summaryrefslogtreecommitdiff
path: root/vendor/github.com/ugorji/go/codec/encode.go
diff options
context:
space:
mode:
authorLibravatar Tobi Smethurst <31960611+tsmethurst@users.noreply.github.com>2021-08-12 21:03:24 +0200
committerLibravatar GitHub <noreply@github.com>2021-08-12 21:03:24 +0200
commit98263a7de64269898a2f81207e38943b5c8e8653 (patch)
tree743c90f109a6c5d27832d1dcef2388d939f0f77a /vendor/github.com/ugorji/go/codec/encode.go
parentText duplication fix (#137) (diff)
downloadgotosocial-98263a7de64269898a2f81207e38943b5c8e8653.tar.xz
Grand test fixup (#138)
* start fixing up tests * fix up tests + automate with drone * fiddle with linting * messing about with drone.yml * some more fiddling * hmmm * add cache * add vendor directory * verbose * ci updates * update some little things * update sig
Diffstat (limited to 'vendor/github.com/ugorji/go/codec/encode.go')
-rw-r--r--vendor/github.com/ugorji/go/codec/encode.go1479
1 files changed, 1479 insertions, 0 deletions
diff --git a/vendor/github.com/ugorji/go/codec/encode.go b/vendor/github.com/ugorji/go/codec/encode.go
new file mode 100644
index 000000000..e411bdb81
--- /dev/null
+++ b/vendor/github.com/ugorji/go/codec/encode.go
@@ -0,0 +1,1479 @@
+// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
+// Use of this source code is governed by a MIT license found in the LICENSE file.
+
+package codec
+
+import (
+ "encoding"
+ "errors"
+ "io"
+ "reflect"
+ "sort"
+ "strconv"
+ "time"
+)
+
+// defEncByteBufSize is the default size of []byte used
+// for bufio buffer or []byte (when nil passed)
+const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
+
+var errEncoderNotInitialized = errors.New("Encoder not initialized")
+
+// encDriver abstracts the actual codec (binc vs msgpack, etc)
+type encDriver interface {
+ EncodeNil()
+ EncodeInt(i int64)
+ EncodeUint(i uint64)
+ EncodeBool(b bool)
+ EncodeFloat32(f float32)
+ EncodeFloat64(f float64)
+ EncodeRawExt(re *RawExt)
+ EncodeExt(v interface{}, basetype reflect.Type, xtag uint64, ext Ext)
+ // EncodeString using cUTF8, honor'ing StringToRaw flag
+ EncodeString(v string)
+ EncodeStringBytesRaw(v []byte)
+ EncodeTime(time.Time)
+ WriteArrayStart(length int)
+ WriteArrayEnd()
+ WriteMapStart(length int)
+ WriteMapEnd()
+
+ // reset will reset current encoding runtime state, and cached information from the handle
+ reset()
+
+ encoder() *Encoder
+
+ driverStateManager
+}
+
+type encDriverContainerTracker interface {
+ WriteArrayElem()
+ WriteMapElemKey()
+ WriteMapElemValue()
+}
+
+type encDriverNoState struct{}
+
+func (encDriverNoState) captureState() interface{} { return nil }
+func (encDriverNoState) reset() {}
+func (encDriverNoState) resetState() {}
+func (encDriverNoState) restoreState(v interface{}) {}
+
+type encDriverNoopContainerWriter struct{}
+
+func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
+func (encDriverNoopContainerWriter) WriteArrayEnd() {}
+func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
+func (encDriverNoopContainerWriter) WriteMapEnd() {}
+
+// encStructFieldObj[Slice] is used for sorting when there are missing fields and canonical flag is set
+type encStructFieldObj struct {
+ key string
+ rv reflect.Value
+ intf interface{}
+ ascii bool
+ isRv bool
+}
+
+type encStructFieldObjSlice []encStructFieldObj
+
+func (p encStructFieldObjSlice) Len() int { return len(p) }
+func (p encStructFieldObjSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
+func (p encStructFieldObjSlice) Less(i, j int) bool {
+ return p[uint(i)].key < p[uint(j)].key
+}
+
+// EncodeOptions captures configuration options during encode.
+type EncodeOptions struct {
+ // WriterBufferSize is the size of the buffer used when writing.
+ //
+ // if > 0, we use a smart buffer internally for performance purposes.
+ WriterBufferSize int
+
+ // ChanRecvTimeout is the timeout used when selecting from a chan.
+ //
+ // Configuring this controls how we receive from a chan during the encoding process.
+ // - If ==0, we only consume the elements currently available in the chan.
+ // - if <0, we consume until the chan is closed.
+ // - If >0, we consume until this timeout.
+ ChanRecvTimeout time.Duration
+
+ // StructToArray specifies to encode a struct as an array, and not as a map
+ StructToArray bool
+
+ // Canonical representation means that encoding a value will always result in the same
+ // sequence of bytes.
+ //
+ // This only affects maps, as the iteration order for maps is random.
+ //
+ // The implementation MAY use the natural sort order for the map keys if possible:
+ //
+ // - If there is a natural sort order (ie for number, bool, string or []byte keys),
+ // then the map keys are first sorted in natural order and then written
+ // with corresponding map values to the strema.
+ // - If there is no natural sort order, then the map keys will first be
+ // encoded into []byte, and then sorted,
+ // before writing the sorted keys and the corresponding map values to the stream.
+ //
+ Canonical bool
+
+ // CheckCircularRef controls whether we check for circular references
+ // and error fast during an encode.
+ //
+ // If enabled, an error is received if a pointer to a struct
+ // references itself either directly or through one of its fields (iteratively).
+ //
+ // This is opt-in, as there may be a performance hit to checking circular references.
+ CheckCircularRef bool
+
+ // RecursiveEmptyCheck controls how we determine whether a value is empty.
+ //
+ // If true, we descend into interfaces and pointers to reursively check if value is empty.
+ //
+ // We *might* check struct fields one by one to see if empty
+ // (if we cannot directly check if a struct value is equal to its zero value).
