diff options
author | 2021-08-12 21:03:24 +0200 | |
---|---|---|
committer | 2021-08-12 21:03:24 +0200 | |
commit | 98263a7de64269898a2f81207e38943b5c8e8653 (patch) | |
tree | 743c90f109a6c5d27832d1dcef2388d939f0f77a /vendor/github.com/ugorji/go/codec/encode.go | |
parent | Text duplication fix (#137) (diff) | |
download | gotosocial-98263a7de64269898a2f81207e38943b5c8e8653.tar.xz |
Grand test fixup (#138)
* start fixing up tests
* fix up tests + automate with drone
* fiddle with linting
* messing about with drone.yml
* some more fiddling
* hmmm
* add cache
* add vendor directory
* verbose
* ci updates
* update some little things
* update sig
Diffstat (limited to 'vendor/github.com/ugorji/go/codec/encode.go')
-rw-r--r-- | vendor/github.com/ugorji/go/codec/encode.go | 1479 |
1 files changed, 1479 insertions, 0 deletions
diff --git a/vendor/github.com/ugorji/go/codec/encode.go b/vendor/github.com/ugorji/go/codec/encode.go new file mode 100644 index 000000000..e411bdb81 --- /dev/null +++ b/vendor/github.com/ugorji/go/codec/encode.go @@ -0,0 +1,1479 @@ +// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved. +// Use of this source code is governed by a MIT license found in the LICENSE file. + +package codec + +import ( + "encoding" + "errors" + "io" + "reflect" + "sort" + "strconv" + "time" +) + +// defEncByteBufSize is the default size of []byte used +// for bufio buffer or []byte (when nil passed) +const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024 + +var errEncoderNotInitialized = errors.New("Encoder not initialized") + +// encDriver abstracts the actual codec (binc vs msgpack, etc) +type encDriver interface { + EncodeNil() + EncodeInt(i int64) + EncodeUint(i uint64) + EncodeBool(b bool) + EncodeFloat32(f float32) + EncodeFloat64(f float64) + EncodeRawExt(re *RawExt) + EncodeExt(v interface{}, basetype reflect.Type, xtag uint64, ext Ext) + // EncodeString using cUTF8, honor'ing StringToRaw flag + EncodeString(v string) + EncodeStringBytesRaw(v []byte) + EncodeTime(time.Time) + WriteArrayStart(length int) + WriteArrayEnd() + WriteMapStart(length int) + WriteMapEnd() + + // reset will reset current encoding runtime state, and cached information from the handle + reset() + + encoder() *Encoder + + driverStateManager +} + +type encDriverContainerTracker interface { + WriteArrayElem() + WriteMapElemKey() + WriteMapElemValue() +} + +type encDriverNoState struct{} + +func (encDriverNoState) captureState() interface{} { return nil } +func (encDriverNoState) reset() {} +func (encDriverNoState) resetState() {} +func (encDriverNoState) restoreState(v interface{}) {} + +type encDriverNoopContainerWriter struct{} + +func (encDriverNoopContainerWriter) WriteArrayStart(length int) {} +func (encDriverNoopContainerWriter) WriteArrayEnd() {} +func (encDriverNoopContainerWriter) WriteMapStart(length int) {} +func (encDriverNoopContainerWriter) WriteMapEnd() {} + +// encStructFieldObj[Slice] is used for sorting when there are missing fields and canonical flag is set +type encStructFieldObj struct { + key string + rv reflect.Value + intf interface{} + ascii bool + isRv bool +} + +type encStructFieldObjSlice []encStructFieldObj + +func (p encStructFieldObjSlice) Len() int { return len(p) } +func (p encStructFieldObjSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] } +func (p encStructFieldObjSlice) Less(i, j int) bool { + return p[uint(i)].key < p[uint(j)].key +} + +// EncodeOptions captures configuration options during encode. +type EncodeOptions struct { + // WriterBufferSize is the size of the buffer used when writing. + // + // if > 0, we use a smart buffer internally for performance purposes. + WriterBufferSize int + + // ChanRecvTimeout is the timeout used when selecting from a chan. + // + // Configuring this controls how we receive from a chan during the encoding process. + // - If ==0, we only consume the elements currently available in the chan. + // - if <0, we consume until the chan is closed. + // - If >0, we consume until this timeout. + ChanRecvTimeout time.Duration + + // StructToArray specifies to encode a struct as an array, and not as a map + StructToArray bool + + // Canonical representation means that encoding a value will always result in the same + // sequence of bytes. + // + // This only affects maps, as the iteration order for maps is random. + // + // The implementation MAY use the natural sort order for the map keys if possible: + // + // - If there is a natural sort order (ie for number, bool, string or []byte keys), + // then the map keys are first sorted in natural order and then written + // with corresponding map values to the strema. + // - If there is no natural sort order, then the map keys will first be + // encoded into []byte, and then sorted, + // before writing the sorted keys and the corresponding map values to the stream. + // + Canonical bool + + // CheckCircularRef controls whether we check for circular references + // and error fast during an encode. + // + // If enabled, an error is received if a