summaryrefslogtreecommitdiff
path: root/vendor/github.com/tetratelabs/wazero/internal/moremath/moremath.go
diff options
context:
space:
mode:
authorLibravatar Terin Stock <terinjokes@gmail.com>2025-03-09 17:47:56 +0100
committerLibravatar Terin Stock <terinjokes@gmail.com>2025-03-10 01:59:49 +0100
commit3ac1ee16f377d31a0fb80c8dae28b6239ac4229e (patch)
treef61faa581feaaeaba2542b9f2b8234a590684413 /vendor/github.com/tetratelabs/wazero/internal/moremath/moremath.go
parent[chore] update URLs to forked source (diff)
downloadgotosocial-3ac1ee16f377d31a0fb80c8dae28b6239ac4229e.tar.xz
[chore] remove vendor
Diffstat (limited to 'vendor/github.com/tetratelabs/wazero/internal/moremath/moremath.go')
-rw-r--r--vendor/github.com/tetratelabs/wazero/internal/moremath/moremath.go271
1 files changed, 0 insertions, 271 deletions
diff --git a/vendor/github.com/tetratelabs/wazero/internal/moremath/moremath.go b/vendor/github.com/tetratelabs/wazero/internal/moremath/moremath.go
deleted file mode 100644
index 4741f07bb..000000000
--- a/vendor/github.com/tetratelabs/wazero/internal/moremath/moremath.go
+++ /dev/null
@@ -1,271 +0,0 @@
-package moremath
-
-import (
- "math"
-)
-
-// https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/syntax/values.html#floating-point
-const (
- // F32CanonicalNaNBits is the 32-bit float where payload's MSB equals 1 and others are all zero.
- F32CanonicalNaNBits = uint32(0x7fc0_0000)
- // F32CanonicalNaNBitsMask can be used to judge the value `v` is canonical nan as "v&F32CanonicalNaNBitsMask == F32CanonicalNaNBits"
- F32CanonicalNaNBitsMask = uint32(0x7fff_ffff)
- // F64CanonicalNaNBits is the 64-bit float where payload's MSB equals 1 and others are all zero.
- F64CanonicalNaNBits = uint64(0x7ff8_0000_0000_0000)
- // F64CanonicalNaNBitsMask can be used to judge the value `v` is canonical nan as "v&F64CanonicalNaNBitsMask == F64CanonicalNaNBits"
- F64CanonicalNaNBitsMask = uint64(0x7fff_ffff_ffff_ffff)
- // F32ArithmeticNaNPayloadMSB is used to extract the most significant bit of payload of 32-bit arithmetic NaN values
- F32ArithmeticNaNPayloadMSB = uint32(0x0040_0000)
- // F32ExponentMask is used to extract the exponent of 32-bit floating point.
- F32ExponentMask = uint32(0x7f80_0000)
- // F32ArithmeticNaNBits is an example 32-bit arithmetic NaN.
- F32ArithmeticNaNBits = F32CanonicalNaNBits | 0b1 // Set first bit to make this different from the canonical NaN.
- // F64ArithmeticNaNPayloadMSB is used to extract the most significant bit of payload of 64-bit arithmetic NaN values
- F64ArithmeticNaNPayloadMSB = uint64(0x0008_0000_0000_0000)
- // F64ExponentMask is used to extract the exponent of 64-bit floating point.
- F64ExponentMask = uint64(0x7ff0_0000_0000_0000)
- // F64ArithmeticNaNBits is an example 64-bit arithmetic NaN.
- F64ArithmeticNaNBits = F64CanonicalNaNBits | 0b1 // Set first bit to make this different from the canonical NaN.
-)
-
-// WasmCompatMin64 is the Wasm spec compatible variant of math.Min for 64-bit floating points.
-func WasmCompatMin64(x, y float64) float64 {
- switch {
- case math.IsNaN(x) || math.IsNaN(y):
- return returnF64NaNBinOp(x, y)
- case math.IsInf(x, -1) || math.IsInf(y, -1):
- return math.Inf(-1)
- case x == 0 && x == y:
- if math.Signbit(x) {
- return x
- }
- return y
- }
- if x < y {
- return x
- }
- return y
-}
-
-// WasmCompatMin32 is the Wasm spec compatible variant of math.Min for 32-bit floating points.