+ // If so, we honor IsZero, Comparable, IsCodecEmpty(), etc.
+ // Note: This *may* make OmitEmpty more expensive due to the large number of reflect calls.
+ //
+ // If false, we check if the value is equal to its zero value (newly allocated state).
+ RecursiveEmptyCheck bool
+
+ // Raw controls whether we encode Raw values.
+ // This is a "dangerous" option and must be explicitly set.
+ // If set, we blindly encode Raw values as-is, without checking
+ // if they are a correct representation of a value in that format.
+ // If unset, we error out.
+ Raw bool
+
+ // StringToRaw controls how strings are encoded.
+ //
+ // As a go string is just an (immutable) sequence of bytes,
+ // it can be encoded either as raw bytes or as a UTF string.
+ //
+ // By default, strings are encoded as UTF-8.
+ // but can be treated as []byte during an encode.
+ //
+ // Note that things which we know (by definition) to be UTF-8
+ // are ALWAYS encoded as UTF-8 strings.
+ // These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
+ StringToRaw bool
+
+ // OptimumSize controls whether we optimize for the smallest size.
+ //
+ // Some formats will use this flag to determine whether to encode
+ // in the smallest size possible, even if it takes slightly longer.
+ //
+ // For example, some formats that support half-floats might check if it is possible
+ // to store a float64 as a half float. Doing this check has a small performance cost,
+ // but the benefit is that the encoded message will be smaller.
+ OptimumSize bool
+
+ // NoAddressableReadonly controls whether we try to force a non-addressable value
+ // to be addressable so we can call a pointer method on it e.g. for types
+ // that support Selfer, json.Marshaler, etc.
+ //
+ // Use it in the very rare occurrence that your types modify a pointer value when calling
+ // an encode callback function e.g. JsonMarshal, TextMarshal, BinaryMarshal or CodecEncodeSelf.
+ NoAddressableReadonly bool
+}
+
+// ---------------------------------------------
+
+func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeRawExt(rv2i(rv).(*RawExt))
+}
+
+func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn)
+}
+
+func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
+ rv2i(rv).(Selfer).CodecEncodeSelf(e)
+}
+
+func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
+ bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
+ e.marshalRaw(bs, fnerr)
+}
+
+func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
+ bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
+ e.marshalUtf8(bs, fnerr)
+}
+
+func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
+ bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
+ e.marshalAsis(bs, fnerr)
+}
+
+func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
+ e.rawBytes(rv2i(rv).(Raw))
+}
+
+func (e *Encoder) encodeComplex64(v complex64) {
+ if imag(v) != 0 {
+ e.errorf("cannot encode complex number: %v, with imaginary values: %v", v, imag(v))
+ }
+ e.e.EncodeFloat32(real(v))
+}
+
+func (e *Encoder) encodeComplex128(v complex128) {
+ if imag(v) != 0 {
+ e.errorf("cannot encode complex number: %v, with imaginary values: %v", v, imag(v))
+ }
+ e.e.EncodeFloat64(real(v))
+}
+
+func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeBool(rvGetBool(rv))
+}
+
+func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeTime(rvGetTime(rv))
+}
+
+func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeString(rvGetString(rv))
+}
+
+func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeFloat32(rvGetFloat32(rv))
+}
+
+func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeFloat64(rvGetFloat64(rv))
+}
+
+func (e *Encoder) kComplex64(f *codecFnInfo, rv reflect.Value) {
+ e.encodeComplex64(rvGetComplex64(rv))
+}
+
+func (e *Encoder) kComplex128(f *codecFnInfo, rv reflect.Value) {
+ e.encodeComplex128(rvGetComplex128(rv))
+}
+
+func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeInt(int64(rvGetInt(rv)))
+}
+
+func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeInt(int64(rvGetInt8(rv)))
+}
+
+func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeInt(int64(rvGetInt16(rv)))
+}
+
+func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeInt(int64(rvGetInt32(rv)))
+}
+
+func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeInt(int64(rvGetInt64(rv)))
+}
+
+func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeUint(uint64(rvGetUint(rv)))
+}
+
+func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeUint(uint64(rvGetUint8(rv)))
+}
+
+func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeUint(uint64(rvGetUint16(rv)))
+}
+
+func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeUint(uint64(rvGetUint32(rv)))
+}
+
+func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeUint(uint64(rvGetUint64(rv)))
+}
+
+func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
+ e.e.EncodeUint(uint64(rvGetUintptr(rv)))
+}
+
+func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
+ e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
+}
+
+func chanToSlice(rv reflect.Value, rtslice reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
+ rvcs = rvZeroK(rtslice, reflect.Slice)
+ if timeout < 0 { // consume until close
+ for {
+ recv, recvOk := rv.Recv()
+ if !recvOk {
+ break
+ }
+ rvcs = reflect.Append(rvcs, recv)
+ }
+ } else {
+ cases := make([]reflect.SelectCase, 2)
+ cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
+ if timeout == 0 {
+ cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
+ } else {
+ tt := time.NewTimer(timeout)
+ cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
+ }
+ for {
+ chosen, recv, recvOk := reflect.Select(cases)
+ if chosen == 1 || !recvOk {
+ break
+ }
+ rvcs = reflect.Append(rvcs, recv)
+ }
+ }
+ return
+}
+
+func (e *Encoder) kSeqFn(rtelem reflect.Type) (fn *codecFn) {
+ for rtelem.Kind() == reflect.Ptr {
+ rtelem = rtelem.Elem()
+ }
+ // if kind is reflect.Interface, do not pre-determine the encoding type,
+ // because preEncodeValue may break it down to a concrete type and kInterface will bomb.