pointer to a struct + // references itself either directly or through one of its fields (iteratively). + // + // This is opt-in, as there may be a performance hit to checking circular references. + CheckCircularRef bool + + // RecursiveEmptyCheck controls how we determine whether a value is empty. + // + // If true, we descend into interfaces and pointers to reursively check if value is empty. + // + // We *might* check struct fields one by one to see if empty + // (if we cannot directly check if a struct value is equal to its zero value). + // If so, we honor IsZero, Comparable, IsCodecEmpty(), etc. + // Note: This *may* make OmitEmpty more expensive due to the large number of reflect calls. + // + // If false, we check if the value is equal to its zero value (newly allocated state). + RecursiveEmptyCheck bool + + // Raw controls whether we encode Raw values. + // This is a "dangerous" option and must be explicitly set. + // If set, we blindly encode Raw values as-is, without checking + // if they are a correct representation of a value in that format. + // If unset, we error out. + Raw bool + + // StringToRaw controls how strings are encoded. + // + // As a go string is just an (immutable) sequence of bytes, + // it can be encoded either as raw bytes or as a UTF string. + // + // By default, strings are encoded as UTF-8. + // but can be treated as []byte during an encode. + // + // Note that things which we know (by definition) to be UTF-8 + // are ALWAYS encoded as UTF-8 strings. + // These include encoding.TextMarshaler, time.Format calls, struct field names, etc. + StringToRaw bool + + // OptimumSize controls whether we optimize for the smallest size. + // + // Some formats will use this flag to determine whether to encode + // in the smallest size possible, even if it takes slightly longer. + // + // For example, some formats that support half-floats might check if it is possible + // to store a float64 as a half float. Doing this check has a small performance cost, + // but the benefit is that the encoded message will be smaller. + OptimumSize bool + + // NoAddressableReadonly controls whether we try to force a non-addressable value + // to be addressable so we can call a pointer method on it e.g. for types + // that support Selfer, json.Marshaler, etc. + // + // Use it in the very rare occurrence that your types modify a pointer value when calling + // an encode callback function e.g. JsonMarshal, TextMarshal, BinaryMarshal or CodecEncodeSelf. + NoAddressableReadonly bool +} + +// --------------------------------------------- + +func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeRawExt(rv2i(rv).(*RawExt)) +} + +func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn) +} + +func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) { + rv2i(rv).(Selfer).CodecEncodeSelf(e) +} + +func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) { + bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary() + e.marshalRaw(bs, fnerr) +} + +func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) { + bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText() + e.marshalUtf8(bs, fnerr) +} + +func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) { + bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON() + e.marshalAsis(bs, fnerr) +} + +func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) { + e.rawBytes(rv2i(rv).(Raw)) +} + +func (e *Encoder) encodeComplex64(v complex64) { + if imag(v) != 0 { + e.errorf("cannot encode complex number: %v, with imaginary values: %v", v, imag(v)) + } + e.e.EncodeFloat32(real(v)) +} + +func (e *Encoder) encodeComplex128(v complex128) { + if imag(v) != 0 { + e.errorf("cannot encode complex number: %v, with imaginary values: %v", v, imag(v)) + } + e.e.EncodeFloat64(real(v)) +} + +func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeBool(rvGetBool(rv)) +} + +func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeTime(rvGetTime(rv)) +} + +func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeString(rvGetString(rv)) +} + +func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeFloat32(rvGetFloat32(rv)) +} + +func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeFloat64(rvGetFloat64(rv)) +} + +func (e *Encoder) kComplex64(f *codecFnInfo, rv reflect.Value) { + e.encodeComplex64(rvGetComplex64(rv)) +} + +func (e *Encoder) kComplex128(f *codecFnInfo, rv reflect.Value) { + e.encodeComplex128(rvGetComplex128(rv)) +} + +func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeInt(int64(rvGetInt(rv))) +} + +func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeInt(int64(rvGetInt8(rv))) +} + +func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeInt(int64(rvGetInt16(rv))) +} + +func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeInt(int64(rvGetInt32(rv))) +} + +func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeInt(int64(rvGetInt64(rv))) +} + +func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeUint(uint64(rvGetUint(rv))) +} + +func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeUint(uint64(rvGetUint8(rv))) +} + +func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeUint(uint64(rvGetUint16(rv))) +} + +func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeUint(uint64(rvGetUint32(rv))) +} + +func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeUint(uint64(rvGetUint64(rv))) +} + +func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) { + e.e.EncodeUint(uint64(rvGetUintptr(rv))) +} + +func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) { + e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv) +} + +func