,0 +1,2972 @@ +// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved. +// Use of this source code is governed by a MIT license found in the LICENSE file. + +package codec + +// Contains code shared by both encode and decode. + +// Some shared ideas around encoding/decoding +// ------------------------------------------ +// +// If an interface{} is passed, we first do a type assertion to see if it is +// a primitive type or a map/slice of primitive types, and use a fastpath to handle it. +// +// If we start with a reflect.Value, we are already in reflect.Value land and +// will try to grab the function for the underlying Type and directly call that function. +// This is more performant than calling reflect.Value.Interface(). +// +// This still helps us bypass many layers of reflection, and give best performance. +// +// Containers +// ------------ +// Containers in the stream are either associative arrays (key-value pairs) or +// regular arrays (indexed by incrementing integers). +// +// Some streams support indefinite-length containers, and use a breaking +// byte-sequence to denote that the container has come to an end. +// +// Some streams also are text-based, and use explicit separators to denote the +// end/beginning of different values. +// +// Philosophy +// ------------ +// On decode, this codec will update containers appropriately: +// - If struct, update fields from stream into fields of struct. +// If field in stream not found in struct, handle appropriately (based on option). +// If a struct field has no corresponding value in the stream, leave it AS IS. +// If nil in stream, set value to nil/zero value. +// - If map, update map from stream. +// If the stream value is NIL, set the map to nil. +// - if slice, try to update up to length of array in stream. +// if container len is less than stream array length, +// and container cannot be expanded, handled (based on option). +// This means you can decode 4-element stream array into 1-element array. +// +// ------------------------------------ +// On encode, user can specify omitEmpty. This means that the value will be omitted +// if the zero value. The problem may occur during decode, where omitted values do not affect +// the value being decoded into. This means that if decoding into a struct with an +// int field with current value=5, and the field is omitted in the stream, then after +// decoding, the value will still be 5 (not 0). +// omitEmpty only works if you guarantee that you always decode into zero-values. +// +// ------------------------------------ +// We could have truncated a map to remove keys not available in the stream, +// or set values in the struct which are not in the stream to their zero values. +// We decided against it because there is no efficient way to do it. +// We may introduce it as an option later. +// However, that will require enabling it for both runtime and code generation modes. +// +// To support truncate, we need to do 2 passes over the container: +// map +// - first collect all keys (e.g. in k1) +// - for each key in stream, mark k1 that the key should not be removed +// - after updating map, do second pass and call delete for all keys in k1 which are not marked +// struct: +// - for each field, track the *typeInfo s1 +// - iterate through all s1, and for each one not marked, set value to zero +// - this involves checking the possible anonymous fields which are nil ptrs. +// too much work. +// +// ------------------------------------------ +// Error Handling is done within the library using panic. +// +// This way, the code doesn't have to keep checking if an error has happened, +// and we don't have to keep sending the error value along with each call +// or storing it in the En|Decoder and checking it constantly along the way. +// +// We considered storing the error is En|Decoder. +// - once it has its err field set, it cannot be used again. +// - panicing will be optional, controlled by const flag. +// - code should always check error first and return early. +// +// We eventually decided against it as it makes the code clumsier to always +// check for these error conditions. +// +// ------------------------------------------ +// We use sync.Pool only for the aid of long-lived objects shared across multiple goroutines. +// Encoder, Decoder, enc|decDriver, reader|writer, etc do not fall into this bucket. +// +// Also, GC is much better now, eliminating some of the reasons to use a shared pool structure. +// Instead, the short-lived objects use free-lists that live as long as the object exists. +// +// ------------------------------------------ +// Performance is affected by the following: +// - Bounds Checking +// - Inlining +// - Pointer chasing +// This package tries hard to manage the performance impact of these. +// +// ------------------------------------------ +// To alleviate performance due to pointer-chasing: +// - Prefer non-pointer values in a struct field +// - Refer to these directly within helper classes +// e.g. json.go refers directly to d.d.decRd +// +// We made the changes to embed En/Decoder in en/decDriver, +// but we had to explicitly reference the fields as opposed to using a function +// to get the better performance that we were looking for. +// For example, we explicitly call d.d.decRd.fn() instead of d.d.r().fn(). +// +// ------------------------------------------ +// Bounds Checking +// - Allow bytesDecReader to incur "bounds check error", and +// recover that as an io.EOF. +// This allows the bounds check branch to always be taken by the branch predictor, +// giving better performance (in theory), while ensuring that the code is shorter. +// +// ------------------------------------------ +// Escape Analysis +// - Prefer to return non-pointers if the value is used right away. +// Newly allocated values returned as pointers will be heap-allocated as they escape. +// +// Prefer functions and methods that +// - take no parameters and +// - return no results and +// - do not allocate. +// These are optimized by the runtime. +// For example, in json, we have dedicated functions for ReadMapElemKey, etc +// which do not delegate to readDelim, as readDelim takes a parameter. +// The difference in runtime was as much as 5%. +// +// ------------------------------------------ +// Handling Nil +// - In dynamic (reflection) mode, decodeValue and encodeValue handle nil at the top +// - Consequently, methods used with them as a parent in the chain e.g. kXXX +// methods do not handle nil. +// - Fastpath methods also do not handle nil. +// The switch called in (en|de)code(...) handles it so the dependent calls don't have to. +// - codecgen will handle nil before calling into the library for further work also. +// +// ------------------------------------------ +// Passing reflect.Kind to functions that take a reflect.Value +// - Note that reflect.Value.Kind() is very cheap, as its fundamentally a binary AND of 2 numbers +// +// ------------------------------------------ +// Transient values during decoding +// +// With reflection, the stack is not used. Consequently, values which may be stack-allocated in +// normal use will cause a heap allocation when using reflection. +// +// There are cases where we know that a value is transient, and we just need to decode into it +// temporarily so we can right away use its value for something else. +// +// In these situations, we can elide the heap allocation by being deliberate with use of a pre-cached +// scratch memory or scratch value. +// +// We use this for situations: +// - decode into a temp value x, and then set x into an interface +// - decode into a temp value, for use as a map key, to lookup up a map value +// - decode into a temp value, for use as a map value, to set into a map +// - decode into a temp value, for sending into a channel +// +// By definition, Transient values are NEVER pointer-shaped values, +// like pointer, func, map, chan. Using transient for pointer-shaped values +// can lead to data corruption when GC tries to follow what it saw as a pointer at one point. +// +// In general, transient values are values which can be decoded as an atomic value +// using a single call to the decDriver. This naturally includes bool or numeric types. +// +// Note that some values which "contain" pointers, specifically string and slice, +// can also be transient. In the case of string, it is decoded as an atomic value. +// In the case of a slice, decoding into its elements always uses an addressable +// value in memory ie we grow the slice, and then decode directly into the memory +// address corresponding to that index in the slice. +// +// To handle these string and slice values, we have to use a scratch value +// which has the same shape of a string or slice. +// +// Consequently, the full range of types which can be transient is: +// - numbers +// - bool +// - string +// - slice +// +// and whbut we MUST use a scratch space with that element +// being defined as an unsafe.Pointer to start with. +// +// We have to be careful with maps. Because we iterate map keys and values during a range, +// we must have 2 variants of the scratch space/value for maps and keys separately. +// +// These are the TransientAddrK and TransientAddr2K methods of decPerType. + +import ( + "encoding" + "encoding/binary" + "errors" + "fmt" + "io" + "math" + "reflect" + "runtime" + "sort" + "strconv" + "strings" + "sync" + "sync/atomic" + "time" + "unicode/utf8" +) + +// if debugging is true, then +// - within Encode/Decode, do not recover from panic's +// - etc +// +// Note: Negative tests that check for errors will fail, so only use this +// when debugging, and run only one test at a time preferably. +// +// Note: RPC tests espeially fail, as they depend on getting the error from an Encode/Decode call. +const debugging = false + +const ( + // containerLenUnknown is length returned from Read(Map|Array)Len + // when a format doesn't know apiori. + // For example, json doesn't pre-determine the length of a container (sequence/map). + containerLenUnknown = -1 + + // containerLenNil is length returned from Read(Map|Array)Len + // when a 'nil' was encountered in the stream. + containerLenNil = math.MinInt32 + + // [N]byte is handled by converting to []byte first, + // and sending to the dedicated fast-path function for []byte. + // + // Code exists in case our understanding is wrong. + // keep the defensive code behind this flag, so we can remove/hide it if needed. + // For now, we enable the defensive code (ie set it to true). + handleBytesWithinKArray = true + + // Support encoding.