+ if rtelem.Kind() != reflect.Interface {
+ fn = e.h.fn(rtelem)
+ }
+ return
+}
+
+func (e *Encoder) kSliceWMbs(rv reflect.Value, ti *typeInfo) {
+ var l = rvLenSlice(rv)
+ if l == 0 {
+ e.mapStart(0)
+ } else {
+ e.haltOnMbsOddLen(l)
+ e.mapStart(l >> 1) // e.mapStart(l / 2)
+ fn := e.kSeqFn(ti.elem)
+ for j := 0; j < l; j++ {
+ if j&1 == 0 { // j%2 == 0 {
+ e.mapElemKey()
+ } else {
+ e.mapElemValue()
+ }
+ e.encodeValue(rvSliceIndex(rv, j, ti), fn)
+ }
+ }
+ e.mapEnd()
+}
+
+func (e *Encoder) kSliceW(rv reflect.Value, ti *typeInfo) {
+ var l = rvLenSlice(rv)
+ e.arrayStart(l)
+ if l > 0 {
+ fn := e.kSeqFn(ti.elem)
+ for j := 0; j < l; j++ {
+ e.arrayElem()
+ e.encodeValue(rvSliceIndex(rv, j, ti), fn)
+ }
+ }
+ e.arrayEnd()
+}
+
+func (e *Encoder) kArrayWMbs(rv reflect.Value, ti *typeInfo) {
+ var l = rv.Len()
+ if l == 0 {
+ e.mapStart(0)
+ } else {
+ e.haltOnMbsOddLen(l)
+ e.mapStart(l >> 1) // e.mapStart(l / 2)
+ fn := e.kSeqFn(ti.elem)
+ for j := 0; j < l; j++ {
+ if j&1 == 0 { // j%2 == 0 {
+ e.mapElemKey()
+ } else {
+ e.mapElemValue()
+ }
+ e.encodeValue(rv.Index(j), fn)
+ }
+ }
+ e.mapEnd()
+}
+
+func (e *Encoder) kArrayW(rv reflect.Value, ti *typeInfo) {
+ var l = rv.Len()
+ e.arrayStart(l)
+ if l > 0 {
+ fn := e.kSeqFn(ti.elem)
+ for j := 0; j < l; j++ {
+ e.arrayElem()
+ e.encodeValue(rv.Index(j), fn)
+ }
+ }
+ e.arrayEnd()
+}
+
+func (e *Encoder) kChan(f *codecFnInfo, rv reflect.Value) {
+ if f.ti.chandir&uint8(reflect.RecvDir) == 0 {
+ e.errorf("send-only channel cannot be encoded")
+ }
+ if !f.ti.mbs && uint8TypId == rt2id(f.ti.elem) {
+ e.kSliceBytesChan(rv)
+ return
+ }
+ rtslice := reflect.SliceOf(f.ti.elem)
+ rv = chanToSlice(rv, rtslice, e.h.ChanRecvTimeout)
+ ti := e.h.getTypeInfo(rt2id(rtslice), rtslice)
+ if f.ti.mbs {
+ e.kSliceWMbs(rv, ti)
+ } else {
+ e.kSliceW(rv, ti)
+ }
+}
+
+func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
+ if f.ti.mbs {
+ e.kSliceWMbs(rv, f.ti)
+ } else if f.ti.rtid == uint8SliceTypId || uint8TypId == rt2id(f.ti.elem) {
+ e.e.EncodeStringBytesRaw(rvGetBytes(rv))
+ } else {
+ e.kSliceW(rv, f.ti)
+ }
+}
+
+func (e *Encoder) kArray(f *codecFnInfo, rv reflect.Value) {
+ if f.ti.mbs {
+ e.kArrayWMbs(rv, f.ti)
+ } else if handleBytesWithinKArray && uint8TypId == rt2id(f.ti.elem) {
+ e.e.EncodeStringBytesRaw(rvGetArrayBytes(rv, []byte{}))
+ } else {
+ e.kArrayW(rv, f.ti)
+ }
+}
+
+func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
+ // do not use range, so that the number of elements encoded
+ // does not change, and encoding does not hang waiting on someone to close chan.
+
+ bs0 := e.blist.peek(32, true)
+ bs := bs0
+
+ irv := rv2i(rv)
+ ch, ok := irv.(<-chan byte)
+ if !ok {
+ ch = irv.(chan byte)
+ }
+
+L1:
+ switch timeout := e.h.ChanRecvTimeout; {
+ case timeout == 0: // only consume available
+ for {
+ select {
+ case b := <-ch:
+ bs = append(bs, b)
+ default:
+ break L1
+ }
+ }
+ case timeout > 0: // consume until timeout
+ tt := time.NewTimer(timeout)
+ for {
+ select {
+ case b := <-ch:
+ bs = append(bs, b)
+ case <-tt.C:
+ // close(tt.C)
+ break L1
+ }
+ }
+ default: // consume until close
+ for b := range ch {
+ bs = append(bs, b)
+ }
+ }
+
+ e.e.EncodeStringBytesRaw(bs)
+ e.blist.put(bs)
+ if !byteSliceSameData(bs0, bs) {
+ e.blist.put(bs0)
+ }
+}
+
+func (e *Encoder) kStructSfi(f *codecFnInfo) []*structFieldInfo {
+ if e.h.Canonical {
+ return f.ti.sfi.sorted()
+ }
+ return f.ti.sfi.source()
+}
+
+func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
+ var tisfi []*structFieldInfo
+ if f.ti.toArray || e.h.StructToArray { // toArray
+ tisfi = f.ti.sfi.source()
+ e.arrayStart(len(tisfi))
+ for _, si := range tisfi {
+ e.arrayElem()
+ e.encodeValue(si.path.field(rv), nil)
+ }
+ e.arrayEnd()
+ } else {
+ tisfi = e.kStructSfi(f)
+ e.mapStart(len(tisfi))
+ keytyp := f.ti.keyType
+ for _, si := range tisfi {
+ e.mapElemKey()
+ e.kStructFieldKey(keytyp, si.path.encNameAsciiAlphaNum, si.encName)
+ e.mapElemValue()
+ e.encodeValue(si.path.field(rv), nil)
+ }
+ e.mapEnd()
+ }
+}
+
+func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
+ encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
+}
+
+func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
+ var newlen int
+ ti := f.ti
+ toMap := !(ti.toArray || e.h.StructToArray)
+ var mf map[string]interface{}
+ if ti.flagMissingFielder {
+ mf = rv2i(rv).(MissingFielder).CodecMissingFields()
+ toMap = true
+ newlen += len(mf)
+ } else if ti.flagMissingFielderPtr {
+ rv2 := e.addrRV(rv, ti.rt, ti.ptr)
+ mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
+ toMap = true
+ newlen += len(mf)
+ }
+ tisfi := ti.sfi.source()
+ newlen += len(tisfi)
+
+ var fkvs = e.slist.get(newlen)[:newlen]
+
+ recur := e.h.RecursiveEmptyCheck
+
+ var kv sfiRv
+ var j int
+ if toMap {
+ newlen = 0
+ for _, si := range e.kStructSfi(f) {
+ kv.r = si.path.field(rv)
+ if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
+ continue
+ }
+ kv.v = si
+ fkvs[newlen] = kv
+ newlen++
+ }
+
+ var mf2s []stringIntf
+ if len(mf) > 0 {
+ mf2s = make([]stringIntf, 0, len(mf))
+ for k, v := range mf {
+ if k == "" {
+ continue
+ }
+ if ti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur) {
+ continue
+ }
+ mf2s = append(mf2s, stringIntf{k, v})
+ }
+ }
+
+ e.mapStart(newlen + len(mf2s))
+
+ // When there are missing fields, and Canonical flag is set,
+ // we cannot have the missing fields and struct fields sorted independently.