chanToSlice(rv reflect.Value, rtslice reflect.Type, timeout time.Duration) (rvcs reflect.Value) { + rvcs = rvZeroK(rtslice, reflect.Slice) + if timeout < 0 { // consume until close + for { + recv, recvOk := rv.Recv() + if !recvOk { + break + } + rvcs = reflect.Append(rvcs, recv) + } + } else { + cases := make([]reflect.SelectCase, 2) + cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv} + if timeout == 0 { + cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault} + } else { + tt := time.NewTimer(timeout) + cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)} + } + for { + chosen, recv, recvOk := reflect.Select(cases) + if chosen == 1 || !recvOk { + break + } + rvcs = reflect.Append(rvcs, recv) + } + } + return +} + +func (e *Encoder) kSeqFn(rtelem reflect.Type) (fn *codecFn) { + for rtelem.Kind() == reflect.Ptr { + rtelem = rtelem.Elem() + } + // if kind is reflect.Interface, do not pre-determine the encoding type, + // because preEncodeValue may break it down to a concrete type and kInterface will bomb. + if rtelem.Kind() != reflect.Interface { + fn = e.h.fn(rtelem) + } + return +} + +func (e *Encoder) kSliceWMbs(rv reflect.Value, ti *typeInfo) { + var l = rvLenSlice(rv) + if l == 0 { + e.mapStart(0) + } else { + e.haltOnMbsOddLen(l) + e.mapStart(l >> 1) // e.mapStart(l / 2) + fn := e.kSeqFn(ti.elem) + for j := 0; j < l; j++ { + if j&1 == 0 { // j%2 == 0 { + e.mapElemKey() + } else { + e.mapElemValue() + } + e.encodeValue(rvSliceIndex(rv, j, ti), fn) + } + } + e.mapEnd() +} + +func (e *Encoder) kSliceW(rv reflect.Value, ti *typeInfo) { + var l = rvLenSlice(rv) + e.arrayStart(l) + if l > 0 { + fn := e.kSeqFn(ti.elem) + for j := 0; j < l; j++ { + e.arrayElem() + e.encodeValue(rvSliceIndex(rv, j, ti), fn) + } + } + e.arrayEnd() +} + +func (e *Encoder) kArrayWMbs(rv reflect.Value, ti *typeInfo) { + var l = rv.Len() + if l == 0 { + e.mapStart(0) + } else { + e.haltOnMbsOddLen(l) + e.mapStart(l >> 1) // e.mapStart(l / 2) + fn := e.kSeqFn(ti.elem) + for j := 0; j < l; j++ { + if j&1 == 0 { // j%2 == 0 { + e.mapElemKey() + } else { + e.mapElemValue() + } + e.encodeValue(rv.Index(j), fn) + } + } + e.mapEnd() +} + +func (e *Encoder) kArrayW(rv reflect.Value, ti *typeInfo) { + var l = rv.Len() + e.arrayStart(l) + if l > 0 { + fn := e.kSeqFn(ti.elem) + for j := 0; j < l; j++ { + e.arrayElem() + e.encodeValue(rv.Index(j), fn) + } + } + e.arrayEnd() +} + +func (e *Encoder) kChan(f *codecFnInfo, rv reflect.Value) { + if f.ti.chandir&uint8(reflect.RecvDir) == 0 { + e.errorf("send-only channel cannot be encoded") + } + if !f.ti.mbs && uint8TypId == rt2id(f.ti.elem) { + e.kSliceBytesChan(rv) + return + } + rtslice := reflect.SliceOf(f.ti.elem) + rv = chanToSlice(rv, rtslice, e.h.ChanRecvTimeout) + ti := e.h.getTypeInfo(rt2id(rtslice), rtslice) + if f.ti.mbs { + e.kSliceWMbs(rv, ti) + } else { + e.kSliceW(rv, ti) + } +} + +func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) { + if f.ti.mbs { + e.kSliceWMbs(rv, f.ti) + } else if f.ti.rtid == uint8SliceTypId || uint8TypId == rt2id(f.ti.elem) { + e.e.EncodeStringBytesRaw(rvGetBytes(rv)) + } else { + e.kSliceW(rv, f.ti) + } +} + +func (e *Encoder) kArray(f *codecFnInfo, rv reflect.Value) { + if f.ti.mbs { + e.kArrayWMbs(rv, f.ti) + } else if handleBytesWithinKArray && uint8TypId == rt2id(f.ti.elem) { + e.e.EncodeStringBytesRaw(rvGetArrayBytes(rv, []byte{})) + } else { + e.kArrayW(rv, f.ti) + } +} + +func (e *Encoder) kSliceBytesChan(rv reflect.Value) { + // do not use range, so that the number of elements encoded + // does not change, and encoding does not hang waiting on someone to close chan. + + bs0 := e.blist.peek(32, true) + bs := bs0 + + irv := rv2i(rv) + ch, ok := irv.(<-chan byte) + if !ok { + ch = irv.