(Binary|Text)(Unm|M)arshaler. + // This constant flag will enable or disable it. + supportMarshalInterfaces = true + + // bytesFreeListNoCache is used for debugging, when we want to skip using a cache of []byte. + bytesFreeListNoCache = false + + // size of the cacheline: defaulting to value for archs: amd64, arm64, 386 + // should use "runtime/internal/sys".CacheLineSize, but that is not exposed. + cacheLineSize = 64 + + wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize + wordSize = wordSizeBits / 8 + + // MARKER: determines whether to skip calling fastpath(En|De)codeTypeSwitch. + // Calling the fastpath switch in encode() or decode() could be redundant, + // as we still have to introspect it again within fnLoad + // to determine the function to use for values of that type. + skipFastpathTypeSwitchInDirectCall = false +) + +const cpu32Bit = ^uint(0)>>32 == 0 + +type rkind byte + +const ( + rkindPtr = rkind(reflect.Ptr) + rkindString = rkind(reflect.String) + rkindChan = rkind(reflect.Chan) +) + +type mapKeyFastKind uint8 + +const ( + mapKeyFastKind32 = iota + 1 + mapKeyFastKind32ptr + mapKeyFastKind64 + mapKeyFastKind64ptr + mapKeyFastKindStr +) + +var ( + // use a global mutex to ensure each Handle is initialized. + // We do this, so we don't have to store the basicHandle mutex + // directly in BasicHandle, so it can be shallow-copied. + handleInitMu sync.Mutex + + must mustHdl + halt panicHdl + + digitCharBitset bitset256 + numCharBitset bitset256 + whitespaceCharBitset bitset256 + asciiAlphaNumBitset bitset256 + + // numCharWithExpBitset64 bitset64 + // numCharNoExpBitset64 bitset64 + // whitespaceCharBitset64 bitset64 + // + // // hasptrBitset sets bit for all kinds which always have internal pointers + // hasptrBitset bitset32 + + // refBitset sets bit for all kinds which are direct internal references + refBitset bitset32 + + // isnilBitset sets bit for all kinds which can be compared to nil + isnilBitset bitset32 + + // numBoolBitset sets bit for all number and bool kinds + numBoolBitset bitset32 + + // numBoolStrSliceBitset sets bits for all kinds which are numbers, bool, strings and slices + numBoolStrSliceBitset bitset32 + + // scalarBitset sets bit for all kinds which are scalars/primitives and thus immutable + scalarBitset bitset32 + + mapKeyFastKindVals [32]mapKeyFastKind + + // codecgen is set to true by codecgen, so that tests, etc can use this information as needed. + codecgen bool + + oneByteArr [1]byte + zeroByteSlice = oneByteArr[:0:0] + + eofReader devNullReader +) + +var ( + errMapTypeNotMapKind = errors.New("MapType MUST be of Map Kind") + errSliceTypeNotSliceKind = errors.New("SliceType MUST be of Slice Kind") + + errExtFnWriteExtUnsupported = errors.New("BytesExt.WriteExt is not supported") + errExtFnReadExtUnsupported = errors.New("BytesExt.ReadExt is not supported") + errExtFnConvertExtUnsupported = errors.New("InterfaceExt.ConvertExt is not supported") + errExtFnUpdateExtUnsupported = errors.New("InterfaceExt.UpdateExt is not supported") + + errPanicUndefined = errors.New("panic: undefined error") + + errHandleInited = errors.New("cannot modify initialized Handle") + + errNoFormatHandle = errors.New("no handle (cannot identify format)") +) + +var pool4tiload = sync.Pool{ + New: func() interface{} { + return &typeInfoLoad{ + etypes: make([]uintptr, 0, 4), + sfis: make([]structFieldInfo, 0, 4), + sfiNames: make(map[string]uint16, 4), + } + }, +} + +func init() { + xx := func(f mapKeyFastKind, k ...reflect.Kind) { + for _, v := range k { + mapKeyFastKindVals[byte(v)&31] = f // 'v % 32' equal to 'v & 31' + } + } + + var f mapKeyFastKind + + f = mapKeyFastKind64 + if wordSizeBits == 32 { + f = mapKeyFastKind32 + } + xx(f, reflect.Int, reflect.Uint, reflect.Uintptr) + + f = mapKeyFastKind64ptr + if wordSizeBits == 32 { + f = mapKeyFastKind32ptr + } + xx(f, reflect.Ptr) + + xx(mapKeyFastKindStr, reflect.String) + xx(mapKeyFastKind32, reflect.Uint32, reflect.Int32, reflect.Float32) + xx(mapKeyFastKind64, reflect.Uint64, reflect.Int64, reflect.Float64) + + numBoolBitset. + set(byte(reflect.Bool)). + set(byte(reflect.Int)). + set(byte(reflect.Int8)). + set(byte(reflect.Int16)). + set(byte(reflect.Int32)). + set(byte(reflect.Int64)). + set(byte(reflect.Uint)). + set(byte(reflect.Uint8)). + set(byte(reflect.Uint16)). + set(byte(reflect.Uint32)). + set(byte(reflect.Uint64)). + set(byte(reflect.Uintptr)). + set(byte(reflect.Float32)). + set(byte(reflect.Float64)). + set(byte(reflect.Complex64)). + set(byte(reflect.Complex128)) + + numBoolStrSliceBitset = numBoolBitset + + numBoolStrSliceBitset. + set(byte(reflect.String)). + set(byte(reflect.Slice)) + + scalarBitset = numBoolBitset + + scalarBitset. + set(byte(reflect.String)) + + // MARKER: reflect.Array is not a scalar, as its contents can be modified. + + refBitset. + set(byte(reflect.Map)). + set(byte(reflect.Ptr)). + set(byte(reflect.Func)). + set(byte(reflect.Chan)). + set(byte(reflect.UnsafePointer)) + + isnilBitset = refBitset + + isnilBitset. + set(byte(reflect.Interface)). + set(byte(reflect.Slice)) + + // hasptrBitset = isnilBitset + // + // hasptrBitset. + // set(byte(reflect.String)) + + for i := byte(0); i <= utf8.RuneSelf; i++ { + if (i >= '0' && i <= '9') || (i >= 'a' && i <= 'z') || (i >= 'A' && i <= 'Z') { + asciiAlphaNumBitset.set(i) + } + switch i { + case ' ', '\t', '\r', '\n': + whitespaceCharBitset.set(i) + case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': + digitCharBitset.set(i) + numCharBitset.set(i) + case '.', '+', '-': + numCharBitset.set(i) + case 'e', 'E': + numCharBitset.set(i) + } + } +} + +// driverStateManager supports the runtime state of an (enc|dec)Driver. +// +// During a side(En|De)code call, we can capture the state, reset it, +// and then restore it later to continue the primary encoding/decoding. +type driverStateManager interface { + resetState() + captureState() interface{} + restoreState(state interface{}) +} + +type bdAndBdread struct { + bdRead bool + bd byte +} + +func (x bdAndBdread) captureState() interface{} { return x } +func (x *bdAndBdread) resetState() { x.bd, x.bdRead = 0, false } +func (x *bdAndBdread) reset() { x.resetState() } +func (x *bdAndBdread) restoreState(v interface{}) { *x = v.(bdAndBdread) } + +type clsErr struct { + err error // error on closing + closed bool // is it closed? +} + +type charEncoding uint8 + +const ( + _ charEncoding = iota // make 0 unset + cUTF8 + cUTF16LE + cUTF16BE + cUTF32LE + cUTF32BE + // Deprecated: not a true char encoding value + cRAW charEncoding = 255 +) + +// valueType is the stream type +type valueType uint8 + +const ( + valueTypeUnset valueType = iota + valueTypeNil + valueTypeInt + valueTypeUint + valueTypeFloat + valueTypeBool + valueTypeString + valueTypeSymbol + valueTypeBytes + valueTypeMap + valueTypeArray + valueTypeTime + valueTypeExt + + // valueTypeInvalid = 0xff +) + +var valueTypeStrings = [...]string{ + "Unset", + "Nil", + "Int", + "Uint", + "Float", + "Bool", + "String", + "Symbol", + "Bytes", + "Map", + "Array", + "Timestamp", + "Ext", +} + +func (x valueType) String() string { + if int(x) < len(valueTypeStrings) { + return valueTypeStrings[x] + } + return strconv.FormatInt(int64(x), 10) +} + +// note that containerMapStart and containerArraySend are not sent. +// This is because the ReadXXXStart and EncodeXXXStart already does these. +type containerState uint8 + +const ( + _ containerState = iota + + containerMapStart + containerMapKey + containerMapValue + containerMapEnd + containerArrayStart + containerArrayElem + containerArrayEnd +) + +// do not recurse if a containing type refers to an embedded type +// which refers back to its containing type (via a pointer). +// The second time this back-reference happens, break out, +// so as not to cause an infinite loop. +const rgetMaxRecursion = 2 + +// fauxUnion is used to keep track of the primitives decoded. +// +// Without it, we would have to decode each primitive and wrap it +// in an interface{}, causing an allocation. +// In this model, the primitives are decoded in a "pseudo-atomic" fashion, +// so we can rest assured that no other decoding happens while these +// primitives are being decoded. +// +// maps and arrays are not handled by this mechanism. +type fauxUnion struct { + // r RawExt // used for RawExt, uint, []byte. + + // primitives below + u uint64 + i int64 + f float64 + l []byte + s string + + // ---- cpu cache line boundary? + t time.Time + b bool + + // state + v valueType +} + +// typeInfoLoad is a transient object used while loading up a typeInfo. +type typeInfoLoad struct { + etypes []uintptr + sfis []structFieldInfo + sfiNames map[string]uint16 +} + +func (x *typeInfoLoad) reset() { + x.etypes = x.etypes[:0] + x.sfis = x.sfis[:0] + for k := range x.sfiNames { // optimized to zero the map + delete(x.sfiNames, k) + } +} + +// mirror json.Marshaler and json.Unmarshaler here, +// so we don't import the encoding/json package + +type jsonMarshaler interface { + MarshalJSON() ([]byte, error) +} +type jsonUnmarshaler interface { + UnmarshalJSON([]byte) error +} + +type isZeroer interface { + IsZero() bool +} + +type isCodecEmptyer interface { + IsCodecEmpty() bool +} + +type codecError struct { + err error + name string + pos int + encode bool +} + +func (e *codecError) Cause() error { + return e.err +} + +func (e *codecError) Error() string { + if e.encode { + return fmt.Sprintf("%s encode error: %v", e.name, e.err) + } + return fmt.Sprintf("%s decode error [pos %d]: %v", e.name, e.pos, e.err) +} + +func wrapCodecErr(in error, name string, numbytesread int, encode bool) (out error) { + x, ok := in.