+ // We have to capture them together and sort as a unit.
+
+ if len(mf2s) > 0 && e.h.Canonical {
+ mf2w := make([]encStructFieldObj, newlen+len(mf2s))
+ for j = 0; j < newlen; j++ {
+ kv = fkvs[j]
+ mf2w[j] = encStructFieldObj{kv.v.encName, kv.r, nil, kv.v.path.encNameAsciiAlphaNum, true}
+ }
+ for _, v := range mf2s {
+ mf2w[j] = encStructFieldObj{v.v, reflect.Value{}, v.i, false, false}
+ j++
+ }
+ sort.Sort((encStructFieldObjSlice)(mf2w))
+ for _, v := range mf2w {
+ e.mapElemKey()
+ e.kStructFieldKey(ti.keyType, v.ascii, v.key)
+ e.mapElemValue()
+ if v.isRv {
+ e.encodeValue(v.rv, nil)
+ } else {
+ e.encode(v.intf)
+ }
+ }
+ } else {
+ keytyp := ti.keyType
+ for j = 0; j < newlen; j++ {
+ kv = fkvs[j]
+ e.mapElemKey()
+ e.kStructFieldKey(keytyp, kv.v.path.encNameAsciiAlphaNum, kv.v.encName)
+ e.mapElemValue()
+ e.encodeValue(kv.r, nil)
+ }
+ for _, v := range mf2s {
+ e.mapElemKey()
+ e.kStructFieldKey(keytyp, false, v.v)
+ e.mapElemValue()
+ e.encode(v.i)
+ }
+ }
+
+ e.mapEnd()
+ } else {
+ newlen = len(tisfi)
+ for i, si := range tisfi { // use unsorted array (to match sequence in struct)
+ kv.r = si.path.field(rv)
+ // use the zero value.
+ // if a reference or struct, set to nil (so you do not output too much)
+ if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
+ switch kv.r.Kind() {
+ case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
+ kv.r = reflect.Value{} //encode as nil
+ }
+ }
+ fkvs[i] = kv
+ }
+ // encode it all
+ e.arrayStart(newlen)
+ for j = 0; j < newlen; j++ {
+ e.arrayElem()
+ e.encodeValue(fkvs[j].r, nil)
+ }
+ e.arrayEnd()
+ }
+
+ // do not use defer. Instead, use explicit pool return at end of function.
+ // defer has a cost we are trying to avoid.
+ // If there is a panic and these slices are not returned, it is ok.
+ e.slist.put(fkvs)
+}
+
+func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
+ l := rvLenMap(rv)
+ e.mapStart(l)
+ if l == 0 {
+ e.mapEnd()
+ return
+ }
+
+ // determine the underlying key and val encFn's for the map.
+ // This eliminates some work which is done for each loop iteration i.e.
+ // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
+ //
+ // However, if kind is reflect.Interface, do not pre-determine the
+ // encoding type, because preEncodeValue may break it down to
+ // a concrete type and kInterface will bomb.
+
+ var keyFn, valFn *codecFn
+
+ ktypeKind := reflect.Kind(f.ti.keykind)
+ vtypeKind := reflect.Kind(f.ti.elemkind)
+
+ rtval := f.ti.elem
+ rtvalkind := vtypeKind
+ for rtvalkind == reflect.Ptr {
+ rtval = rtval.Elem()
+ rtvalkind = rtval.Kind()
+ }
+ if rtvalkind != reflect.Interface {
+ valFn = e.h.fn(rtval)
+ }
+
+ var rvv = mapAddrLoopvarRV(f.ti.elem, vtypeKind)
+
+ if e.h.Canonical {
+ e.kMapCanonical(f.ti, rv, rvv, valFn)
+ e.mapEnd()
+ return
+ }
+
+ rtkey := f.ti.key
+ var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
+ if !keyTypeIsString {
+ for rtkey.Kind() == reflect.Ptr {
+ rtkey = rtkey.Elem()
+ }
+ if rtkey.Kind() != reflect.Interface {
+ keyFn = e.h.fn(rtkey)
+ }
+ }
+
+ var rvk = mapAddrLoopvarRV(f.ti.key, ktypeKind)
+
+ var it mapIter
+ mapRange(&it, rv, rvk, rvv, true)
+
+ for it.Next() {
+ e.mapElemKey()
+ if keyTypeIsString {
+ e.e.EncodeString(it.Key().String())
+ } else {
+ e.encodeValue(it.Key(), keyFn)
+ }
+ e.mapElemValue()
+ e.encodeValue(it.Value(), valFn)
+ }
+ it.Done()
+
+ e.mapEnd()
+}
+
+func (e *Encoder) kMapCanonical(ti *typeInfo, rv, rvv reflect.Value, valFn *codecFn) {
+ // we previously did out-of-band if an extension was registered.