(chan byte) + } + +L1: + switch timeout := e.h.ChanRecvTimeout; { + case timeout == 0: // only consume available + for { + select { + case b := <-ch: + bs = append(bs, b) + default: + break L1 + } + } + case timeout > 0: // consume until timeout + tt := time.NewTimer(timeout) + for { + select { + case b := <-ch: + bs = append(bs, b) + case <-tt.C: + // close(tt.C) + break L1 + } + } + default: // consume until close + for b := range ch { + bs = append(bs, b) + } + } + + e.e.EncodeStringBytesRaw(bs) + e.blist.put(bs) + if !byteSliceSameData(bs0, bs) { + e.blist.put(bs0) + } +} + +func (e *Encoder) kStructSfi(f *codecFnInfo) []*structFieldInfo { + if e.h.Canonical { + return f.ti.sfi.sorted() + } + return f.ti.sfi.source() +} + +func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) { + var tisfi []*structFieldInfo + if f.ti.toArray || e.h.StructToArray { // toArray + tisfi = f.ti.sfi.source() + e.arrayStart(len(tisfi)) + for _, si := range tisfi { + e.arrayElem() + e.encodeValue(si.path.field(rv), nil) + } + e.arrayEnd() + } else { + tisfi = e.kStructSfi(f) + e.mapStart(len(tisfi)) + keytyp := f.ti.keyType + for _, si := range tisfi { + e.mapElemKey() + e.kStructFieldKey(keytyp, si.path.encNameAsciiAlphaNum, si.encName) + e.mapElemValue() + e.encodeValue(si.path.field(rv), nil) + } + e.mapEnd() + } +} + +func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) { + encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js) +} + +func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) { + var newlen int + ti := f.ti + toMap := !(ti.toArray || e.h.StructToArray) + var mf map[string]interface{} + if ti.flagMissingFielder { + mf = rv2i(rv).(MissingFielder).CodecMissingFields() + toMap = true + newlen += len(mf) + } else if ti.flagMissingFielderPtr { + rv2 := e.addrRV(rv, ti.rt, ti.ptr) + mf = rv2i(rv2).(MissingFielder).CodecMissingFields() + toMap = true + newlen += len(mf) + } + tisfi := ti.sfi.source() + newlen += len(tisfi) + + var fkvs = e.slist.get(newlen)[:newlen] + + recur := e.h.RecursiveEmptyCheck + + var kv sfiRv + var j int + if toMap { + newlen = 0 + for _, si := range e.kStructSfi(f) { + kv.r = si.path.field(rv) + if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) { + continue + } + kv.v = si + fkvs[newlen] = kv + newlen++ + } + + var mf2s []stringIntf + if len(mf) > 0 { + mf2s = make([]stringIntf, 0, len(mf)) + for k, v := range mf { + if k == "" { + continue + } + if ti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur) { + continue + } + mf2s = append(mf2s, stringIntf{k, v}) + } + } + + e.mapStart(newlen + len(mf2s)) + + // When there are missing fields, and Canonical flag is set, + // we cannot have the missing fields and struct fields sorted independently. + // We have to capture them together and sort as a unit. + + if len(mf2s) > 0 && e.h.Canonical { + mf2w := make([]encStructFieldObj, newlen+len(mf2s)) + for j = 0; j < newlen; j++ { + kv = fkvs[j] + mf2w[j] = encStructFieldObj{kv.v.encName, kv.r, nil, kv.v.path.encNameAsciiAlphaNum, true} + } + for _, v := range mf2s { + mf2w[j] = encStructFieldObj{v.v, reflect.Value{}, v.i, false, false} + j++ + } + sort.Sort((encStructFieldObjSlice)(mf2w)) + for _, v := range mf2w { + e.mapElemKey() + e.kStructFieldKey(ti.keyType, v.ascii, v.key) + e.mapElemValue() + if v.isRv { + e.encodeValue(v.rv, nil) + } else { + e.encode(v.intf) + } + } + } else { + keytyp := ti.keyType + for j = 0; j < newlen; j++ { + kv = fkvs[j] + e.mapElemKey() + e.kStructFieldKey(keytyp, kv.v.path.encNameAsciiAlphaNum, kv.v.encName) + e.mapElemValue() + e.encodeValue(kv.r, nil) + } + for _, v := range mf2s { + e.mapElemKey() + e.kStructFieldKey(keytyp, false, v.v) + e.mapElemValue() + e.encode(v.i) + } + } + + e.mapEnd() + } else { + newlen = len(tisfi) + for i, si := range tisfi { // use unsorted array (to match sequence in struct) + kv.r = si.path.field(rv) + // use the zero value. + // if a reference or struct, set to nil (so you do not output too much) + if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) { + switch kv.r.Kind() { + case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice: + kv.r = reflect.Value{} //encode as nil + } + } + fkvs[i] = kv + } + // encode it all + e.arrayStart(newlen) + for j = 0; j < newlen; j++ { + e.arrayElem() + e.encodeValue(fkvs[j].r, nil) + } + e.arrayEnd() + } + + // do not use defer. Instead, use explicit pool return at end of function. + // defer has a cost we are trying to avoid. + // If there is a panic and these slices are not returned, it is ok. + e.slist.put(fkvs) +} + +func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) { + l := rvLenMap(rv) + e.mapStart(l) + if l == 0 { + e.mapEnd() + return + } + + // determine the underlying key and val encFn's for the map. + // This eliminates some work which is done for each loop iteration i.e. + // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn. + // + // However, if kind is reflect.Interface, do not pre-determine the + // encoding type, because preEncodeValue may break it down to + // a concrete type and kInterface will bomb. + + var keyFn, valFn *codecFn + + ktypeKind := reflect.Kind(f.ti.keykind) + vtypeKind := reflect.Kind(f.ti.elemkind) + + rtval := f.ti.elem + rtvalkind := vtypeKind + for rtvalkind == reflect.Ptr { + rtval = rtval.Elem() + rtvalkind = rtval.Kind() + } + if rtvalkind != reflect.Interface { + valFn = e.h.fn(rtval) + } + + var rvv = mapAddrLoopvarRV(f.ti.elem, vtypeKind) + + if e.h.Canonical { + e.kMapCanonical(f.ti, rv, rvv, valFn) + e.mapEnd() + return + } + + rtkey := f.ti.key + var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid + if !keyTypeIsString { + for rtkey.Kind() == reflect.Ptr { + rtkey = rtkey.Elem() + } + if rtkey.Kind() != reflect.Interface { + keyFn = e.h.fn(rtkey) + } + } + + var rvk = mapAddrLoopvarRV(f.ti.key, ktypeKind) + + var it mapIter + mapRange(&it, rv, rvk, rvv, true) + + for it.Next() { + e.mapElemKey() + if keyTypeIsString { + e.e.EncodeString(it.Key().String()) + } else { + e.encodeValue(it.Key(), keyFn) + } + e.mapElemValue() + e.encodeValue(it.Value(), valFn) + } + it.Done() + + e.mapEnd() +} + +func (e *Encoder) kMapCanonical(ti *typeInfo, rv, rvv reflect.Value, valFn *codecFn) { + // we previously did out-of-band if an extension was registered. + // This is not necessary, as the natural kind is sufficient for ordering. + + rtkey := ti.key + mks := rv.MapKeys() + rtkeyKind := rtkey.Kind() + kfast := mapKeyFastKindFor(rtkeyKind) + visindirect := mapStoresElemIndirect(uintptr(ti.elemsize)) + visref := refBitset.isset(ti.elemkind) + + switch rtkeyKind { + case reflect.Bool: + mksv := make([]boolRv, len(mks)) + for i, k := range mks { + v := &mksv[i] + v.r = k + v.v = k.Bool() + } + sort.Sort(boolRvSlice(mksv)) + for i := range mksv { + e.mapElemKey() + e.e.EncodeBool(mksv[i].v) + e.mapElemValue() + e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn) + } + case reflect.String: + mksv := make([]stringRv, len(mks)) + for i, k := range mks { + v := &mksv[i] + v.r = k + v.v = k.String() + } + sort.Sort(stringRvSlice(mksv)) + for i := range mksv { + e.mapElemKey() + e.e.EncodeString(mksv[i].v) + e.mapElemValue() + e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn) + } + case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr: + mksv := make([]uint64Rv, len(mks)) + for i, k := range mks { + v := &mksv[i] + v.r = k + v.v = k.Uint() + } + sort.Sort(uint64RvSlice(mksv)) + for i := range mksv { + e.mapElemKey() + e.e.EncodeUint(mksv[i].v) + e.mapElemValue() + e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn) + } + case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: + mksv := make([]int64Rv, len(mks)) + for i, k := range mks { + v := &mksv[i] + v.r = k + v.v = k.Int() + } + sort.Sort(int64RvSlice(mksv)) + for i := range mksv { + e.mapElemKey() + e.e.EncodeInt(mksv[i].v) + e.mapElemValue() + e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn) + } + case reflect.Float32: + mksv := make([]float64Rv, len(mks)) + for i, k := range mks { + v := &mksv[i] + v.r = k + v.v = k.Float() + } + sort.Sort(float64RvSlice(mksv)) + for i := range mksv { + e.mapElemKey() + e.e.EncodeFloat32(float32(mksv[i].v)) + e.mapElemValue() + e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn) + } + case reflect.Float64: + mksv := make([]float64Rv, len(mks)) + for i, k := range mks { + v := &mksv[i] + v.r = k + v.v = k.Float() + } + sort.Sort(float64RvSlice(mksv)) + for i := range mksv { + e.mapElemKey() + e.e.EncodeFloat64(mksv[i].v) + e.mapElemValue() + e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn) + } + case reflect.Struct: + if rtkey == timeTyp { + mksv := make([]timeRv, len(mks)) + for i, k := range mks { + v := &mksv[i] + v.r = k + v.v = rv2i(k).(time.Time) + } + sort.Sort(timeRvSlice(mksv)) + for i := range mksv { + e.mapElemKey() + e.e.EncodeTime(mksv[i].v) + e.mapElemValue() + e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn) + } + break + } + fallthrough + default: + // out-of-band + // first encode each key to a []byte first, then sort them, then record + bs0 := e.blist.get(len(mks) * 16) + mksv := bs0 + mksbv := make([]bytesRv, len(mks)) + + func() { + // replicate sideEncode logic + defer func(wb bytesEncAppender, bytes bool, c containerState, state interface{}) { + e.wb = wb + e.bytes = bytes + e.c = c + e.e.restoreState(state) + }(e.wb, e.bytes, e.c, e.e.captureState()) + + // e2 := NewEncoderBytes(&mksv, e.hh) + e.wb = bytesEncAppender{mksv[:0], &mksv} + e.bytes = true + e.c = 0 + e.e.resetState() + + for i, k := range mks { + v := &mksbv[i] + l := len(mksv) + + e.encodeValue(k, nil) + e.atEndOfEncode() + e.w().end() + + v.r = k + v.v = mksv[l:] + } + }() + + sort.Sort(bytesRvSlice(mksbv)) + for j := range mksbv { + e.mapElemKey() + e.encWr.writeb(mksbv[j].v) + e.mapElemValue() + e.encodeValue(mapGet(rv, mksbv[j].r, rvv, kfast, visindirect, visref), valFn) + } + e.blist.put(mksv) + if !byteSliceSameData(bs0, mksv) { + e.blist.put(bs0) + } + } +} + +// Encoder writes an object to an output stream in a supported format. +// +// Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used +// concurrently in multiple goroutines. +// +// However, as Encoder could be allocation heavy to initialize, a Reset method is provided +// so its state can be reused to decode new input streams repeatedly. +// This is the idiomatic way to use. +type Encoder struct { + panicHdl + + e encDriver + + h *BasicHandle + + // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder + encWr + + // ---- cpu cache line boundary + hh Handle + + blist bytesFreelist + err error + + // ---- cpu cache line boundary + + // ---- writable fields during execution --- *try* to keep in sep cache line + + // ci holds interfaces during an encoding (if CheckCircularRef=true) + // + // We considered using