summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/rect.go
diff options
context:
space:
mode:
authorLibravatar Tobi Smethurst <31960611+tsmethurst@users.noreply.github.com>2021-08-12 21:03:24 +0200
committerLibravatar GitHub <noreply@github.com>2021-08-12 21:03:24 +0200
commit98263a7de64269898a2f81207e38943b5c8e8653 (patch)
tree743c90f109a6c5d27832d1dcef2388d939f0f77a /vendor/github.com/golang/geo/s2/rect.go
parentText duplication fix (#137) (diff)
downloadgotosocial-98263a7de64269898a2f81207e38943b5c8e8653.tar.xz
Grand test fixup (#138)
* start fixing up tests * fix up tests + automate with drone * fiddle with linting * messing about with drone.yml * some more fiddling * hmmm * add cache * add vendor directory * verbose * ci updates * update some little things * update sig
Diffstat (limited to 'vendor/github.com/golang/geo/s2/rect.go')
-rw-r--r--vendor/github.com/golang/geo/s2/rect.go710
1 files changed, 710 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/rect.go b/vendor/github.com/golang/geo/s2/rect.go
new file mode 100644
index 000000000..f6b52a59e
--- /dev/null
+++ b/vendor/github.com/golang/geo/s2/rect.go
@@ -0,0 +1,710 @@
+// Copyright 2014 Google Inc. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package s2
+
+import (
+ "fmt"
+ "io"
+ "math"
+
+ "github.com/golang/geo/r1"
+ "github.com/golang/geo/r3"
+ "github.com/golang/geo/s1"
+)
+
+// Rect represents a closed latitude-longitude rectangle.
+type Rect struct {
+ Lat r1.Interval
+ Lng s1.Interval
+}
+
+var (
+ validRectLatRange = r1.Interval{-math.Pi / 2, math.Pi / 2}
+ validRectLngRange = s1.FullInterval()
+)
+
+// EmptyRect returns the empty rectangle.
+func EmptyRect() Rect { return Rect{r1.EmptyInterval(), s1.EmptyInterval()} }
+
+// FullRect returns the full rectangle.
+func FullRect() Rect { return Rect{validRectLatRange, validRectLngRange} }
+
+// RectFromLatLng constructs a rectangle containing a single point p.
+func RectFromLatLng(p LatLng) Rect {
+ return Rect{
+ Lat: r1.Interval{p.Lat.Radians(), p.Lat.Radians()},
+ Lng: s1.Interval{p.Lng.Radians(), p.Lng.Radians()},
+ }
+}
+
+// RectFromCenterSize constructs a rectangle with the given size and center.
+// center needs to be normalized, but size does not. The latitude
+// interval of the result is clamped to [-90,90] degrees, and the longitude
+// interval of the result is FullRect() if and only if the longitude size is
+// 360 degrees or more.
+//
+// Examples of clamping (in degrees):
+// center=(80,170), size=(40,60) -> lat=[60,90], lng=[140,-160]
+// center=(10,40), size=(210,400) -> lat=[-90,90], lng=[-180,180]
+// center=(-90,180), size=(20,50) -> lat=[-90,-80], lng=[155,-155]
+func RectFromCenterSize(center, size LatLng) Rect {
+ half := LatLng{size.Lat / 2, size.Lng / 2}
+ return RectFromLatLng(center).expanded(half)
+}
+
+// IsValid returns true iff the rectangle is valid.
+// This requires Lat ⊆ [-π/2,π/2] and Lng ⊆ [-π,π], and Lat = ∅ iff Lng = ∅
+func (r Rect) IsValid() bool {
+ return math.Abs(r.Lat.Lo) <= math.Pi/2 &&
+ math.Abs(r.Lat.Hi) <= math.Pi/2 &&
+ r.Lng.IsValid() &&
+ r.Lat.IsEmpty() == r.Lng.IsEmpty()
+}
+
+// IsEmpty reports whether the rectangle is empty.
+func (r Rect) IsEmpty() bool { return r.Lat.IsEmpty() }
+
+// IsFull reports whether the rectangle is full.
+func (r Rect) IsFull() bool { return r.Lat.Equal(validRectLatRange) && r.Lng.IsFull() }
+
+// IsPoint reports whether the rectangle is a single point.
+func (r Rect) IsPoint() bool { return r.Lat.Lo == r.Lat.Hi && r.Lng.Lo == r.Lng.Hi }
+
+// Vertex returns the i-th vertex of the rectangle (i = 0,1,2,3) in CCW order
+// (lower left, lower right, upper right, upper left).
+func (r Rect) Vertex(i int) LatLng {
+ var lat, lng float64
+
+ switch i {
+ case 0:
+ lat = r.Lat.Lo
+ lng = r.Lng.Lo
+ case 1:
+ lat = r.Lat.Lo
+ lng = r.Lng.Hi
+ case 2:
+ lat = r.Lat.Hi
+ lng = r.Lng.Hi
+ case 3:
+ lat = r.Lat.Hi
+ lng = r.Lng.Lo
+ }
+ return LatLng{s1.Angle(lat) * s1.Radian, s1.Angle(lng) * s1.Radian}
+}
+
+// Lo returns one corner of the rectangle.
+func (r Rect) Lo() LatLng {
+ return LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(r.Lng.Lo) * s1.Radian}
+}
+
+// Hi returns the other corner of the rectangle.