+ // This is not necessary, as the natural kind is sufficient for ordering.
+
+ rtkey := ti.key
+ mks := rv.MapKeys()
+ rtkeyKind := rtkey.Kind()
+ kfast := mapKeyFastKindFor(rtkeyKind)
+ visindirect := mapStoresElemIndirect(uintptr(ti.elemsize))
+ visref := refBitset.isset(ti.elemkind)
+
+ switch rtkeyKind {
+ case reflect.Bool:
+ mksv := make([]boolRv, len(mks))
+ for i, k := range mks {
+ v := &mksv[i]
+ v.r = k
+ v.v = k.Bool()
+ }
+ sort.Sort(boolRvSlice(mksv))
+ for i := range mksv {
+ e.mapElemKey()
+ e.e.EncodeBool(mksv[i].v)
+ e.mapElemValue()
+ e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
+ }
+ case reflect.String:
+ mksv := make([]stringRv, len(mks))
+ for i, k := range mks {
+ v := &mksv[i]
+ v.r = k
+ v.v = k.String()
+ }
+ sort.Sort(stringRvSlice(mksv))
+ for i := range mksv {
+ e.mapElemKey()
+ e.e.EncodeString(mksv[i].v)
+ e.mapElemValue()
+ e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
+ }
+ case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
+ mksv := make([]uint64Rv, len(mks))
+ for i, k := range mks {
+ v := &mksv[i]
+ v.r = k
+ v.v = k.Uint()
+ }
+ sort.Sort(uint64RvSlice(mksv))
+ for i := range mksv {
+ e.mapElemKey()
+ e.e.EncodeUint(mksv[i].v)
+ e.mapElemValue()
+ e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
+ }
+ case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
+ mksv := make([]int64Rv, len(mks))
+ for i, k := range mks {
+ v := &mksv[i]
+ v.r = k
+ v.v = k.Int()
+ }
+ sort.Sort(int64RvSlice(mksv))
+ for i := range mksv {
+ e.mapElemKey()
+ e.e.EncodeInt(mksv[i].v)
+ e.mapElemValue()
+ e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
+ }
+ case reflect.Float32:
+ mksv := make([]float64Rv, len(mks))
+ for i, k := range mks {
+ v := &mksv[i]
+ v.r = k
+ v.v = k.Float()
+ }
+ sort.Sort(float64RvSlice(mksv))
+ for i := range mksv {
+ e.mapElemKey()
+ e.e.EncodeFloat32(float32(mksv[i].v))
+ e.mapElemValue()
+ e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
+ }
+ case reflect.Float64:
+ mksv := make([]float64Rv, len(mks))
+ for i, k := range mks {
+ v := &mksv[i]
+ v.r = k
+ v.v = k.Float()
+ }
+ sort.Sort(float64RvSlice(mksv))
+ for i := range mksv {
+ e.mapElemKey()
+ e.e.EncodeFloat64(mksv[i].v)
+ e.mapElemValue()
+ e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
+ }
+ case reflect.Struct:
+ if rtkey == timeTyp {
+ mksv := make([]timeRv, len(mks))
+ for i, k := range mks {
+ v := &mksv[i]
+ v.r = k
+ v.v = rv2i(k).(time.Time)
+ }
+ sort.Sort(timeRvSlice(mksv))
+ for i := range mksv {
+ e.mapElemKey()
+ e.e.EncodeTime(mksv[i].v)
+ e.mapElemValue()
+ e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
+ }
+ break
+ }
+ fallthrough
+ default:
+ // out-of-band
+ // first encode each key to a []byte first, then sort them, then record
+ bs0 := e.blist.get(len(mks) * 16)
+ mksv := bs0
+ mksbv := make([]bytesRv, len(mks))
+
+ func() {
+ // replicate sideEncode logic
+ defer func(wb bytesEncAppender, bytes bool, c containerState, state interface{}) {
+ e.wb = wb
+ e.bytes = bytes
+ e.c = c
+ e.e.restoreState(state)
+ }(e.wb, e.bytes, e.c, e.e.captureState())
+
+ // e2 := NewEncoderBytes(&mksv, e.hh)
+ e.wb = bytesEncAppender{mksv[:0], &mksv}
+ e.bytes = true
+ e.c = 0
+ e.e.resetState()
+
+ for i, k := range mks {
+ v := &mksbv[i]
+ l := len(mksv)
+
+ e.encodeValue(k, nil)
+ e.atEndOfEncode()
+ e.w().end()
+
+ v.r = k
+ v.v = mksv[l:]
+ }
+ }()
+
+ sort.Sort(bytesRvSlice(mksbv))
+ for j := range mksbv {
+ e.mapElemKey()
+ e.encWr.writeb(mksbv[j].v)
+ e.mapElemValue()
+ e.encodeValue(mapGet(rv, mksbv[j].r, rvv, kfast, visindirect, visref), valFn)
+ }
+ e.blist.put(mksv)
+ if !byteSliceSameData(bs0, mksv) {
+ e.blist.put(bs0)
+ }
+ }
+}
+
+// Encoder writes an object to an output stream in a supported format.
+//
+// Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
+// concurrently in multiple goroutines.
+//
+// However, as Encoder could be allocation heavy to initialize, a Reset method is provided
+// so its state can be reused to decode new input streams repeatedly.
+// This is the idiomatic way to use.
+type Encoder struct {
+ panicHdl
+
+ e encDriver
+
+ h *BasicHandle
+
+ // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
+ encWr
+
+ // ---- cpu cache line boundary
+ hh Handle
+
+ blist bytesFreelist
+ err error
+
+ // ---- cpu cache line boundary
+
+ // ---- writable fields during execution --- *try* to keep in sep cache line
+
+ // ci holds interfaces during an encoding (if CheckCircularRef=true)
+ //
+ // We considered using a []uintptr (slice of pointer addresses) retrievable via rv.UnsafeAddr.