a []uintptr (slice of pointer addresses) retrievable via rv.UnsafeAddr. + // However, it is possible for the same pointer to point to 2 different types e.g. + // type T struct { tHelper } + // Here, for var v T; &v and &v.tHelper are the same pointer. + // Consequently, we need a tuple of type and pointer, which interface{} natively provides. + ci []interface{} // []uintptr + + perType encPerType + + slist sfiRvFreelist +} + +// NewEncoder returns an Encoder for encoding into an io.Writer. +// +// For efficiency, Users are encouraged to configure WriterBufferSize on the handle +// OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer). +func NewEncoder(w io.Writer, h Handle) *Encoder { + e := h.newEncDriver().encoder() + if w != nil { + e.Reset(w) + } + return e +} + +// NewEncoderBytes returns an encoder for encoding directly and efficiently +// into a byte slice, using zero-copying to temporary slices. +// +// It will potentially replace the output byte slice pointed to. +// After encoding, the out parameter contains the encoded contents. +func NewEncoderBytes(out *[]byte, h Handle) *Encoder { + e := h.newEncDriver().encoder() + if out != nil { + e.ResetBytes(out) + } + return e +} + +func (e *Encoder) init(h Handle) { + initHandle(h) + e.err = errEncoderNotInitialized + e.bytes = true + e.hh = h + e.h = h.getBasicHandle() + e.be = e.hh.isBinary() +} + +func (e *Encoder) w() *encWr { + return &e.encWr +} + +func (e *Encoder) resetCommon() { + e.e.reset() + if e.ci != nil { + e.ci = e.ci[:0] + } + e.c = 0 + e.calls = 0 + e.seq = 0 + e.err = nil +} + +// Reset resets the Encoder with a new output stream. +// +// This accommodates using the state of the Encoder, +// where it has "cached" information about sub-engines. +func (e *Encoder) Reset(w io.Writer) { + e.bytes = false + if e.wf == nil { + e.wf = new(bufioEncWriter) + } + e.wf.reset(w, e.h.WriterBufferSize, &e.blist) + e.resetCommon() +} + +// ResetBytes resets the Encoder with a new destination output []byte. +func (e *Encoder) ResetBytes(out *[]byte) { + e.bytes = true + e.wb.reset(encInBytes(out), out) + e.resetCommon() +} + +// Encode writes an object into a stream. +// +// Encoding can be configured via the struct tag for the fields. +// The key (in the struct tags) that we look at is configurable. +// +// By default, we look up the "codec" key in the struct field's tags, +// and fall bak to the "json" key if "codec" is absent. +// That key in struct field's tag value is the key name, +// followed by an optional comma and options. +// +// To set an option on all fields (e.g. omitempty on all fields), you +// can create a field called _struct, and set flags on it. The options +// which can be set on _struct are: +// - omitempty: so all fields are omitted if empty +// - toarray: so struct is encoded as an array +// - int: so struct key names are encoded as signed integers (instead of strings) +// - uint: so struct key names are encoded as unsigned integers (instead of strings) +// - float: so struct key names are encoded as floats (instead of strings) +// More details on these below. +// +// Struct values "usually" encode as maps. Each exported struct field is encoded unless: +// - the field's tag is "-", OR +// - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option. +// +// When encoding as a map, the first string in the tag (before the comma) +// is the map key string to use when encoding. +// ... +// This key is typically encoded as a string. +// However, there are instances where the encoded stream has mapping keys encoded as numbers. +// For example, some cbor streams have keys as integer codes in the stream, but they should map +// to fields in a structured object. Consequently, a struct is the natural representation in code. +// For these, configure the struct to encode/decode the keys as numbers (instead of string). +// This is done with the int,uint or float option on the _struct field (see above). +// +// However, struct values may encode as arrays. This happens when: +// - StructToArray Encode option is set, OR +// - the tag on the _struct field sets the "toarray" option +// Note that omitempty is ignored when encoding struct values as arrays, +// as an entry must be encoded for each field, to maintain its position. +// +// Values with types that implement MapBySlice are encoded as stream maps. +// +// The empty values (for omitempty option) are false, 0, any nil pointer +// or interface value, and any array, slice, map, or string of length zero. +// +// Anonymous fields are encoded inline except: +// - the struct tag specifies a replacement name (first value) +// - the field is of an interface type +// +// Examples: +// +// // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below. +// type MyStruct struct { +// _struct bool `codec:",omitempty"` //set omitempty for every field +// Field1 string `codec:"-"` //skip this field +// Field2 int `codec:"myName"` //Use key "myName" in encode stream +// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty. +// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty. +// io.Reader //use key "Reader". +// MyStruct `codec:"my1" //use key "my1". +// MyStruct //inline it +// ... +// } +// +// type MyStruct struct { +// _struct bool `codec:",toarray"` //encode struct as an array +// } +// +// type MyStruct struct { +// _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys +// Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1) +// Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2) +// } +// +// The mode of encoding is based on the type of the value. When a value is seen: +// - If a Selfer, call its CodecEncodeSelf method +// - If an extension is registered for it, call that extension function +// - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method +// - Else encode it based on its reflect.Kind +// +// Note that struct field names and keys in map[string]XXX will be treated as symbols. +// Some formats support symbols (e.g. binc) and will properly encode the string +// only once in the stream, and use a tag to refer to it thereafter. +func (e *Encoder) Encode(v interface{}) (err error) { + // tried to use closure, as runtime optimizes defer with no params. + // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc). + // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139 + if !debugging { + defer func() { + // if error occurred during encoding, return that error; + // else if error occurred on end'ing (i.e. during flush), return that error. + if x := recover(); x != nil { + panicValToErr(e, x, &e.err) + err = e.err + } + }() + } + + e.MustEncode(v) + return +} + +// MustEncode is like Encode, but panics if unable to Encode. +// +// Note: This provides insight to the code location that triggered the error. +func (e *Encoder) MustEncode(v interface{}) { + halt.onerror(e.err) + if e.hh == nil { + halt.onerror(errNoFormatHandle) + } + + e.calls++ + e.encode(v) + e.calls-- + if e.calls == 0 { + e.atEndOfEncode() + e.w().end() + } +} + +// Release releases shared (pooled) resources. +// +// It is important to call Release() when done with an Encoder, so those resources +// are released instantly for use by subsequently created Encoders. +// +// Deprecated: Release is a no-op as pooled resources are not used with an Encoder. +// This method is kept for compatibility reasons only. +func (e *Encoder) Release() { +} + +func (e *Encoder) encode(iv interface{}) { + // MARKER: a switch with only concrete types can be optimized. + // consequently, we deal with nil and interfaces outside the switch. + + if iv == nil { + e.e.EncodeNil() + return + } + + rv, ok := isNil(iv) + if ok { + e.e.EncodeNil() + return + } + + switch v := iv.(type) { + // case nil: + // case Selfer: + case Raw: + e.rawBytes(v) + case reflect.Value: + e.encodeValue(v, nil) + + case string: + e.e.EncodeString(v) + case bool: + e.e.EncodeBool(v) + case int: + e.e.EncodeInt(int64(v)) + case int8: + e.e.EncodeInt(int64(v)) + case int16: + e.e.EncodeInt(int64(v)) + case int32: + e.e.EncodeInt(int64(v)) + case int64: + e.e.EncodeInt(v) + case uint: + e.e.EncodeUint(uint64(v)) + case uint8: + e.e.EncodeUint(uint64(v)) + case uint16: + e.e.EncodeUint(uint64(v)) + case uint32: + e.e.EncodeUint(uint64(v)) + case uint64: + e.e.EncodeUint(v) + case uintptr: + e.e.EncodeUint(uint64(v)) + case float32: + e.e.EncodeFloat32(v) + case float64: + e.e.EncodeFloat64(v) + case complex64: + e.encodeComplex64(v) + case complex128: + e.encodeComplex128(v) + case time.Time: + e.e.EncodeTime(v) + case []byte: + e.e.EncodeStringBytesRaw(v) + case *Raw: + e.rawBytes(*v) + case *string: + e.e.EncodeString(*v) + case *bool: + e.e.EncodeBool(*v) + case *int: + e.e.EncodeInt(int64(*v)) + case *int8: + e.e.EncodeInt(int64(*v)) + case *int16: + e.e.EncodeInt(int64(*v)) + case *int32: + e.e.EncodeInt(int64(*v)) + case *int64: + e.e.EncodeInt(*v) + case *uint: + e.e.EncodeUint(uint64(*v)) + case *uint8: + e.e.EncodeUint(uint64(*v)) + case *uint16: + e.e.EncodeUint(uint64(*v)) + case *uint32: + e.e.EncodeUint(uint64(*v)) + case *uint64: + e.e.EncodeUint(*v) + case *uintptr: + e.e.EncodeUint(uint64(*v)) + case *float32: + e.e.EncodeFloat32(*v) + case *float64: + e.e.EncodeFloat64(*v) + case *complex64: + e.encodeComplex64(*v) + case *complex128: + e.encodeComplex128(*v) + case *time.Time: + e.e.EncodeTime(*v) + case *[]byte: + if *v == nil { + e.e.EncodeNil() + } else { + e.e.EncodeStringBytesRaw(*v) + } + default: + // we can't check non-predefined types, as they might be a Selfer or extension. + if skipFastpathTypeSwitchInDirectCall || !fastpathEncodeTypeSwitch(iv, e) { + e.encodeValue(rv, nil) + } + } +} + +// encodeValue will encode a value. +// +// Note that encodeValue will handle nil in the stream early, so that the +// subsequent calls i.e. kXXX methods, etc do not have to handle it themselves. +func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) { + // if a valid fn is passed, it MUST BE for the dereferenced type of rv + + // MARKER: We check if value is nil here, so that the kXXX method do not have to. + + var