-func WasmCompatMin32(x, y float32) float32 {
- x64, y64 := float64(x), float64(y)
- switch {
- case math.IsNaN(x64) || math.IsNaN(y64):
- return returnF32NaNBinOp(x, y)
- case math.IsInf(x64, -1) || math.IsInf(y64, -1):
- return float32(math.Inf(-1))
- case x == 0 && x == y:
- if math.Signbit(x64) {
- return x
- }
- return y
- }
- if x < y {
- return x
- }
- return y
-}
-
-// WasmCompatMax64 is the Wasm spec compatible variant of math.Max for 64-bit floating points.
-func WasmCompatMax64(x, y float64) float64 {
- switch {
- case math.IsNaN(x) || math.IsNaN(y):
- return returnF64NaNBinOp(x, y)
- case math.IsInf(x, 1) || math.IsInf(y, 1):
- return math.Inf(1)
- case x == 0 && x == y:
- if math.Signbit(x) {
- return y
- }
- return x
- }
- if x > y {
- return x
- }
- return y
-}
-
-// WasmCompatMax32 is the Wasm spec compatible variant of math.Max for 32-bit floating points.
-func WasmCompatMax32(x, y float32) float32 {
- x64, y64 := float64(x), float64(y)
- switch {
- case math.IsNaN(x64) || math.IsNaN(y64):
- return returnF32NaNBinOp(x, y)
- case math.IsInf(x64, 1) || math.IsInf(y64, 1):
- return float32(math.Inf(1))
- case x == 0 && x == y:
- if math.Signbit(x64) {
- return y
- }
- return x
- }
- if x > y {
- return x
- }
- return y
-}
-
-// WasmCompatNearestF32 is the Wasm spec compatible variant of math.Round, used for Nearest instruction.
-// For example, this converts 1.9 to 2.0, and this has the semantics of LLVM's rint intrinsic.
-//
-// e.g. math.Round(-4.5) results in -5 while this results in -4.
-//
-// See https://llvm.org/docs/LangRef.html#llvm-rint-intrinsic.
-func WasmCompatNearestF32(f float32) float32 {
- var res float32
- // TODO: look at https://github.com/bytecodealliance/wasmtime/pull/2171 and reconsider this algorithm
- if f != 0 {
- ceil := float32(math.Ceil(float64(f)))
- floor := float32(math.Floor(float64(f)))
- distToCeil := math.Abs(float64(f - ceil))
- distToFloor := math.Abs(float64(f - floor))
- h := ceil / 2.0
- if distToCeil < distToFloor {
- res = ceil
- } else if distToCeil == distToFloor && float32(math.Floor(float64(h))) == h {
- res = ceil
- } else {
- res = floor
- }
- } else {
- res = f
- }
- return returnF32UniOp(f, res)
-}
-
-// WasmCompatNearestF64 is the Wasm spec compatible variant of math.Round, used for Nearest instruction.
-// For example, this converts 1.9 to 2.0, and this has the semantics of LLVM's rint intrinsic.
-//
-// e.g. math.Round(-4.5) results in -5 while this results in -4.
-//
-// See https://llvm.org/docs/LangRef.html#llvm-rint-intrinsic.
-func WasmCompatNearestF64(f float64) float64 {
- // TODO: look at https://github.com/bytecodealliance/wasmtime/pull/2171 and reconsider this algorithm
- var res float64
- if f != 0 {
- ceil := math.Ceil(f)
- floor := math.Floor(f)
- distToCeil := math.Abs(f - ceil)
- distToFloor := math.Abs(f - floor)
- h := ceil / 2.0
- if distToCeil < distToFloor {
- res = ceil
- } else if distToCeil == distToFloor && math.Floor(h) == h {
- res = ceil
- } else {
- res = floor
- }
- } else {
- res = f
- }
- return returnF64UniOp(f, res)
-}
-
-// WasmCompatCeilF32 is the same as math.Ceil on 32-bit except that
-// the returned NaN value follows the Wasm specification on NaN
-// propagation.
-// https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation
-func WasmCompatCeilF32(f float32) float32 {
- return returnF32UniOp(f, float32(math.Ceil(float64(f))))
-}
-
-// WasmCompatCeilF64 is the same as math.Ceil on 64-bit except that
-// the returned NaN value follows the Wasm specification on NaN
-// propagation.