+ // However, it is possible for the same pointer to point to 2 different types e.g.
+ // type T struct { tHelper }
+ // Here, for var v T; &v and &v.tHelper are the same pointer.
+ // Consequently, we need a tuple of type and pointer, which interface{} natively provides.
+ ci []interface{} // []uintptr
+
+ perType encPerType
+
+ slist sfiRvFreelist
+}
+
+// NewEncoder returns an Encoder for encoding into an io.Writer.
+//
+// For efficiency, Users are encouraged to configure WriterBufferSize on the handle
+// OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
+func NewEncoder(w io.Writer, h Handle) *Encoder {
+ e := h.newEncDriver().encoder()
+ if w != nil {
+ e.Reset(w)
+ }
+ return e
+}
+
+// NewEncoderBytes returns an encoder for encoding directly and efficiently
+// into a byte slice, using zero-copying to temporary slices.
+//
+// It will potentially replace the output byte slice pointed to.
+// After encoding, the out parameter contains the encoded contents.
+func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
+ e := h.newEncDriver().encoder()
+ if out != nil {
+ e.ResetBytes(out)
+ }
+ return e
+}
+
+func (e *Encoder) init(h Handle) {
+ initHandle(h)
+ e.err = errEncoderNotInitialized
+ e.bytes = true
+ e.hh = h
+ e.h = h.getBasicHandle()
+ e.be = e.hh.isBinary()
+}
+
+func (e *Encoder) w() *encWr {
+ return &e.encWr
+}
+
+func (e *Encoder) resetCommon() {
+ e.e.reset()
+ if e.ci != nil {
+ e.ci = e.ci[:0]
+ }
+ e.c = 0
+ e.calls = 0
+ e.seq = 0
+ e.err = nil
+}
+
+// Reset resets the Encoder with a new output stream.
+//
+// This accommodates using the state of the Encoder,
+// where it has "cached" information about sub-engines.
+func (e *Encoder) Reset(w io.Writer) {
+ e.bytes = false
+ if e.wf == nil {
+ e.wf = new(bufioEncWriter)
+ }
+ e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
+ e.resetCommon()
+}
+
+// ResetBytes resets the Encoder with a new destination output []byte.
+func (e *Encoder) ResetBytes(out *[]byte) {
+ e.bytes = true
+ e.wb.reset(encInBytes(out), out)
+ e.resetCommon()
+}
+
+// Encode writes an object into a stream.
+//
+// Encoding can be configured via the struct tag for the fields.
+// The key (in the struct tags) that we look at is configurable.
+//
+// By default, we look up the "codec" key in the struct field's tags,
+// and fall bak to the "json" key if "codec" is absent.
+// That key in struct field's tag value is the key name,
+// followed by an optional comma and options.
+//
+// To set an option on all fields (e.g. omitempty on all fields), you
+// can create a field called _struct, and set flags on it. The options
+// which can be set on _struct are:
+// - omitempty: so all fields are omitted if empty
+// - toarray: so struct is encoded as an array
+// - int: so struct key names are encoded as signed integers (instead of strings)
+// - uint: so struct key names are encoded as unsigned integers (instead of strings)
+// - float: so struct key names are encoded as floats (instead of strings)
+// More details on these below.
+//
+// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
+// - the field's tag is "-", OR
+// - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
+//
+// When encoding as a map, the first string in the tag (before the comma)
+// is the map key string to use when encoding.
+// ...
+// This key is typically encoded as a string.
+// However, there are instances where the encoded stream has mapping keys encoded as numbers.
+// For example, some cbor streams have keys as integer codes in the stream, but they should map
+// to fields in a structured object. Consequently, a struct is the natural representation in code.
+// For these, configure the struct to encode/decode the keys as numbers (instead of string).
+// This is done with the int,uint or float option on the _struct field (see above).
+//
+// However, struct values may encode as arrays. This happens when:
+// - StructToArray Encode option is set, OR
+// - the tag on the _struct field sets the "toarray" option
+// Note that omitempty is ignored when encoding struct values as arrays,
+// as an entry must be encoded for each field, to maintain its position.
+//
+// Values with types that implement MapBySlice are encoded as stream maps.
+//
+// The empty values (for omitempty option) are false, 0, any nil pointer
+// or interface value, and any array, slice, map, or string of length zero.
+//
+// Anonymous fields are encoded inline except:
+// - the struct tag specifies a replacement name (first value)
+// - the field is of an interface type
+//
+// Examples:
+//
+// // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
+// type MyStruct struct {
+// _struct bool `codec:",omitempty"` //set omitempty for every field
+// Field1 string `codec:"-"` //skip this field
+// Field2 int `codec:"myName"` //Use key "myName" in encode stream
+// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
+// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
+// io.Reader //use key "Reader".
+// MyStruct `codec:"my1" //use key "my1".
+// MyStruct //inline it
+// ...
+// }
+//
+// type MyStruct struct {
+// _struct bool `codec:",toarray"` //encode struct as an array
+// }
+//
+// type MyStruct struct {
+// _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
+// Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
+// Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
+// }
+//
+// The mode of encoding is based on the type of the value. When a value is seen:
+// - If a Selfer, call its CodecEncodeSelf method
+// - If an extension is registered for it, call that extension function
+// - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
+// - Else encode it based on its reflect.Kind
+//
+// Note that struct field names and keys in map[string]XXX will be treated as symbols.
+// Some formats support symbols (e.g. binc) and will properly encode the string
+// only once in the stream, and use a tag to refer to it thereafter.
+func (e *Encoder) Encode(v interface{}) (err error) {
+ // tried to use closure, as runtime optimizes defer with no params.
+ // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
+ // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
+ if !debugging {
+ defer func() {
+ // if error occurred during encoding, return that error;
+ // else if error occurred on end'ing (i.e. during flush), return that error.