sptr interface{} + var rvp reflect.Value + var rvpValid bool +TOP: + switch rv.Kind() { + case reflect.Ptr: + if rvIsNil(rv) { + e.e.EncodeNil() + return + } + rvpValid = true + rvp = rv + rv = rv.Elem() + goto TOP + case reflect.Interface: + if rvIsNil(rv) { + e.e.EncodeNil() + return + } + rvpValid = false + rvp = reflect.Value{} + rv = rv.Elem() + goto TOP + case reflect.Struct: + if rvpValid && e.h.CheckCircularRef { + sptr = rv2i(rvp) + for _, vv := range e.ci { + if eq4i(sptr, vv) { // error if sptr already seen + e.errorf("circular reference found: %p, %T", sptr, sptr) + } + } + e.ci = append(e.ci, sptr) + } + case reflect.Slice, reflect.Map, reflect.Chan: + if rvIsNil(rv) { + e.e.EncodeNil() + return + } + case reflect.Invalid, reflect.Func: + e.e.EncodeNil() + return + } + + if fn == nil { + fn = e.h.fn(rvType(rv)) + } + + if !fn.i.addrE { // typically, addrE = false, so check it first + // keep rv same + } else if rvpValid { + rv = rvp + } else { + rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr) + } + fn.fe(e, &fn.i, rv) + + if sptr != nil { // remove sptr + e.ci = e.ci[:len(e.ci)-1] + } +} + +// addrRV returns a addressable value which may be readonly +func (e *Encoder) addrRV(rv reflect.Value, typ, ptrType reflect.Type) (rva reflect.Value) { + if rv.CanAddr() { + return rvAddr(rv, ptrType) + } + if e.h.NoAddressableReadonly { + rva = reflect.New(typ) + rvSetDirect(rva.Elem(), rv) + return + } + return rvAddr(e.perType.AddressableRO(rv), ptrType) +} + +func (e *Encoder) marshalUtf8(bs []byte, fnerr error) { + e.onerror(fnerr) + if bs == nil { + e.e.EncodeNil() + } else { + e.e.EncodeString(stringView(bs)) + } +} + +func (e *Encoder) marshalAsis(bs []byte, fnerr error) { + e.onerror(fnerr) + if bs == nil { + e.e.EncodeNil() + } else { + e.encWr.writeb(bs) // e.asis(bs) + } +} + +func (e *Encoder) marshalRaw(bs []byte, fnerr error) { + e.onerror(fnerr) + if bs == nil { + e.e.EncodeNil() + } else { + e.e.EncodeStringBytesRaw(bs) + } +} + +func (e *Encoder) rawBytes(vv Raw) { + v := []byte(vv) + if !e.h.Raw { + e.errorf("Raw values cannot be encoded: %v", v) + } + e.encWr.writeb(v) +} + +func (e *Encoder) wrapErr(v error, err *error) { + *err = wrapCodecErr(v, e.hh.Name(), 0, true) +} + +// ---- container tracker methods +// Note: We update the .c after calling the callback. +// This way, the callback can know what the last status was. + +func (e *Encoder) mapStart(length int) { + e.e.WriteMapStart(length) + e.c = containerMapStart +} + +func (e *Encoder) mapElemKey() { + if e.js { + e.jsondriver().WriteMapElemKey() + } + e.c = containerMapKey +} + +func (e *Encoder) mapElemValue() { + if e.js { + e.jsondriver().WriteMapElemValue() + } + e.c = containerMapValue +} + +func (e *Encoder) mapEnd() { + e.e.WriteMapEnd() + e.c = 0 +} + +func (e *Encoder) arrayStart(length int) { + e.e.WriteArrayStart(length) + e.c = containerArrayStart +} + +func (e *Encoder) arrayElem() { + if e.js { + e.jsondriver().WriteArrayElem() + } + e.c = containerArrayElem +} + +func (e *Encoder) arrayEnd() { + e.e.WriteArrayEnd() + e.c = 0 +} + +// ---------- + +func (e *Encoder) haltOnMbsOddLen(length int) { + if length&1 != 0 { // similar to &1==1 or %2 == 1 + e.errorf("mapBySlice requires even slice length, but got %v", length) + } +} + +func (e *Encoder) atEndOfEncode() { + // e.e.atEndOfEncode() + if e.js { + e.jsondriver().atEndOfEncode() + } +} + +func (e *Encoder) sideEncode(v interface{}, basetype reflect.Type, bs *[]byte) { + // rv := baseRV(v) + // e2 := NewEncoderBytes(bs, e.hh) + // e2.encodeValue(rv, e2.h.fnNoExt(basetype)) + // e2.atEndOfEncode() + // e2.w().end() + + defer func(wb bytesEncAppender, bytes bool, c containerState, state interface{}) { + e.wb = wb + e.bytes = bytes + e.c = c + e.e.restoreState(state) + }(e.wb, e.bytes, e.c, e.e.captureState()) + + e.wb = bytesEncAppender{encInBytes(bs)[:0], bs} + e.bytes = true + e.c = 0 + e.e.resetState() + + // must call using fnNoExt + rv := baseRV(v) + e.encodeValue(rv, e.h.fnNoExt(basetype)) + e.atEndOfEncode() + e.w().end() +} + +func encInBytes(out *[]byte) (in []byte) { + in = *out + if in == nil { + in = make([]byte, defEncByteBufSize) + } + return +} + +func encStructFieldKey(encName string, ee encDriver, w *encWr, + keyType valueType, encNameAsciiAlphaNum bool, js bool) { + // use if-else-if, not switch (which compiles to binary-search) + // since keyType is typically valueTypeString, branch prediction is pretty good. + + if keyType == valueTypeString { + if js && encNameAsciiAlphaNum { // keyType == valueTypeString + w.writeqstr(encName) + } else { // keyType == valueTypeString + ee.EncodeString(encName) + } + } else if keyType == valueTypeInt { + ee.EncodeInt(must.Int(strconv.ParseInt(encName, 10, 64))) + } else if keyType == valueTypeUint { + ee.EncodeUint(must.Uint(strconv.ParseUint(encName, 10, 64))) + } else if keyType == valueTypeFloat { + ee.EncodeFloat64(must.Float(strconv.ParseFloat(encName, 64))) + } else { + halt.errorf("invalid struct key type: %v", keyType) + } +} |