-// https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation
-func WasmCompatCeilF64(f float64) float64 {
- return returnF64UniOp(f, math.Ceil(f))
-}
-
-// WasmCompatFloorF32 is the same as math.Floor on 32-bit except that
-// the returned NaN value follows the Wasm specification on NaN
-// propagation.
-// https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation
-func WasmCompatFloorF32(f float32) float32 {
- return returnF32UniOp(f, float32(math.Floor(float64(f))))
-}
-
-// WasmCompatFloorF64 is the same as math.Floor on 64-bit except that
-// the returned NaN value follows the Wasm specification on NaN
-// propagation.
-// https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation
-func WasmCompatFloorF64(f float64) float64 {
- return returnF64UniOp(f, math.Floor(f))
-}
-
-// WasmCompatTruncF32 is the same as math.Trunc on 32-bit except that
-// the returned NaN value follows the Wasm specification on NaN
-// propagation.
-// https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation
-func WasmCompatTruncF32(f float32) float32 {
- return returnF32UniOp(f, float32(math.Trunc(float64(f))))
-}
-
-// WasmCompatTruncF64 is the same as math.Trunc on 64-bit except that
-// the returned NaN value follows the Wasm specification on NaN
-// propagation.
-// https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation
-func WasmCompatTruncF64(f float64) float64 {
- return returnF64UniOp(f, math.Trunc(f))
-}
-
-func f32IsNaN(v float32) bool {
- return v != v // this is how NaN is defined.
-}
-
-func f64IsNaN(v float64) bool {
- return v != v // this is how NaN is defined.
-}
-
-// returnF32UniOp returns the result of 32-bit unary operation. This accepts `original` which is the operand,
-// and `result` which is its result. This returns the `result` as-is if the result is not NaN. Otherwise, this follows
-// the same logic as in the reference interpreter as well as the amd64 and arm64 floating point handling.
-func returnF32UniOp(original, result float32) float32 {
- // Following the same logic as in the reference interpreter:
- // https://github.com/WebAssembly/spec/blob/d48af683f5e6d00c13f775ab07d29a15daf92203/interpreter/exec/fxx.ml#L115-L122
- if !f32IsNaN(result) {
- return result
- }
- if !f32IsNaN(original) {
- return math.Float32frombits(F32CanonicalNaNBits)
- }
- return math.Float32frombits(math.Float32bits(original) | F32CanonicalNaNBits)
-}
-
-// returnF32UniOp returns the result of 64-bit unary operation. This accepts `original` which is the operand,
-// and `result` which is its result. This returns the `result` as-is if the result is not NaN. Otherwise, this follows
-// the same logic as in the reference interpreter as well as the amd64 and arm64 floating point handling.
-func returnF64UniOp(original, result float64) float64 {
- // Following the same logic as in the reference interpreter (== amd64 and arm64's behavior):
- // https://github.com/WebAssembly/spec/blob/d48af683f5e6d00c13f775ab07d29a15daf92203/interpreter/exec/fxx.ml#L115-L122
- if !f64IsNaN(result) {
- return result
- }
- if !f64IsNaN(original) {
- return math.Float64frombits(F64CanonicalNaNBits)
- }
- return math.Float64frombits(math.Float64bits(original) | F64CanonicalNaNBits)
-}
-
-// returnF64NaNBinOp returns a NaN for 64-bit binary operations. `x` and `y` are original floats
-// and at least one of them is NaN. The returned NaN is guaranteed to comply with the NaN propagation
-// procedure: https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation
-func returnF64NaNBinOp(x, y float64) float64 {
- if f64IsNaN(x) {
- return math.Float64frombits(math.Float64bits(x) | F64CanonicalNaNBits)
- } else {
- return math.Float64frombits(math.Float64bits(y) | F64CanonicalNaNBits)
- }
-}
-
-// returnF64NaNBinOp returns a NaN for 32-bit binary operations. `x` and `y` are original floats
-// and at least one of them is NaN. The returned NaN is guaranteed to comply with the NaN propagation
-// procedure: https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation
-func returnF32NaNBinOp(x, y float32) float32 {
- if f32IsNaN(x) {
- return math.Float32frombits(math.Float32bits(x) | F32CanonicalNaNBits)
- } else {
- return math.Float32frombits(math.Float32bits(y) | F32CanonicalNaNBits)
- }
-}