(*codecError) + if ok && x.pos == numbytesread && x.name == name && x.encode == encode { + return in + } + return &codecError{in, name, numbytesread, encode} +} + +var ( + bigen bigenHelper + + bigenstd = binary.BigEndian + + structInfoFieldName = "_struct" + + mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil)) + mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil)) + intfSliceTyp = reflect.TypeOf([]interface{}(nil)) + intfTyp = intfSliceTyp.Elem() + + reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem() + + stringTyp = reflect.TypeOf("") + timeTyp = reflect.TypeOf(time.Time{}) + rawExtTyp = reflect.TypeOf(RawExt{}) + rawTyp = reflect.TypeOf(Raw{}) + uintptrTyp = reflect.TypeOf(uintptr(0)) + uint8Typ = reflect.TypeOf(uint8(0)) + uint8SliceTyp = reflect.TypeOf([]uint8(nil)) + uintTyp = reflect.TypeOf(uint(0)) + intTyp = reflect.TypeOf(int(0)) + + mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem() + + binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem() + binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem() + + textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem() + textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem() + + jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem() + jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem() + + selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem() + missingFielderTyp = reflect.TypeOf((*MissingFielder)(nil)).Elem() + iszeroTyp = reflect.TypeOf((*isZeroer)(nil)).Elem() + isCodecEmptyerTyp = reflect.TypeOf((*isCodecEmptyer)(nil)).Elem() + isSelferViaCodecgenerTyp = reflect.TypeOf((*isSelferViaCodecgener)(nil)).Elem() + + uint8TypId = rt2id(uint8Typ) + uint8SliceTypId = rt2id(uint8SliceTyp) + rawExtTypId = rt2id(rawExtTyp) + rawTypId = rt2id(rawTyp) + intfTypId = rt2id(intfTyp) + timeTypId = rt2id(timeTyp) + stringTypId = rt2id(stringTyp) + + mapStrIntfTypId = rt2id(mapStrIntfTyp) + mapIntfIntfTypId = rt2id(mapIntfIntfTyp) + intfSliceTypId = rt2id(intfSliceTyp) + // mapBySliceTypId = rt2id(mapBySliceTyp) + + intBitsize = uint8(intTyp.Bits()) + uintBitsize = uint8(uintTyp.Bits()) + + // bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0} + bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff} + + chkOvf checkOverflow +) + +var defTypeInfos = NewTypeInfos([]string{"codec", "json"}) + +// SelfExt is a sentinel extension signifying that types +// registered with it SHOULD be encoded and decoded +// based on the native mode of the format. +// +// This allows users to define a tag for an extension, +// but signify that the types should be encoded/decoded as the native encoding. +// This way, users need not also define how to encode or decode the extension. +var SelfExt = &extFailWrapper{} + +// Selfer defines methods by which a value can encode or decode itself. +// +// Any type which implements Selfer will be able to encode or decode itself. +// Consequently, during (en|de)code, this takes precedence over +// (text|binary)(M|Unm)arshal or extension support. +// +// By definition, it is not allowed for a Selfer to directly call Encode or Decode on itself. +// If that is done, Encode/Decode will rightfully fail with a Stack Overflow style error. +// For example, the snippet below will cause such an error. +// type testSelferRecur struct{} +// func (s *testSelferRecur) CodecEncodeSelf(e *Encoder) { e.MustEncode(s) } +// func (s *testSelferRecur) CodecDecodeSelf(d *Decoder) { d.MustDecode(s) } +// +// Note: *the first set of bytes of any value MUST NOT represent nil in the format*. +// This is because, during each decode, we first check the the next set of bytes +// represent nil, and if so, we just set the value to nil. +type Selfer interface { + CodecEncodeSelf(*Encoder) + CodecDecodeSelf(*Decoder) +} + +type isSelferViaCodecgener interface { + codecSelferViaCodecgen() +} + +// MissingFielder defines the interface allowing structs to internally decode or encode +// values which do not map to struct fields. +// +// We expect that this interface is bound to a pointer type (so the mutation function works). +// +// A use-case is if a version of a type unexports a field, but you want compatibility between +// both versions during encoding and decoding. +// +// Note that the interface is completely ignored during codecgen. +type MissingFielder interface { + // CodecMissingField is called to set a missing field and value pair. + // + // It returns true if the missing field was set on the struct. + CodecMissingField(field []byte, value interface{}) bool + + // CodecMissingFields returns the set of fields which are not struct fields. + // + // Note that the returned map may be mutated by the caller. + CodecMissingFields() map[string]interface{} +} + +// MapBySlice is a tag interface that denotes the slice or array value should encode as a map +// in the stream, and can be decoded from a map in the stream. +// +// The slice or array must contain a sequence of key-value pairs. +// The length of the slice or array must be even (fully divisible by 2). +// +// This affords storing a map in a specific sequence in the stream. +// +// Example usage: +// type T1 []string // or []int or []Point or any other "slice" type +// func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map +// type T2 struct { KeyValues T1 } +// +// var kvs = []string{"one", "1", "two", "2", "three", "3"} +// var v2 = T2{ KeyValues: T1(kvs) } +// // v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} } +// +// The support of MapBySlice affords the following: +// - A slice or array type which implements MapBySlice will be encoded as a map +// - A slice can be decoded from a map in the stream +type MapBySlice interface { + MapBySlice() +} + +// basicHandleRuntimeState holds onto all BasicHandle runtime and cached config information. +// +// Storing this outside BasicHandle allows us create shallow copies of a Handle, +// which can be used e.g. when we need to modify config fields temporarily. +// Shallow copies are used within tests, so we can modify some config fields for a test +// temporarily when running tests in parallel, without running the risk that a test executing +// in parallel with other tests does not see a transient modified values not meant for it. +type basicHandleRuntimeState struct { + // these are used during runtime. + // At init time, they should have nothing in them. + rtidFns atomicRtidFnSlice + rtidFnsNoExt atomicRtidFnSlice + + // Note: basicHandleRuntimeState is not comparable, due to these slices here (extHandle, intf2impls). + // If *[]T is used instead, this becomes comparable, at the cost of extra indirection. + // Thses slices are used all the time, so keep as slices (not pointers). + + extHandle + + intf2impls + + mu sync.Mutex + + jsonHandle bool + binaryHandle bool + + // timeBuiltin is initialized from TimeNotBuiltin, and used internally. + // once initialized, it cannot be changed, as the function for encoding/decoding time.Time + // will have been cached and the TimeNotBuiltin value will not be consulted thereafter. + timeBuiltin bool + _ bool // padding +} + +// BasicHandle encapsulates the common options and extension functions. +// +// Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED. +type BasicHandle struct { + // BasicHandle is always a part of a different type. + // It doesn't have to fit into it own cache lines. + + // TypeInfos is used to get the type info for any type. + // + // If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json + TypeInfos *TypeInfos + + *basicHandleRuntimeState + + // ---- cache line + + DecodeOptions + + // ---- cache line + + EncodeOptions + + RPCOptions + + // TimeNotBuiltin configures whether time.Time should be treated as a builtin type. + // + // All Handlers should know how to encode/decode time.Time as part of the core + // format specification, or as a standard extension defined by the format. + // + // However, users can elect to handle time.Time as a custom extension, or via the + // standard library's encoding.Binary(M|Unm)arshaler or Text(M|Unm)arshaler interface. + // To elect this behavior, users can set TimeNotBuiltin=true. + // + // Note: Setting TimeNotBuiltin=true can be used to enable the legacy behavior + // (for Cbor and Msgpack), where time.Time was not a builtin supported type. + // + // Note: DO NOT CHANGE AFTER FIRST USE. + // + // Once a Handle has been initialized (used), do not modify this option. It will be ignored. + TimeNotBuiltin bool + + // ExplicitRelease configures whether Release() is implicitly called after an encode or + // decode call. + // + // If you will hold onto an Encoder or Decoder for re-use, by calling Reset(...) + // on it or calling (Must)Encode repeatedly into a given []byte or io.Writer, + // then you do not want it to be implicitly closed after each Encode/Decode call. + // Doing so will unnecessarily return resources to the shared pool, only for you to + // grab them right after again to do another Encode/Decode call. + // + // Instead, you configure ExplicitRelease=true, and you explicitly call Release() when + // you are truly done. + // + // As an alternative, you can explicitly set a finalizer - so its resources + // are returned to the shared pool before it is garbage-collected. Do it as below: + // runtime.SetFinalizer(e, (*Encoder).Release) + // runtime.SetFinalizer(d, (*Decoder).Release) + // + // Deprecated: This is not longer used as pools are only used for long-lived objects + // which are shared across goroutines. + // Setting this value has no effect. It is maintained for backward compatibility. + ExplicitRelease bool + + // ---- cache line + inited uint32 // holds if inited, and also handle flags (binary encoding, json handler, etc) + +} + +// initHandle does a one-time initialization of the handle. +// After this is run, do not modify the Handle, as some modifications are ignored +// e.g. extensions, registered interfaces, TimeNotBuiltIn, etc +func initHandle(hh Handle) { + x := hh.getBasicHandle() + + // MARKER: We need to simulate once.Do, to ensure no data race within the block. + // Consequently, below would not work. + // + // if atomic.CompareAndSwapUint32(&x.inited, 0, 1) { + // x.be = hh.isBinary() + // x.js = hh.isJson + // x.n = hh.Name()[0] + // } + + // simulate once.Do using our own stored flag and mutex as a CompareAndSwap + // is not sufficient, since a race condition can occur within init(Handle) function. + // init is made noinline, so that this function can be inlined by its caller. + if atomic.LoadUint32(&x.inited) == 0 { + x.initHandle(hh) + } +} + +func (x *BasicHandle) basicInit() { + x.rtidFns.store(nil) + x.rtidFnsNoExt.store(nil) + x.timeBuiltin = !x.TimeNotBuiltin +} + +func (x *BasicHandle) init() {} + +func (x *BasicHandle) isInited() bool { + return atomic.LoadUint32(&x.inited) != 0 +} + +// clearInited: DANGEROUS - only use in testing, etc +func (x *BasicHandle) clearInited() { + atomic.StoreUint32(&x.inited, 0) +} + +// TimeBuiltin returns whether time.Time OOTB support is used, +// based on the initial configuration of TimeNotBuiltin +func (x *basicHandleRuntimeState) TimeBuiltin() bool { + return x.timeBuiltin +} + +func (x *basicHandleRuntimeState) isJs() bool { + return x.jsonHandle +} + +func (x *basicHandleRuntimeState) isBe() bool { + return x.binaryHandle +} + +func (x *basicHandleRuntimeState) setExt(rt reflect.Type, tag uint64, ext Ext) (err error) { + rk := rt.Kind() + for rk == reflect.Ptr { + rt = rt.Elem() + rk = rt.Kind() + } + + if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr { + return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt) + } + + rtid := rt2id(rt) + switch rtid { + case timeTypId, rawTypId, rawExtTypId: + // these are all natively supported type, so they cannot have an extension. + // However, we do not return an error for these, as we do not document that. + // Instead, we silently treat as a no-op, and return. + return + } + for i := range x.extHandle { + v := &x.extHandle[i] + if v.rtid == rtid { + v.tag, v.ext = tag, ext + return + } + } + rtidptr := rt2id(reflect.PtrTo(rt)) + x.extHandle = append(x.extHandle, extTypeTagFn{rtid, rtidptr, rt, tag, ext}) + return +} + +// initHandle should be called only from codec.initHandle global function. +// make it uninlineable, as it is called at most once for each handle. +//go:noinline +func (x *BasicHandle) initHandle(hh Handle) { + handleInitMu.Lock() + defer handleInitMu.Unlock() // use defer, as halt may panic below + if x.inited == 0 { + if x.basicHandleRuntimeState == nil { + x.basicHandleRuntimeState = new(basicHandleRuntimeState) + } + x.jsonHandle = hh.isJson() + x.binaryHandle = hh.isBinary() + // ensure MapType and SliceType are of correct type + if x.MapType != nil && x.MapType.Kind() != reflect.Map { + halt.onerror(errMapTypeNotMapKind) + } + if x.SliceType != nil && x.SliceType.Kind() != reflect.Slice { + halt.onerror(errSliceTypeNotSliceKind) + } + x.basicInit() + hh.init() + atomic.StoreUint32(&x.inited, 1) + } +} + +func (x *BasicHandle) getBasicHandle() *BasicHandle { + return x +} + +func (x *BasicHandle) typeInfos() *TypeInfos { + if x.TypeInfos != nil { + return x.TypeInfos + } + return defTypeInfos +} + +func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) { + return x.typeInfos().get(rtid, rt) +} + +func findRtidFn(s []codecRtidFn, rtid uintptr) (i uint, fn *codecFn) { + // binary search. adapted from sort/search.go. + // Note: we use goto (instead of for loop) so this can be inlined. + + // h, i, j := 0, 0, len(s) + var h uint // var h, i uint + var j = uint(len(s)) +LOOP: + if i < j { + h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2 + if s[h].rtid < rtid { + i = h + 1 + } else { + j = h + } + goto LOOP + } + if i < uint(len(s)) && s[i].rtid == rtid { + fn = s[i].fn + } + return +} + +func (x *BasicHandle) fn(rt reflect.Type) (fn *codecFn) { + return x.fnVia(rt, x.typeInfos(), &x.rtidFns, x.CheckCircularRef, true) +} + +func (x *BasicHandle) fnNoExt(rt reflect.Type) (fn *codecFn) { + return x.fnVia(rt, x.typeInfos(), &x.rtidFnsNoExt, x.CheckCircularRef, false) +} + +func (x *basicHandleRuntimeState) fnVia(rt reflect.Type, tinfos *TypeInfos, fs *atomicRtidFnSlice, checkCircularRef, checkExt bool) (fn *codecFn) { + rtid := rt2id(rt) + sp := fs.load() + if sp != nil { + if _, fn = findRtidFn(sp, rtid); fn != nil { + return + } + } + + fn = x.fnLoad(rt, rtid, tinfos, checkCircularRef, checkExt) + x.mu.Lock() + sp = fs.load() + // since this is an atomic load/store, we MUST use a different array each time, + // else we have a data race when a store is happening simultaneously with a findRtidFn call. + if sp == nil { + sp = []codecRtidFn{{rtid, fn}} + fs.store(sp) + } else { + idx, fn2 := findRtidFn(sp, rtid) + if fn2 == nil { + sp2 := make([]codecRtidFn, len(sp)+1) + copy(sp2[idx+1:], sp[idx:]) + copy(sp2, sp[:idx]) + sp2[idx] = codecRtidFn{rtid, fn} + fs.store(sp2) + } + } + x.mu.Unlock() + return +} + +func fnloadFastpathUnderlying(ti *typeInfo) (f *fastpathE, u reflect.Type) { + var rtid uintptr + var idx int + rtid = rt2id(ti.fastpathUnderlying) + idx = fastpathAvIndex(rtid) + if idx == -1 { + return + } + f = &fastpathAv[idx] + if uint8(reflect.Array) == ti.kind { + u = reflectArrayOf(ti.rt.Len(), ti.elem) + } else { + u = f.rt + } + return +} + +func (x *basicHandleRuntimeState) fnLoad(rt reflect.Type, rtid uintptr, tinfos *TypeInfos, checkCircularRef, checkExt bool) (fn *codecFn) { + fn = new(codecFn) + fi := &(fn.i) + ti := tinfos.get(rtid, rt) + fi.ti = ti + rk := reflect.Kind(ti.kind) + + // anything can be an extension except the built-in ones: time, raw and rawext. + // ensure we check for these types, then if extension, before checking if + // it implementes one of the pre-declared interfaces. + + fi.addrDf = true + // fi.addrEf = true + + if rtid == timeTypId && x.timeBuiltin { + fn.fe = (*Encoder).kTime + fn.fd = (*Decoder).kTime + } else if rtid == rawTypId { + fn.fe = (*Encoder).raw + fn.fd = (*Decoder).raw + } else if rtid == rawExtTypId { + fn.fe = (*Encoder).rawExt + fn.fd = (*Decoder).rawExt + fi.addrD = true + fi.addrE = true + } else if xfFn := x.getExt(rtid, checkExt); xfFn != nil { + fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext + fn.fe = (*Encoder).ext + fn.fd = (*Decoder).ext + fi.addrD = true + if rk == reflect.Struct || rk == reflect.Array { + fi.addrE = true + } + } else if (ti.flagSelfer || ti.flagSelferPtr) && + !(checkCircularRef && ti.flagSelferViaCodecgen && ti.kind == byte(reflect.Struct)) { + // do not use Selfer generated by codecgen if it is a struct and CheckCircularRef=true + fn.fe = (*Encoder).selferMarshal + fn.fd = (*Decoder).selferUnmarshal + fi.addrD = ti.flagSelferPtr + fi.addrE = ti.flagSelferPtr + } else if supportMarshalInterfaces && x.isBe() && + (ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr) && + (ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr) { + fn.fe = (*Encoder).binaryMarshal + fn.fd = (*Decoder).binaryUnmarshal + fi.addrD = ti.flagBinaryUnmarshalerPtr + fi.addrE = ti.flagBinaryMarshalerPtr + } else if supportMarshalInterfaces && !x.isBe() && x.isJs() && + (ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr) && + (ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr) { + //If JSON, we should check JSONMarshal before textMarshal + fn.fe = (*Encoder).jsonMarshal + fn.fd = (*Decoder).jsonUnmarshal + fi.addrD = ti.flagJsonUnmarshalerPtr + fi.addrE = ti.flagJsonMarshalerPtr + } else if supportMarshalInterfaces && !x.isBe() && + (ti.flagTextMarshaler || ti.flagTextMarshalerPtr) && + (ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr) { + fn.fe = (*Encoder).textMarshal + fn.fd = (*Decoder).textUnmarshal + fi.addrD = ti.flagTextUnmarshalerPtr + fi.addrE = ti.flagTextMarshalerPtr + } else { + if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice || rk == reflect.Array) { + // by default (without using unsafe), + // if an array is not addressable, converting from an array to a slice + // requires an allocation (see helper_not_unsafe.go: func rvGetSlice4Array). + // + // (Non-addressable arrays mostly occur as keys/values from a map). + // + // However, fastpath functions are mostly for slices of numbers or strings, + // which are small by definition and thus allocation should be fast/cheap in time. + // + // Consequently, the value of doing this quick allocation to elide the overhead cost of + // non-optimized (not-unsafe) reflection is a fair price. + var rtid2 uintptr + if !ti.flagHasPkgPath { // un-named type (slice or mpa or array) + rtid2 = rtid + if rk == reflect.Array { + rtid2 = rt2id(ti.key) // ti.key for arrays = reflect.SliceOf(ti.elem) + } + if idx := fastpathAvIndex(rtid2); idx != -1 { + fn.fe = fastpathAv[idx].encfn + fn.fd = fastpathAv[idx].decfn + fi.addrD = true + fi.addrDf = false + if rk == reflect.Array { + fi.addrD = false // decode directly into array value (slice made from it) + } + } + } else { // named type (with underlying type of map or slice or array) + // try to use mapping for underlying type + xfe, xrt := fnloadFastpathUnderlying(ti) + if xfe != nil { + xfnf := xfe.encfn + xfnf2 := xfe.decfn + if rk == reflect.Array { + fi.addrD = false // decode directly into array value (slice made from it) + fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) { + xfnf2(d, xf, rvConvert(xrv, xrt)) + } + } else { + fi.addrD = true + fi.addrDf = false // meaning it can be an address(ptr) or a value + xptr2rt := reflect.PtrTo(xrt) + fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) { + if xrv.Kind() == reflect.Ptr { + xfnf2(d, xf, rvConvert(xrv, xptr2rt)) + } else { + xfnf2(d, xf, rvConvert(xrv, xrt)) + } + } + } + fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) { + xfnf(e, xf, rvConvert(xrv, xrt)) + } + } + } + } + if fn.fe == nil && fn.fd == nil { + switch rk { + case reflect.Bool: + fn.fe = (*Encoder).kBool + fn.fd = (*Decoder).kBool + case reflect.String: + // Do not use different functions based on StringToRaw option, as that will statically + // set the function for a string type, and if the Handle is modified thereafter, + // behaviour is non-deterministic + // i.e. DO NOT DO: + // if x.StringToRaw { + // fn.fe = (*Encoder).kStringToRaw + // } else { + // fn.fe = (*Encoder).kStringEnc + // } + + fn.fe = (*Encoder).kString + fn.fd = (*Decoder).kString + case reflect.Int: + fn.fd = (*Decoder).kInt + fn.fe = (*Encoder).kInt + case reflect.Int8: + fn.fe = (*Encoder).kInt8 + fn.fd = (*Decoder).kInt8 + case reflect.Int16: + fn.fe = (*Encoder).kInt16 + fn.fd = (*Decoder).kInt16 + case reflect.Int32: + fn.fe = (*Encoder).kInt32 + fn.fd = (*Decoder).kInt32 + case reflect.Int64: + fn.fe = (*Encoder).kInt64 + fn.fd = (*Decoder).kInt64 + case reflect.Uint: + fn.fd = (*Decoder).kUint + fn.fe = (*Encoder).kUint + case reflect.Uint8: + fn.fe = (*Encoder).kUint8 + fn.fd = (*Decoder).kUint8 + case reflect.Uint16: + fn.fe = (*Encoder).kUint16 + fn.fd = (*Decoder).kUint16 + case reflect.Uint32: + fn.fe = (*Encoder).kUint32 + fn.fd = (*Decoder).kUint32 + case reflect.Uint64: + fn.fe = (*Encoder).kUint64 + fn.fd = (*Decoder).kUint64 + case reflect.Uintptr: + fn.fe = (*Encoder).kUintptr + fn.fd = (*Decoder).kUintptr + case reflect.Float32: + fn.fe = (*Encoder).kFloat32 + fn.fd = (*Decoder).kFloat32 + case reflect.Float64: + fn.fe = (*Encoder).kFloat64 + fn.fd = (*Decoder).kFloat64 + case reflect.Complex64: + fn.fe = (*Encoder).kComplex64 + fn.fd = (*Decoder).kComplex64 + case reflect.Complex128: + fn.fe = (*Encoder).kComplex128 + fn.fd = (*Decoder).kComplex128 + case reflect.Chan: + fn.fe = (*Encoder).kChan + fn.fd = (*Decoder).kChan + case reflect.Slice: + fn.fe = (*Encoder).kSlice + fn.fd = (*Decoder).kSlice + case reflect.Array: + fi.addrD = false // decode directly into array value (slice made from it) + fn.fe = (*Encoder).kArray + fn.fd = (*Decoder).kArray + case reflect.Struct: + if ti.anyOmitEmpty || + ti.flagMissingFielder || + ti.flagMissingFielderPtr { + fn.fe = (*Encoder).kStruct + } else { + fn.fe = (*Encoder).kStructNoOmitempty + } + fn.fd = (*Decoder).kStruct + case reflect.Map: + fn.fe = (*Encoder).kMap + fn.fd = (*Decoder).kMap + case reflect.Interface: + // encode: reflect.Interface are handled already by preEncodeValue + fn.fd = (*Decoder).kInterface + fn.fe = (*Encoder).kErr + default: + // reflect.Ptr and reflect.Interface are handled already by preEncodeValue + fn.fe = (*Encoder).kErr + fn.fd = (*Decoder).kErr + } + } + } + return +} + +// Handle defines a specific encoding format. It also stores any runtime state +// used during an Encoding or Decoding session e.g. stored state about Types, etc. +// +// Once a handle is configured, it can be shared across multiple Encoders and Decoders. +// +// Note that a Handle is NOT safe for concurrent modification. +// +// A Handle also should not be modified after it is configured and has +// been used at least once. This is because stored state may be out of sync with the +// new configuration, and a data race can occur