+ if x := recover(); x != nil {
+ panicValToErr(e, x, &e.err)
+ err = e.err
+ }
+ }()
+ }
+
+ e.MustEncode(v)
+ return
+}
+
+// MustEncode is like Encode, but panics if unable to Encode.
+//
+// Note: This provides insight to the code location that triggered the error.
+func (e *Encoder) MustEncode(v interface{}) {
+ halt.onerror(e.err)
+ if e.hh == nil {
+ halt.onerror(errNoFormatHandle)
+ }
+
+ e.calls++
+ e.encode(v)
+ e.calls--
+ if e.calls == 0 {
+ e.atEndOfEncode()
+ e.w().end()
+ }
+}
+
+// Release releases shared (pooled) resources.
+//
+// It is important to call Release() when done with an Encoder, so those resources
+// are released instantly for use by subsequently created Encoders.
+//
+// Deprecated: Release is a no-op as pooled resources are not used with an Encoder.
+// This method is kept for compatibility reasons only.
+func (e *Encoder) Release() {
+}
+
+func (e *Encoder) encode(iv interface{}) {
+ // MARKER: a switch with only concrete types can be optimized.
+ // consequently, we deal with nil and interfaces outside the switch.
+
+ if iv == nil {
+ e.e.EncodeNil()
+ return
+ }
+
+ rv, ok := isNil(iv)
+ if ok {
+ e.e.EncodeNil()
+ return
+ }
+
+ switch v := iv.(type) {
+ // case nil:
+ // case Selfer:
+ case Raw:
+ e.rawBytes(v)
+ case reflect.Value:
+ e.encodeValue(v, nil)
+
+ case string:
+ e.e.EncodeString(v)
+ case bool:
+ e.e.EncodeBool(v)
+ case int:
+ e.e.EncodeInt(int64(v))
+ case int8:
+ e.e.EncodeInt(int64(v))
+ case int16:
+ e.e.EncodeInt(int64(v))
+ case int32:
+ e.e.EncodeInt(int64(v))
+ case int64:
+ e.e.EncodeInt(v)
+ case uint:
+ e.e.EncodeUint(uint64(v))
+ case uint8:
+ e.e.EncodeUint(uint64(v))
+ case uint16:
+ e.e.EncodeUint(uint64(v))
+ case uint32:
+ e.e.EncodeUint(uint64(v))
+ case uint64:
+ e.e.EncodeUint(v)
+ case uintptr:
+ e.e.EncodeUint(uint64(v))
+ case float32:
+ e.e.EncodeFloat32(v)
+ case float64:
+ e.e.EncodeFloat64(v)
+ case complex64:
+ e.encodeComplex64(v)
+ case complex128:
+ e.encodeComplex128(v)
+ case time.Time:
+ e.e.EncodeTime(v)
+ case []byte:
+ e.e.EncodeStringBytesRaw(v)
+ case *Raw:
+ e.rawBytes(*v)
+ case *string:
+ e.e.EncodeString(*v)
+ case *bool:
+ e.e.EncodeBool(*v)
+ case *int:
+ e.e.EncodeInt(int64(*v))
+ case *int8:
+ e.e.EncodeInt(int64(*v))
+ case *int16:
+ e.e.EncodeInt(int64(*v))
+ case *int32:
+ e.e.EncodeInt(int64(*v))
+ case *int64:
+ e.e.EncodeInt(*v)
+ case *uint:
+ e.e.EncodeUint(uint64(*v))
+ case *uint8:
+ e.e.EncodeUint(uint64(*v))
+ case *uint16:
+ e.e.EncodeUint(uint64(*v))
+ case *uint32:
+ e.e.EncodeUint(uint64(*v))
+ case *uint64:
+ e.e.EncodeUint(*v)
+ case *uintptr:
+ e.e.EncodeUint(uint64(*v))
+ case *float32:
+ e.e.EncodeFloat32(*v)
+ case *float64:
+ e.e.EncodeFloat64(*v)
+ case *complex64:
+ e.encodeComplex64(*v)
+ case *complex128:
+ e.encodeComplex128(*v)
+ case *time.Time:
+ e.e.EncodeTime(*v)
+ case *[]byte:
+ if *v == nil {
+ e.e.EncodeNil()
+ } else {
+ e.e.EncodeStringBytesRaw(*v)
+ }
+ default:
+ // we can't check non-predefined types, as they might be a Selfer or extension.
+ if skipFastpathTypeSwitchInDirectCall || !fastpathEncodeTypeSwitch(iv, e) {
+ e.encodeValue(rv, nil)
+ }
+ }
+}
+
+// encodeValue will encode a value.
+//
+// Note that encodeValue will handle nil in the stream early, so that the
+// subsequent calls i.e. kXXX methods, etc do not have to handle it themselves.
+func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
+ // if a valid fn is passed, it MUST BE for the dereferenced type of rv
+
+ // MARKER: We check if value is nil here, so that the kXXX method do not have to.