when multiple goroutines access it. +// i.e. multiple Encoders or Decoders in different goroutines. +// +// Consequently, the typical usage model is that a Handle is pre-configured +// before first time use, and not modified while in use. +// Such a pre-configured Handle is safe for concurrent access. +type Handle interface { + Name() string + getBasicHandle() *BasicHandle + newEncDriver() encDriver + newDecDriver() decDriver + isBinary() bool + isJson() bool // json is special for now, so track it + // desc describes the current byte descriptor, or returns "unknown[XXX]" if not understood. + desc(bd byte) string + // init initializes the handle based on handle-specific info (beyond what is in BasicHandle) + init() +} + +// Raw represents raw formatted bytes. +// We "blindly" store it during encode and retrieve the raw bytes during decode. +// Note: it is dangerous during encode, so we may gate the behaviour +// behind an Encode flag which must be explicitly set. +type Raw []byte + +// RawExt represents raw unprocessed extension data. +// Some codecs will decode extension data as a *RawExt +// if there is no registered extension for the tag. +// +// Only one of Data or Value is nil. +// If Data is nil, then the content of the RawExt is in the Value. +type RawExt struct { + Tag uint64 + // Data is the []byte which represents the raw ext. If nil, ext is exposed in Value. + // Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types + Data []byte + // Value represents the extension, if Data is nil. + // Value is used by codecs (e.g. cbor, json) which leverage the format to do + // custom serialization of the types. + Value interface{} +} + +func (re *RawExt) setData(xbs []byte, zerocopy bool) { + if zerocopy { + re.Data = xbs + } else { + re.Data = append(re.Data[:0], xbs...) + } +} + +// BytesExt handles custom (de)serialization of types to/from []byte. +// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types. +type BytesExt interface { + // WriteExt converts a value to a []byte. + // + // Note: v is a pointer iff the registered extension type is a struct or array kind. + WriteExt(v interface{}) []byte + + // ReadExt updates a value from a []byte. + // + // Note: dst is always a pointer kind to the registered extension type. + ReadExt(dst interface{}, src []byte) +} + +// InterfaceExt handles custom (de)serialization of types to/from another interface{} value. +// The Encoder or Decoder will then handle the further (de)serialization of that known type. +// +// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types. +type InterfaceExt interface { + // ConvertExt converts a value into a simpler interface for easy encoding + // e.g. convert time.Time to int64. + // + // Note: v is a pointer iff the registered extension type is a struct or array kind. + ConvertExt(v interface{}) interface{} + + // UpdateExt updates a value from a simpler interface for easy decoding + // e.g. convert int64 to time.Time. + // + // Note: dst is always a pointer kind to the registered extension type. + UpdateExt(dst interface{}, src interface{}) +} + +// Ext handles custom (de)serialization of custom types / extensions. +type Ext interface { + BytesExt + InterfaceExt +} + +// addExtWrapper is a wrapper implementation to support former AddExt exported method. +type addExtWrapper struct { + encFn func(reflect.Value) ([]byte, error) + decFn func(reflect.Value, []byte) error +} + +func (x addExtWrapper) WriteExt(v interface{}) []byte { + bs, err := x.encFn(reflect.ValueOf(v)) + halt.onerror(err) + return bs +} + +func (x addExtWrapper) ReadExt(v interface{}, bs []byte) { + halt.onerror(x.decFn(reflect.ValueOf(v), bs)) +} + +func (x addExtWrapper) ConvertExt(v interface{}) interface{} { + return x.WriteExt(v) +} + +func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) { + x.ReadExt(dest, v.([]byte)) +} + +type bytesExtFailer struct{} + +func (bytesExtFailer) WriteExt(v interface{}) []byte { + halt.onerror(errExtFnWriteExtUnsupported) + return nil +} +func (bytesExtFailer) ReadExt(v interface{}, bs []byte) { + halt.onerror(errExtFnReadExtUnsupported) +} + +type interfaceExtFailer struct{} + +func (interfaceExtFailer) ConvertExt(v interface{}) interface{} { + halt.onerror(errExtFnConvertExtUnsupported) + return nil +} +func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) { + halt.onerror(errExtFnUpdateExtUnsupported) +} + +type bytesExtWrapper struct { + interfaceExtFailer + BytesExt +} + +type interfaceExtWrapper struct { + bytesExtFailer + InterfaceExt +} + +type extFailWrapper struct { + bytesExtFailer + interfaceExtFailer +} + +type binaryEncodingType struct{} + +func (binaryEncodingType) isBinary() bool { return true } +func (binaryEncodingType) isJson() bool { return false } + +type textEncodingType struct{} + +func (textEncodingType) isBinary() bool { return false } +func (textEncodingType) isJson() bool { return false } + +type notJsonType struct{} + +func (notJsonType) isJson() bool { return false } + +// noBuiltInTypes is embedded into many types which do not support builtins +// e.g. msgpack, simple, cbor. + +type noBuiltInTypes struct{} + +func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {} +func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {} + +// bigenHelper handles ByteOrder operations directly using +// arrays of bytes (not slice of bytes). +// +// Since byteorder operations are very common for encoding and decoding +// numbers, lengths, etc - it is imperative that this operation is as +// fast as possible. Removing indirection (pointer chasing) to look +// at up to 8 bytes helps a lot here. +// +// For times where it is expedient to use a slice, delegate to the +// bigenstd (equal to the binary.BigEndian value). +// +// retrofitted from stdlib: encoding/binary/BigEndian (ByteOrder) +type bigenHelper struct{} + +func (z bigenHelper) PutUint16(v uint16) (b [2]byte) { + return [...]byte{ + byte(v >> 8), + byte(v), + } +} + +func (z bigenHelper) PutUint32(v uint32) (b [4]byte) { + return [...]byte{ + byte(v >> 24), + byte(v >> 16), + byte(v >> 8), + byte(v), + } +} + +func (z bigenHelper) PutUint64(v uint64) (b [8]byte) { + return [...]byte{ + byte(v >> 56), + byte(v >> 48), + byte(v >> 40), + byte(v >> 32), + byte(v >> 24), + byte(v >> 16), + byte(v >> 8), + byte(v), + } +} + +func (z bigenHelper) Uint16(b [2]byte) (v uint16) { + return uint16(b[1]) | + uint16(b[0])<<8 +} + +func (z bigenHelper) Uint32(b [4]byte) (v uint32) { + return uint32(b[3]) | + uint32(b[2])<<8 | + uint32(b[1])<<16 | + uint32(b[0])<<24 +} + +func (z bigenHelper) Uint64(b [8]byte) (v uint64) { + return uint64(b[7]) | + uint64(b[6])<<8 | + uint64(b[5])<<16 | + uint64(b[4])<<24 | + uint64(b[3])<<32 | + uint64(b[2])<<40 | + uint64(b[1])<<48 | + uint64(b[0])<<56 +} + +func (z bigenHelper) writeUint16(w *encWr, v uint16) { + x := z.PutUint16(v) + w.writen2(x[0], x[1]) +} + +func (z bigenHelper) writeUint32(w *encWr, v uint32) { + w.writen4(z.PutUint32(v)) +} + +func (z bigenHelper) writeUint64(w *encWr, v uint64) { + w.writen8(z.PutUint64(v)) +} + +type extTypeTagFn struct { + rtid uintptr + rtidptr uintptr + rt reflect.Type + tag uint64 + ext Ext +} + +type extHandle []extTypeTagFn + +// AddExt registes an encode and decode function for a reflect.Type. +// To deregister an Ext, call AddExt with nil encfn and/or nil decfn. +// +// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead. +func (x *BasicHandle) AddExt(rt reflect.Type, tag byte, + encfn func(reflect.Value) ([]byte, error), + decfn func(reflect.Value, []byte) error) (err error) { + if encfn == nil || decfn == nil { + return x.SetExt(rt, uint64(tag), nil) + } + return x.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn}) +} + +// SetExt will set the extension for a tag and reflect.Type. +// Note that the type must be a named type, and specifically not a pointer or Interface. +// An error is returned if that is not honored. +// To Deregister an ext, call SetExt with nil Ext. +// +// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead. +func (x *BasicHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) { + if x.isInited() { + return errHandleInited + } + if x.basicHandleRuntimeState == nil { + x.basicHandleRuntimeState = new(basicHandleRuntimeState) + } + return x.basicHandleRuntimeState.setExt(rt, tag, ext) +} + +func (o extHandle) getExtForI(x interface{}) (v *extTypeTagFn) { + if len(o) > 0 { + v = o.getExt(i2rtid(x), true) + } + return +} + +func (o extHandle) getExt(rtid uintptr, check bool) (v *extTypeTagFn) { + if !check { + return + } + for i := range o { + v = &o[i] + if v.rtid == rtid || v.rtidptr == rtid { + return + } + } + return nil +} + +func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) { + for i := range o { + v = &o[i] + if v.tag == tag { + return + } + } + return nil +} + +type intf2impl struct { + rtid uintptr // for intf + impl reflect.Type +} + +type intf2impls []intf2impl + +// Intf2Impl maps an interface to an implementing type. +// This allows us support infering the concrete type +// and populating it when passed an interface. +// e.g. var v io.Reader can be decoded as a bytes.Buffer, etc. +// +// Passing a nil impl will clear the mapping. +func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) { + if impl != nil && !impl.Implements(intf) { + return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf) + } + rtid := rt2id(intf) + o2 := *o + for i := range o2 { + v := &o2[i] + if v.rtid == rtid { + v.impl = impl + return + } + } + *o = append(o2, intf2impl{rtid, impl}) + return +} + +func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) { + for i := range o { + v := &o[i] + if v.rtid == rtid { + if v.impl == nil { + return + } + vkind := v.impl.Kind() + if vkind == reflect.Ptr { + return reflect.New(v.impl.Elem()) + } + return rvZeroAddrK(v.impl, vkind) + } + } + return +} + +// structFieldinfopathNode is a node in a tree, which allows us easily +// walk the anonymous path. +// +// In the typical case, the node is not embedded/anonymous, and thus the parent +// will be nil and this information becomes a value (not needing any indirection). +type structFieldInfoPathNode struct { + parent *structFieldInfoPathNode + + offset uint16 + index uint16 + kind uint8 + numderef uint8 + + // encNameAsciiAlphaNum and omitEmpty should be in structFieldInfo, + // but are kept here for tighter packaging. + + encNameAsciiAlphaNum bool // the encName only contains ascii alphabet and numbers + omitEmpty bool + + typ reflect.Type +} + +// depth returns number of valid nodes in the hierachy +func (path *structFieldInfoPathNode) depth() (d int) { +TOP: + if path != nil { + d++ + path = path.parent + goto TOP + } + return +} + +// field returns the field of the struct. +func (path *structFieldInfoPathNode) field(v reflect.Value) (rv2 reflect.Value) { + if parent := path.parent; parent != nil { + v = parent.field(v) + for j, k := uint8(0), parent.numderef; j < k; j++ { + if rvIsNil(v) { + return + } + v = v.Elem() + } + } + return path.rvField(v) +} + +// fieldAlloc returns the field of the struct. +// It allocates if a nil value was seen while searching. +func (path *structFieldInfoPathNode) fieldAlloc(v reflect.Value) (rv2 reflect.Value) { + if parent := path.parent; parent != nil { + v = parent.fieldAlloc(v) + for j, k := uint8(0), parent.numderef; j < k; j++ { + if rvIsNil(v) { + rvSetDirect(v, reflect.New(rvType(v).Elem())) + } + v = v.Elem() + } + } + return path.rvField(v) +} + +type structFieldInfo struct { + encName string // encode name + + // encNameHash uintptr + + // fieldName string // currently unused + + // encNameAsciiAlphaNum and omitEmpty should be here, + // but are stored in structFieldInfoPathNode for tighter packaging. + + path structFieldInfoPathNode +} + +func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) { + keytype = valueTypeString // default + if stag == "" { + return + } + ss := strings.Split(stag, ",") + if len(ss) < 2 { + return + } + for _, s := range ss[1:] { + switch s { + case "omitempty": + omitEmpty = true + case "toarray": + toArray = true + case "int": + keytype = valueTypeInt + case "uint": + keytype = valueTypeUint + case "float": + keytype = valueTypeFloat + // case "bool": + // keytype = valueTypeBool + case "string": + keytype = valueTypeString + } + } + return +} + +func (si *structFieldInfo) parseTag(stag string) { + if stag == "" { + return + } + for i, s := range strings.Split(stag, ",") { + if i == 0 { + if s != "" { + si.encName = s + } + } else { + switch s { + case "omitempty": + si.path.omitEmpty = true + } + } + } +} + +type sfiSortedByEncName []*structFieldInfo + +func (p sfiSortedByEncName) Len() int { return len(p) } +func (p sfiSortedByEncName) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] } +func (p sfiSortedByEncName) Less(i, j int) bool { return p[uint(i)].encName < p[uint(j)].encName } + +// typeInfo4Container holds information that is only available for +// containers like map, array, chan, slice. +type typeInfo4Container struct { + elem reflect.Type + // key is: + // - if map kind: map key + // - if array kind: sliceOf(elem) + // - if chan kind: sliceof(elem) + key reflect.Type + + // fastpathUnderlying is underlying type of a named slice/map/array, as defined by go spec, + // that is used by fastpath where we defined fastpath functions for the underlying type. + // + // for a map, it's a map; for a slice or array, it's a slice; else its nil. + fastpathUnderlying reflect.Type + + tikey *typeInfo + tielem *typeInfo +} + +// typeInfo keeps static (non-changing readonly)information +// about each (non-ptr) type referenced in the encode/decode sequence. +// +// During an encode/decode sequence, we work as below: +// - If base is a built in type, en/decode base value +// - If base is registered as an extension, en/decode base value +// - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method +// - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method +// - Else decode appropriately based on the reflect.Kind +type typeInfo struct { + rt reflect.Type + ptr reflect.Type + + // pkgpath string + + rtid uintptr + + numMeth uint16 // number of methods + kind uint8 + chandir uint8 + + anyOmitEmpty bool // true if a struct, and any of the fields are tagged "omitempty" + toArray bool // whether this (struct) type should be encoded as an array + keyType valueType // if struct, how is the field name stored in a stream? default is string + mbs bool // base type (T or *T) is a MapBySlice + + sfi4Name map[string]*structFieldInfo // map. used for finding sfi given a name + + *typeInfo4Container + + // ---- cpu cache line boundary? + + size, keysize, elemsize uint32 + + keykind, elemkind uint8 + + flagHasPkgPath bool // Type.PackagePath != "" + flagCustom bool // does this have custom implementation? + flagComparable bool + flagCanTransient bool + + flagSelferViaCodecgen bool + + // custom implementation flags + flagIsZeroer bool + flagIsZeroerPtr bool + + flagIsCodecEmptyer bool + flagIsCodecEmptyerPtr bool + + flagBinaryMarshaler bool + flagBinaryMarshalerPtr bool + + flagBinaryUnmarshaler bool + flagBinaryUnmarshalerPtr bool + + flagTextMarshaler bool + flagTextMarshalerPtr bool + + flagTextUnmarshaler bool + flagTextUnmarshalerPtr bool + + flagJsonMarshaler bool + flagJsonMarshalerPtr bool + + flagJsonUnmarshaler bool + flagJsonUnmarshalerPtr bool + + flagSelfer bool + flagSelferPtr bool + + flagMissingFielder bool + flagMissingFielderPtr bool + + infoFieldOmitempty bool + + sfi structFieldInfos +} + +func (ti *typeInfo) siForEncName(name []byte) (si *structFieldInfo) { + return ti.sfi4Name[string(name)] +} + +func (ti *typeInfo) resolve(x []structFieldInfo, ss map[string]uint16) (n int) { + n = len(x) + + for i := range x { + ui := uint16(i) + xn := x[i].encName + j, ok := ss[xn] + if ok { + i2clear := ui // index to be cleared + if x[i].path.depth() < x[j].path.depth() { // this one is shallower + ss[xn] = ui + i2clear = j + } + if x[i2clear].encName != "" { + x[i2clear].encName = "" + n-- + } + } else { + ss[xn] = ui + } + } + + return +} + +func (ti *typeInfo) init(x []structFieldInfo, n int) { + var anyOmitEmpty bool + + // remove all the nils (non-ready) + m := make(map[string]*structFieldInfo, n) + w := make([]structFieldInfo, n) + y := make([]*structFieldInfo, n+n) + z := y[n:] + y = y[:n] + n = 0 + for i := range x { + if x[i].encName == "" { + continue + } + if !anyOmitEmpty && x[i].path.omitEmpty { + anyOmitEmpty = true + } + w[n] = x[i] + y[n] = &w[n] + m[x[i].encName] = &w[n] + n++ + } + if n != len(y) { + halt.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d", ti.rt, len(y), len(x), n) + } + + copy(z, y) + sort.Sort(sfiSortedByEncName(z)) + + ti.anyOmitEmpty = anyOmitEmpty + ti.sfi.load(y, z) + ti.sfi4Name = m +} + +// Handling flagCanTransient +// +// We support transient optimization if the kind of the type is +// a number, bool, string, or slice. +// In addition, we also support if the kind is struct or array, +// and the type does not contain any pointers recursively). +// +// Noteworthy that all reference types (string, slice, func, map, ptr, interface, etc) have pointers. +// +// If using transient for a type with a pointer, there is the potential for data corruption +// when GC tries to follow a "transient" pointer which may become a non-pointer soon after. +// + +func isCanTransient(t reflect.Type, k reflect.Kind) (v bool) { + var bs *bitset32 + if transientValueHasStringSlice { + bs = &numBoolStrSliceBitset + } else { + bs = &numBoolBitset + } + if bs.isset(byte(k)) { + v = true + } else if k == reflect.Array { + elem := t.Elem() + v = isCanTransient(elem, elem.Kind()) + } else if k == reflect.Struct { + v = true + for j, jlen := 0, t.NumField(); j < jlen; j++ { + f := t.Field(j) + if !isCanTransient(f.Type, f.Type.Kind()) { + v = false + return + } + } + } else { + v = false + } + return +} + +func (ti *typeInfo) doSetFlagCanTransient() { + if transientSizeMax > 0 { + ti.flagCanTransient = ti.size <= transientSizeMax + } else { + ti.flagCanTransient = true + } + if ti.flagCanTransient { + // if ti kind is a num, bool, string or slice, then it is flagCanTransient + if !numBoolStrSliceBitset.isset(ti.kind) { + ti.flagCanTransient = isCanTransient(ti.rt, reflect.Kind(ti.kind)) + } + } +} + +type rtid2ti struct { + rtid uintptr + ti *typeInfo +} + +// TypeInfos caches typeInfo for each type on first inspection. +// +// It is configured with a set of tag keys, which are used to get +// configuration for the type. +type TypeInfos struct { + infos atomicTypeInfoSlice + mu sync.Mutex + _ uint64 // padding (cache-aligned) + tags []string + _ uint64 // padding (cache-aligned) +} + +// NewTypeInfos creates a TypeInfos given a set of struct tags keys. +// +// This allows users customize the struct tag keys which contain configuration +// of their types. +func NewTypeInfos(tags []string) *TypeInfos { + return &TypeInfos{tags: tags} +} + +func (x *TypeInfos) structTag(t reflect.StructTag) (s string) { + // check for tags: codec, json, in that order. + // this allows seamless support for many configured structs. + for _, x := range x.tags { + s = t.Get(x) + if s != "" { + return s + } + } + return +} + +func findTypeInfo(s []rtid2ti, rtid uintptr) (i uint, ti *typeInfo) { + // binary search. adapted from sort/search.go. + // Note: we use goto (instead of for loop) so this can be inlined. + + var h uint + var j = uint(len(s)) +LOOP: + if i < j { + h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2 + if s[h].rtid < rtid { + i = h + 1 + } else { + j = h + } + goto LOOP + } + if i < uint(len(s)) && s[i].rtid == rtid { + ti = s[i].ti + } + return +} + +func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) { + if pti = x.find(rtid); pti == nil { + pti = x.load(rt) + } + return +} + +func (x *TypeInfos) find(rtid uintptr) (pti *typeInfo) { + sp := x.infos.load() + if sp != nil { + _, pti = findTypeInfo(sp, rtid) + } + return +} + +func (x *TypeInfos) load(rt reflect.Type) (pti *typeInfo) { + rk := rt.Kind() + + if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) { + halt.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt) + } + + rtid := rt2id(rt) + + // do not hold lock while computing this. + // it may lead to duplication, but that's ok. + ti := typeInfo{ + rt: rt, + ptr: reflect.PtrTo(rt), + rtid: rtid, + kind: uint8(rk), + size: uint32(rt.Size()), + numMeth: uint16(rt.NumMethod()), + keyType: valueTypeString, // default it - so it's never 0 + + // pkgpath: rt.PkgPath(), + flagHasPkgPath: rt.PkgPath() != "", + } + + // bset sets custom implementation flags + bset := func(when bool, b *bool) { + if when { + *b = true + ti.flagCustom = true + } + } + + var b1, b2 bool + + b1, b2 = implIntf(rt, binaryMarshalerTyp) + bset(b1, &ti.flagBinaryMarshaler) + bset(b2, &ti.flagBinaryMarshalerPtr) + b1, b2 = implIntf(rt, binaryUnmarshalerTyp) + bset(b1, &ti.flagBinaryUnmarshaler) + bset(b2, &ti.flagBinaryUnmarshalerPtr) + b1, b2 = implIntf(rt, textMarshalerTyp) + bset(b1, &ti.flagTextMarshaler) + bset(b2, &ti.flagTextMarshalerPtr) + b1, b2 = implIntf(rt, textUnmarshalerTyp) + bset(b1, &ti.flagTextUnmarshaler) + bset(b2, &ti.flagTextUnmarshalerPtr) + b1, b2 = implIntf(rt, jsonMarshalerTyp) + bset(b1, &ti.flagJsonMarshaler) + bset(b2, &ti.flagJsonMarshalerPtr) + b1, b2 = implIntf(rt, jsonUnmarshalerTyp) + bset(b1, &ti.flagJsonUnmarshaler) + bset(b2, &ti.flagJsonUnmarshalerPtr) + b1, b2 = implIntf(rt, selferTyp) + bset(b1, &ti.flagSelfer) + bset(b2, &ti.flagSelferPtr) + b1, b2 = implIntf(rt, missingFielderTyp) + bset(b1, &ti.flagMissingFielder) + bset(b2, &ti.flagMissingFielderPtr) + b1, b2 = implIntf(rt, iszeroTyp) + bset(b1, &ti.flagIsZeroer) + bset(b2, &ti.flagIsZeroerPtr) + b1, b2 = implIntf(rt, isCodecEmptyerTyp) + bset(b1, &ti.flagIsCodecEmptyer) + bset(b2, &ti.flagIsCodecEmptyerPtr) + + b1, b2 = implIntf(rt, isSelferViaCodecgenerTyp) + ti.flagSelferViaCodecgen = b1 || b2 + + b1 = rt.Comparable() + // bset(b1, &ti.flagComparable) + ti.flagComparable = b1 + + ti.doSetFlagCanTransient() + + var tt reflect.Type + switch rk { + case reflect.Struct: + var omitEmpty bool + if f, ok := rt.FieldByName(structInfoFieldName); ok { + ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag)) + ti.infoFieldOmitempty = omitEmpty + } else { + ti.keyType = valueTypeString + } + pp, pi := &pool4tiload, pool4tiload.Get() + pv := pi.