+
+ var sptr interface{}
+ var rvp reflect.Value
+ var rvpValid bool
+TOP:
+ switch rv.Kind() {
+ case reflect.Ptr:
+ if rvIsNil(rv) {
+ e.e.EncodeNil()
+ return
+ }
+ rvpValid = true
+ rvp = rv
+ rv = rv.Elem()
+ goto TOP
+ case reflect.Interface:
+ if rvIsNil(rv) {
+ e.e.EncodeNil()
+ return
+ }
+ rvpValid = false
+ rvp = reflect.Value{}
+ rv = rv.Elem()
+ goto TOP
+ case reflect.Struct:
+ if rvpValid && e.h.CheckCircularRef {
+ sptr = rv2i(rvp)
+ for _, vv := range e.ci {
+ if eq4i(sptr, vv) { // error if sptr already seen
+ e.errorf("circular reference found: %p, %T", sptr, sptr)
+ }
+ }
+ e.ci = append(e.ci, sptr)
+ }
+ case reflect.Slice, reflect.Map, reflect.Chan:
+ if rvIsNil(rv) {
+ e.e.EncodeNil()
+ return
+ }
+ case reflect.Invalid, reflect.Func:
+ e.e.EncodeNil()
+ return
+ }
+
+ if fn == nil {
+ fn = e.h.fn(rvType(rv))
+ }
+
+ if !fn.i.addrE { // typically, addrE = false, so check it first
+ // keep rv same
+ } else if rvpValid {
+ rv = rvp
+ } else {
+ rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr)
+ }
+ fn.fe(e, &fn.i, rv)
+
+ if sptr != nil { // remove sptr
+ e.ci = e.ci[:len(e.ci)-1]
+ }
+}
+
+// addrRV returns a addressable value which may be readonly
+func (e *Encoder) addrRV(rv reflect.Value, typ, ptrType reflect.Type) (rva reflect.Value) {
+ if rv.CanAddr() {
+ return rvAddr(rv, ptrType)
+ }
+ if e.h.NoAddressableReadonly {
+ rva = reflect.New(typ)
+ rvSetDirect(rva.Elem(), rv)
+ return
+ }
+ return rvAddr(e.perType.AddressableRO(rv), ptrType)
+}
+
+func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
+ e.onerror(fnerr)
+ if bs == nil {
+ e.e.EncodeNil()
+ } else {
+ e.e.EncodeString(stringView(bs))
+ }
+}
+
+func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
+ e.onerror(fnerr)
+ if bs == nil {
+ e.e.EncodeNil()
+ } else {
+ e.encWr.writeb(bs) // e.asis(bs)
+ }
+}
+
+func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
+ e.onerror(fnerr)
+ if bs == nil {
+ e.e.EncodeNil()
+ } else {
+ e.e.EncodeStringBytesRaw(bs)
+ }
+}
+
+func (e *Encoder) rawBytes(vv Raw) {
+ v := []byte(vv)
+ if !e.h.Raw {
+ e.errorf("Raw values cannot be encoded: %v", v)
+ }
+ e.encWr.writeb(v)
+}
+
+func (e *Encoder) wrapErr(v error, err *error) {
+ *err = wrapCodecErr(v, e.hh.Name(), 0, true)
+}
+
+// ---- container tracker methods
+// Note: We update the .c after calling the callback.
+// This way, the callback can know what the last status was.
+
+func (e *Encoder) mapStart(length int) {
+ e.e.WriteMapStart(length)
+ e.c = containerMapStart
+}
+
+func (e *Encoder) mapElemKey() {
+ if e.js {
+ e.jsondriver().WriteMapElemKey()
+ }
+ e.c = containerMapKey
+}
+
+func (e *Encoder) mapElemValue() {
+ if e.js {
+ e.jsondriver().WriteMapElemValue()
+ }
+ e.c = containerMapValue
+}
+
+func (e *Encoder) mapEnd() {
+ e.e.WriteMapEnd()
+ e.c = 0
+}
+
+func (e *Encoder) arrayStart(length int) {
+ e.e.WriteArrayStart(length)
+ e.c = containerArrayStart
+}
+
+func (e *Encoder) arrayElem() {
+ if e.js {
+ e.jsondriver().WriteArrayElem()
+ }
+ e.c = containerArrayElem
+}
+
+func (e *Encoder) arrayEnd() {
+ e.e.WriteArrayEnd()
+ e.c = 0
+}
+
+// ----------
+
+func (e *Encoder) haltOnMbsOddLen(length int) {
+ if length&1 != 0 { // similar to &1==1 or %2 == 1
+ e.errorf("mapBySlice requires even slice length, but got %v", length)
+ }
+}
+
+func (e *Encoder) atEndOfEncode() {
+ // e.e.atEndOfEncode()
+ if e.js {
+ e.jsondriver().atEndOfEncode()
+ }
+}
+
+func (e *Encoder) sideEncode(v interface{}, basetype reflect.Type, bs *[]byte) {
+ // rv := baseRV(v)
+ // e2 := NewEncoderBytes(bs, e.hh)
+ // e2.encodeValue(rv, e2.h.fnNoExt(basetype))
+ // e2.atEndOfEncode()
+ // e2.w().end()
+
+ defer func(wb bytesEncAppender, bytes bool, c containerState, state interface{}) {
+ e.wb = wb
+ e.bytes = bytes
+ e.c = c
+ e.e.restoreState(state)
+ }(e.wb, e.bytes, e.c, e.e.captureState())
+
+ e.wb = bytesEncAppender{encInBytes(bs)[:0], bs}
+ e.bytes = true
+ e.c = 0
+ e.e.resetState()
+
+ // must call using fnNoExt
+ rv := baseRV(v)
+ e.encodeValue(rv, e.h.fnNoExt(basetype))
+ e.atEndOfEncode()
+ e.w().end()
+}
+
+func encInBytes(out *[]byte) (in []byte) {
+ in = *out
+ if in == nil {
+ in = make([]byte, defEncByteBufSize)
+ }
+ return
+}
+
+func encStructFieldKey(encName string, ee encDriver, w *encWr,
+ keyType valueType, encNameAsciiAlphaNum bool, js bool) {
+ // use if-else-if, not switch (which compiles to binary-search)
+ // since keyType is typically valueTypeString, branch prediction is pretty good.
+
+ if keyType == valueTypeString {
+ if js && encNameAsciiAlphaNum { // keyType == valueTypeString
+ w.writeqstr(encName)
+ } else { // keyType == valueTypeString
+ ee.EncodeString(encName)
+ }
+ } else if keyType == valueTypeInt {
+ ee.EncodeInt(must.Int(strconv.ParseInt(encName, 10, 64)))
+ } else if keyType == valueTypeUint {
+ ee.EncodeUint(must.Uint(strconv.ParseUint(encName, 10, 64)))
+ } else if keyType == valueTypeFloat {
+ ee.EncodeFloat64(must.Float(strconv.ParseFloat(encName, 64)))
+ } else {
+ halt.errorf("invalid struct key type: %v", keyType)
+ }
+}