(*typeInfoLoad) + pv.reset() + pv.etypes = append(pv.etypes, ti.rtid) + x.rget(rt, rtid, nil, pv, omitEmpty) + n := ti.resolve(pv.sfis, pv.sfiNames) + ti.init(pv.sfis, n) + pp.Put(pi) + case reflect.Map: + ti.typeInfo4Container = new(typeInfo4Container) + ti.elem = rt.Elem() + for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() { + } + ti.tielem = x.get(rt2id(tt), tt) + ti.elemkind = uint8(ti.elem.Kind()) + ti.elemsize = uint32(ti.elem.Size()) + ti.key = rt.Key() + for tt = ti.key; tt.Kind() == reflect.Ptr; tt = tt.Elem() { + } + ti.tikey = x.get(rt2id(tt), tt) + ti.keykind = uint8(ti.key.Kind()) + ti.keysize = uint32(ti.key.Size()) + if ti.flagHasPkgPath { + ti.fastpathUnderlying = reflect.MapOf(ti.key, ti.elem) + } + case reflect.Slice: + ti.typeInfo4Container = new(typeInfo4Container) + ti.mbs, b2 = implIntf(rt, mapBySliceTyp) + if !ti.mbs && b2 { + ti.mbs = b2 + } + ti.elem = rt.Elem() + for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() { + } + ti.tielem = x.get(rt2id(tt), tt) + ti.elemkind = uint8(ti.elem.Kind()) + ti.elemsize = uint32(ti.elem.Size()) + if ti.flagHasPkgPath { + ti.fastpathUnderlying = reflect.SliceOf(ti.elem) + } + case reflect.Chan: + ti.typeInfo4Container = new(typeInfo4Container) + ti.elem = rt.Elem() + for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() { + } + ti.tielem = x.get(rt2id(tt), tt) + ti.elemkind = uint8(ti.elem.Kind()) + ti.elemsize = uint32(ti.elem.Size()) + ti.chandir = uint8(rt.ChanDir()) + ti.key = reflect.SliceOf(ti.elem) + ti.keykind = uint8(reflect.Slice) + case reflect.Array: + ti.typeInfo4Container = new(typeInfo4Container) + ti.mbs, b2 = implIntf(rt, mapBySliceTyp) + if !ti.mbs && b2 { + ti.mbs = b2 + } + ti.elem = rt.Elem() + ti.elemkind = uint8(ti.elem.Kind()) + ti.elemsize = uint32(ti.elem.Size()) + for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() { + } + ti.tielem = x.get(rt2id(tt), tt) + ti.key = reflect.SliceOf(ti.elem) + ti.keykind = uint8(reflect.Slice) + ti.keysize = uint32(ti.key.Size()) + if ti.flagHasPkgPath { + ti.fastpathUnderlying = ti.key + } + + // MARKER: reflect.Ptr cannot happen here, as we halt early if reflect.Ptr passed in + // case reflect.Ptr: + // ti.elem = rt.Elem() + // ti.elemkind = uint8(ti.elem.Kind()) + // ti.elemsize = uint32(ti.elem.Size()) + } + + x.mu.Lock() + sp := x.infos.load() + // since this is an atomic load/store, we MUST use a different array each time, + // else we have a data race when a store is happening simultaneously with a findRtidFn call. + if sp == nil { + pti = &ti + sp = []rtid2ti{{rtid, pti}} + x.infos.store(sp) + } else { + var idx uint + idx, pti = findTypeInfo(sp, rtid) + if pti == nil { + pti = &ti + sp2 := make([]rtid2ti, len(sp)+1) + copy(sp2[idx+1:], sp[idx:]) + copy(sp2, sp[:idx]) + sp2[idx] = rtid2ti{rtid, pti} + x.infos.store(sp2) + } + } + x.mu.Unlock() + return +} + +func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, + path *structFieldInfoPathNode, pv *typeInfoLoad, omitEmpty bool) { + // Read up fields and store how to access the value. + // + // It uses go's rules for message selectors, + // which say that the field with the shallowest depth is selected. + // + // Note: we consciously use slices, not a map, to simulate a set. + // Typically, types have < 16 fields, + // and iteration using equals is faster than maps there + flen := rt.NumField() +LOOP: + for j, jlen := uint16(0), uint16(flen); j < jlen; j++ { + f := rt.Field(int(j)) + fkind := f.Type.Kind() + + // skip if a func type, or is unexported, or structTag value == "-" + switch fkind { + case reflect.Func, reflect.UnsafePointer: + continue LOOP + } + + isUnexported := f.PkgPath != "" + if isUnexported && !f.Anonymous { + continue + } + stag := x.structTag(f.Tag) + if stag == "-" { + continue + } + var si structFieldInfo + + var numderef uint8 = 0 + for xft := f.Type; xft.Kind() == reflect.Ptr; xft = xft.Elem() { + numderef++ + } + + var parsed bool + // if anonymous and no struct tag (or it's blank), + // and a struct (or pointer to struct), inline it. + if f.Anonymous && fkind != reflect.Interface { + // ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface + ft := f.Type + isPtr := ft.Kind() == reflect.Ptr + for ft.Kind() == reflect.Ptr { + ft = ft.Elem() + } + isStruct := ft.Kind() == reflect.Struct + + // Ignore embedded fields of unexported non-struct types. + // Also, from go1.10, ignore pointers to unexported struct types + // because unmarshal cannot assign a new struct to an unexported field. + // See https://golang.org/issue/21357 + if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) { + continue + } + doInline := stag == "" + if !doInline { + si.parseTag(stag) + parsed = true + doInline = si.encName == "" // si.isZero() + } + if doInline && isStruct { + // if etypes contains this, don't call rget again (as fields are already seen here) + ftid := rt2id(ft) + // We cannot recurse forever, but we need to track other field depths. + // So - we break if we see a type twice (not the first time). + // This should be sufficient to handle an embedded type that refers to its + // owning type, which then refers to its embedded type. + processIt := true + numk := 0 + for _, k := range pv.etypes { + if k == ftid { + numk++ + if numk == rgetMaxRecursion { + processIt = false + break + } + } + } + if processIt { + pv.etypes = append(pv.etypes, ftid) + path2 := &structFieldInfoPathNode{ + parent: path, + typ: f.Type, + offset: uint16(f.Offset), + index: j, + kind: uint8(fkind), + numderef: numderef, + } + x.rget(ft, ftid, path2, pv, omitEmpty) + } + continue + } + } + + // after the anonymous dance: if an unexported field, skip + if isUnexported || f.Name == "" { // f.Name cannot be "", but defensively handle it + continue + } + + si.path = structFieldInfoPathNode{ + parent: path, + typ: f.Type, + offset: uint16(f.Offset), + index: j, + kind: uint8(fkind), + numderef: numderef, + // set asciiAlphaNum to true (default); checked and may be set to false below + encNameAsciiAlphaNum: true, + // note: omitEmpty might have been set in an earlier parseTag call, etc - so carry it forward + omitEmpty: si.path.omitEmpty, + } + + if !parsed { + si.encName = f.Name + si.parseTag(stag) + parsed = true + } else if si.encName == "" { + si.encName = f.Name + } + + // si.encNameHash = maxUintptr() // hashShortString(bytesView(si.encName)) + + if omitEmpty { + si.path.omitEmpty = true + } + + for i := len(si.encName) - 1; i >= 0; i-- { // bounds-check elimination + if !asciiAlphaNumBitset.isset(si.encName[i]) { + si.path.encNameAsciiAlphaNum = false + break + } + } + + pv.sfis = append(pv.sfis, si) + } +} + +func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) { + // return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp) + + // if I's method is defined on T (ie T implements I), then *T implements I. + // The converse is not true. + + // Type.Implements can be expensive, as it does a simulataneous linear search across 2 lists + // with alphanumeric string comparisons. + // If we can avoid running one of these 2 calls, we should. + + base = rt.Implements(iTyp) + if base { + indir = true + } else { + indir = reflect.PtrTo(rt).Implements(iTyp) + } + return +} + +func isSliceBoundsError(s string) bool { + return strings.Contains(s, "index out of range") || + strings.Contains(s, "slice bounds out of range") +} + +func sprintf(format string, v ...interface{}) string { + return fmt.Sprintf(format, v...) +} + +func panicValToErr(h errDecorator, v interface{}, err *error) { + if v == *err { + return + } + switch xerr := v.(type) { + case nil: + case runtime.Error: + d, dok := h.(*Decoder) + if dok && d.bytes && isSliceBoundsError(xerr.Error()) { + *err = io.EOF + } else { + h.wrapErr(xerr, err) + } + case error: + switch xerr { + case nil: + case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized: + // treat as special (bubble up) + *err = xerr + default: + h.wrapErr(xerr, err) + } + default: + // we don't expect this to happen (as this library always panics with an error) + h.wrapErr(fmt.Errorf("%v", v), err) + } +} + +func usableByteSlice(bs []byte, slen int) (out []byte, changed bool) { + if slen <= 0 { + return []byte{}, true + } + if cap(bs) < slen { + return make([]byte, slen), true + } + return bs[:slen], false +} + +func mapKeyFastKindFor(k reflect.Kind) mapKeyFastKind { + return mapKeyFastKindVals[k&31] +} + +// ---- + +type codecFnInfo struct { + ti *typeInfo + xfFn Ext + xfTag uint64 + addrD bool + addrDf bool // force: if addrD, then decode function MUST take a ptr + addrE bool + // addrEf bool // force: if addrE, then encode function MUST take a ptr +} + +// codecFn encapsulates the captured variables and the encode function. +// This way, we only do some calculations one times, and pass to the +// code block that should be called (encapsulated in a function) +// instead of executing the checks every time. +type codecFn struct { + i codecFnInfo + fe func(*Encoder, *codecFnInfo, reflect.Value) + fd func(*Decoder, *codecFnInfo, reflect.Value) + // _ [1]uint64 // padding (cache-aligned) +} + +type codecRtidFn struct { + rtid uintptr + fn *codecFn +} + +func makeExt(ext interface{}) Ext { + switch t := ext.(type) { + case Ext: + return t + case BytesExt: + return &bytesExtWrapper{BytesExt: t} + case InterfaceExt: + return &interfaceExtWrapper{InterfaceExt: t} + } + return &extFailWrapper{} +} + +func baseRV(v interface{}) (rv reflect.Value) { + // use reflect.ValueOf, not rv4i, as of go 1.16beta, rv4i was not inlineable + for rv = reflect.ValueOf(v); rv.Kind() == reflect.Ptr; rv = rv.Elem() { + } + return +} + +// ---- + +// these "checkOverflow" functions must be inlinable, and not call anybody. +// Overflow means that the value cannot be represented without wrapping/overflow. +// Overflow=false does not mean that the value can be represented without losing precision +// (especially for floating point). + +type checkOverflow struct{} + +func (checkOverflow) Float32(v float64) (overflow bool) { + if v < 0 { + v = -v + } + return math.MaxFloat32 < v && v <= math.MaxFloat64 +} +func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) { + if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) { + overflow = true + } + return +} +func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) { + if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) { + overflow = true + } + return +} + +func (checkOverflow) Uint2Int(v uint64, neg bool) (overflow bool) { + return (neg && v > 1<<63) || (!neg && v >= 1<<63) +} + +func (checkOverflow) SignedInt(v uint64) (overflow bool) { + //e.g. -127 to 128 for int8 + pos := (v >> 63) == 0 + ui2 := v & 0x7fffffffffffffff + if pos { + if ui2 > math.MaxInt64 { + overflow = true + } + } else { + if ui2 > math.MaxInt64-1 { + overflow = true + } + } + return +} + +func (x checkOverflow) Float32V(v float64) float64 { + if x.Float32(v) { + halt.errorf("float32 overflow: %v", v) + } + return v +} +func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 { + if x.Uint(v, bitsize) { + halt.errorf("uint64 overflow: %v", v) + } + return v +} +func (x checkOverflow) IntV(v int64, bitsize uint8) int64 { + if x.Int(v, bitsize) { + halt.errorf("int64 overflow: %v", v) + } + return v +} +func (x checkOverflow) SignedIntV(v uint64) int64 { + if x.SignedInt(v) { + halt.errorf("uint64 to int64 overflow: %v", v) + } + return int64(v) +} + +// ------------------ FLOATING POINT ----------------- + +func isNaN64(f float64) bool { return f != f } + +func isWhitespaceChar(v byte) bool { + // these are in order of speed below ... + + return v < 33 + // return v < 33 && whitespaceCharBitset64.isset(v) + // return v < 33 && (v == ' ' || v == '\n' || v == '\t' || v == '\r') + // return v == ' ' || v == '\n' || v == '\t' || v == '\r' + // return whitespaceCharBitset.isset(v) +} + +func isNumberChar(v byte) bool { + // these are in order of speed below ... + + return numCharBitset.isset(v) + // return v < 64 && numCharNoExpBitset64.isset(v) || v == 'e' || v == 'E' + // return v > 42 && v < 102 && numCharWithExpBitset64.isset(v-42) +} + +// ----------------------- + +type ioFlusher interface { + Flush() error +} + +type ioBuffered interface { + Buffered() int +} + +// ----------------------- + +type sfiRv struct { + v *structFieldInfo + r reflect.Value +} + +// ------ + +// bitset types are better than [256]bool, because they permit the whole +// bitset array being on a single cache line and use less memory. +// +// Also, since pos is a byte (0-255), there's no bounds checks on indexing (cheap). +// +// We previously had bitset128 [16]byte, and bitset32 [4]byte, but those introduces +// bounds checking, so we discarded them, and everyone uses bitset256. +// +// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1). +// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7 +// +// Note that using >> or & is faster than using / or %, as division is quite expensive if not optimized. + +// MARKER: +// We noticed a little performance degradation when using bitset256 as [32]byte (or bitset32 as uint32). +// For example, json encoding went from 188K ns/op to 168K ns/op (~ 10% reduction). +// Consequently, we are using a [NNN]bool for bitsetNNN. +// To eliminate bounds-checking, we use x % v as that is guaranteed to be within bounds. + +// ---- +type bitset32 [32]bool + +func (x *bitset32) set(pos byte) *bitset32 { + x[pos&31] = true // x[pos%32] = true + return x +} +func (x *bitset32) isset(pos byte) bool { + return x[pos&31] // x[pos%32] +} + +type bitset256 [256]bool + +func (x *bitset256) set(pos byte) *bitset256 { + x[pos] = true + return x +} +func (x *bitset256) isset(pos byte) bool { + return x[pos] +} + +// ------------ + +type panicHdl struct{} + +// errorv will panic if err is defined (not nil) +func (panicHdl) onerror(err error) { + if err != nil { + panic(err) + } +} + +// errorf will always panic, using the parameters passed. +// +// Note: it is ok to pass in a stringView, as it will just pass it directly +// to a fmt.Sprintf call and not hold onto it. +// +//go:noinline +func (panicHdl) errorf(format string, params ...interface{}) { + if format == "" { + panic(errPanicUndefined) + } + if len(params) == 0 { + panic(errors.New(format)) + } + panic(fmt.Errorf(format, params...)) +} + +// ---------------------------------------------------- + +type errDecorator interface { + wrapErr(in error, out *error) +} + +type errDecoratorDef struct{} + +func (errDecoratorDef) wrapErr(v error, e *error) { *e = v } + +// ---------------------------------------------------- + +type mustHdl struct{} + +func (mustHdl) String(s string, err error) string { + halt.onerror(err) + return s +} +func (mustHdl) Int(s int64, err error) int64 { + halt.onerror(err) + return s +} +func (mustHdl) Uint(s uint64, err error) uint64 { + halt.onerror(err) + return s +} +func (mustHdl) Float(s float64, err error) float64 { + halt.onerror(err) + return s +} + +// ------------------- + +func freelistCapacity(length int) (capacity int) { + for capacity = 8; capacity <= length; capacity *= 2 { + } + return +} + +// bytesFreelist is a list of byte buffers, sorted by cap. +// +// In anecdotal testing (running go test -tsd 1..6), we couldn't get +// the length ofthe list > 4 at any time. So we believe a linear search +// without bounds checking is sufficient. +// +// Typical usage model: +// peek may go together with put, iff pop=true. peek gets largest byte slice temporarily. +// check is used to switch a []byte if necessary +// get/put go together +// +// Given that folks may get a []byte, and then append to it a lot which may re-allocate +// a new []byte, we should try to return both (one received from blist and new one allocated). +// +// Typical usage model for get/put, when we don't know whether we may need more than requested +// v0 := blist.get() +// v1 := v0 +// ... use v1 ... +// blist.put(v1) +// if byteSliceAddr(v0) != byteSliceAddr(v1) { +// blist.put(v0) +// } +// +type bytesFreelist [][]byte + +// peek returns a slice of possibly non-zero'ed bytes, with len=0, +// and with the largest capacity from the list. +func (x *bytesFreelist) peek(length int, pop bool) (out []byte) { + if bytesFreeListNoCache { + return make([]byte, 0, freelistCapacity(length)) + } + y := *x + if len(y) > 0 { + out = y[len(y)-1] + } + // start buf with a minimum of 64 bytes + const minLenBytes = 64 + if length < minLenBytes { + length = minLenBytes + } + if cap(out) < length { + out = make([]byte, 0, freelistCapacity(length)) + y = append(y, out) + *x = y + } + if pop && len(y) > 0 { + y = y[:len(y)-1] + *x = y + } + return +} + +// get returns a slice of possibly non-zero'ed bytes, with len=0, +// and with cap >= length requested. +func (x *bytesFreelist) get(length int) (out []byte) { + if bytesFreeListNoCache { + return make([]byte, 0, freelistCapacity(length)) + } + y := *x + // MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta + // for i, v := range y { + for i := 0; i < len(y); i++ { + v := y[i] + if cap(v) >= length { + // *x = append(y[:i], y[i+1:]...) + copy(y[i:], y[i+1:]) + *x = y[:len(y)-1] + return v + } + } + return make([]byte, 0, freelistCapacity(length)) +} + +func (x *bytesFreelist) put(v []byte) { + if bytesFreeListNoCache || cap(v) == 0 { + return + } + if len(v) != 0 { + v = v[:0] + } + // append the new value, then try to put it in a better position + y := append(*x, v) + *x = y + // MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta + // for i, z := range y[:len(y)-1] { + for i := 0; i < len(y)-1; i++ { + z := y[i] + if cap(z) > cap(v) { + copy(y[i+1:], y[i:]) + y[i] = v + return + } + } +} + +func (x *bytesFreelist) check(v []byte, length int) (out []byte) { + // ensure inlineable, by moving slow-path out to its own function + if cap(v) >= length { + return v[:0] + } + return x.checkPutGet(v, length) +} + +func (x *bytesFreelist) checkPutGet(v []byte, length int) []byte { + // checkPutGet broken out into its own function, so check is inlineable in general case + const useSeparateCalls = false + + if useSeparateCalls { + x.put(v) + return x.get(length) + } + + if bytesFreeListNoCache { + return make([]byte, 0, freelistCapacity(length)) + } + + // assume cap(v) < length, so put must happen before get + y := *x + var put = cap(v) == 0 // if empty, consider it already put + if !put { + y = append(y, v) + *x = y + } + for i := 0; i < len(y); i++ { + z := y[i] + if put { + if cap(z) >= length { + copy(y[i:], y[i+1:]) + y = y[:len(y)-1] + *x = y + return z + } + } else { + if cap(z) > cap(v) { + copy(y[i+1:], y[i:]) + y[i] = v + put = true + } + } + } + return make([]byte, 0, freelistCapacity(length)) +} + +// ------------------------- + +// sfiRvFreelist is used by Encoder for encoding structs, +// where we have to gather the fields first and then +// analyze them for omitEmpty, before knowing the length of the array/map to encode. +// +// Typically, the length here will depend on the number of cycles e.g. +// if type T1 has reference to T1, or T1 has reference to type T2 which has reference to T1. +// +// In the general case, the length of this list at most times is 1, +// so linear search is fine. +type sfiRvFreelist [][]sfiRv + +func (x *sfiRvFreelist) get(length int) (out []sfiRv) { + y := *x + + // MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta + // for i, v := range y { + for i := 0; i < len(y); i++ { + v := y[i] + if cap(v) >= length { + // *x = append(y[:i], y[i+1:]...) + copy(y[i:], y[i+1:]) + *x = y[:len(y)-1] + return v + } + } + return make([]sfiRv, 0, freelistCapacity(length)) +} + +func (x *sfiRvFreelist) put(v []sfiRv) { + if len(v) != 0 { + v = v[:0] + } + // append the new value, then try to put it in a better position + y := append(*x, v) + *x = y + // MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta + // for i, z := range y[:len(y)-1] { + for i := 0; i < len(y)-1; i++ { + z := y[i] + if cap(z) > cap(v) { + copy(y[i+1:], y[i:]) + y[i] = v + return + } + } +} + +// ---- multiple interner implementations ---- + +// Hard to tell which is most performant: +// - use a map[string]string - worst perf, no collisions, and unlimited entries +// - use a linear search with move to front heuristics - no collisions, and maxed at 64 entries +// - use a computationally-intensive hash - best performance, some collisions, maxed at 64 entries + +const ( + internMaxStrLen = 16 // if more than 16 bytes, faster to copy than compare bytes + internCap = 64 * 2 // 64 uses 1K bytes RAM, so 128 (anecdotal sweet spot) uses 2K bytes +) + +type internerMap map[string]string + +func (x *internerMap) init() { + *x = make(map[string]string, internCap) +} + +func (x internerMap) string(v []byte) (s string) { + s, ok := x[string(v)] // no allocation here, per go implementation + if !ok { + s = string(v) // new allocation here + x[s] = s + } + return +} |