+func (r Rect) Hi() LatLng {
+ return LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(r.Lng.Hi) * s1.Radian}
+}
+
+// Center returns the center of the rectangle.
+func (r Rect) Center() LatLng {
+ return LatLng{s1.Angle(r.Lat.Center()) * s1.Radian, s1.Angle(r.Lng.Center()) * s1.Radian}
+}
+
+// Size returns the size of the Rect.
+func (r Rect) Size() LatLng {
+ return LatLng{s1.Angle(r.Lat.Length()) * s1.Radian, s1.Angle(r.Lng.Length()) * s1.Radian}
+}
+
+// Area returns the surface area of the Rect.
+func (r Rect) Area() float64 {
+ if r.IsEmpty() {
+ return 0
+ }
+ capDiff := math.Abs(math.Sin(r.Lat.Hi) - math.Sin(r.Lat.Lo))
+ return r.Lng.Length() * capDiff
+}
+
+// AddPoint increases the size of the rectangle to include the given point.
+func (r Rect) AddPoint(ll LatLng) Rect {
+ if !ll.IsValid() {
+ return r
+ }
+ return Rect{
+ Lat: r.Lat.AddPoint(ll.Lat.Radians()),
+ Lng: r.Lng.AddPoint(ll.Lng.Radians()),
+ }
+}
+
+// expanded returns a rectangle that has been expanded by margin.Lat on each side
+// in the latitude direction, and by margin.Lng on each side in the longitude
+// direction. If either margin is negative, then it shrinks the rectangle on
+// the corresponding sides instead. The resulting rectangle may be empty.
+//
+// The latitude-longitude space has the topology of a cylinder. Longitudes
+// "wrap around" at +/-180 degrees, while latitudes are clamped to range [-90, 90].
+// This means that any expansion (positive or negative) of the full longitude range
+// remains full (since the "rectangle" is actually a continuous band around the
+// cylinder), while expansion of the full latitude range remains full only if the
+// margin is positive.
+//
+// If either the latitude or longitude interval becomes empty after
+// expansion by a negative margin, the result is empty.
+//
+// Note that if an expanded rectangle contains a pole, it may not contain
+// all possible lat/lng representations of that pole, e.g., both points [π/2,0]
+// and [π/2,1] represent the same pole, but they might not be contained by the
+// same Rect.
+//
+// If you are trying to grow a rectangle by a certain distance on the
+// sphere (e.g. 5km), refer to the ExpandedByDistance() C++ method implementation
+// instead.
+func (r Rect) expanded(margin LatLng) Rect {
+ lat := r.Lat.Expanded(margin.Lat.Radians())
+ lng := r.Lng.Expanded(margin.Lng.Radians())
+
+ if lat.IsEmpty() || lng.IsEmpty() {
+ return EmptyRect()
+ }
+
+ return Rect{
+ Lat: lat.Intersection(validRectLatRange),
+ Lng: lng,
+ }
+}
+
+func (r Rect) String() string { return fmt.Sprintf("[Lo%v, Hi%v]", r.Lo(), r.Hi()) }
+
+// PolarClosure returns the rectangle unmodified if it does not include either pole.
+// If it includes either pole, PolarClosure returns an expansion of the rectangle along
+// the longitudinal range to include all possible representations of the contained poles.
+func (r Rect) PolarClosure() Rect {
+ if r.Lat.Lo == -math.Pi/2 || r.Lat.Hi == math.Pi/2 {
+ return Rect{r.Lat, s1.FullInterval()}
+ }
+ return r
+}
+
+// Union returns the smallest Rect containing the union of this rectangle and the given rectangle.
+func (r Rect) Union(other Rect) Rect {
+ return Rect{
+ Lat: r.Lat.Union(other.Lat),
+ Lng: r.Lng.Union(other.Lng),
+ }
+}
+
+// Intersection returns the smallest rectangle containing the intersection of
+// this rectangle and the given rectangle. Note that the region of intersection
+// may consist of two disjoint rectangles, in which case a single rectangle
+// spanning both of them is returned.
+func (r Rect) Intersection(other Rect) Rect {
+ lat := r.Lat.Intersection(other.Lat)
+ lng := r.Lng.Intersection(other.Lng)
+
+ if lat.IsEmpty() || lng.IsEmpty() {
+ return EmptyRect()
+ }
+ return Rect{lat, lng}
+}
+
+// Intersects reports whether this rectangle and the other have any points in common.
+func (r Rect) Intersects(other Rect) bool {
+ return r.Lat.Intersects(other.Lat) && r.Lng.Intersects(other.Lng)
+}
+
+// CapBound returns a cap that contains Rect.
+func (r Rect) CapBound() Cap {
+ // We consider two possible bounding caps, one whose axis passes
+ // through the center of the lat-long rectangle and one whose axis
+ // is the north or south pole. We return the smaller of the two caps.
+
+ if r.IsEmpty() {
+ return EmptyCap()
+ }
+
+ var poleZ, poleAngle float64
+ if r.Lat.Hi+r.Lat.Lo < 0 {
+ // South pole axis yields smaller cap.
+ poleZ = -1
+ poleAngle = math.Pi/2 + r.Lat.Hi
+ } else {
+ poleZ = 1
+ poleAngle = math.Pi/2 - r.Lat.Lo
+ }
+ poleCap := CapFromCenterAngle(Point{r3.Vector{0, 0, poleZ}}, s1.Angle(poleAngle)*s1.Radian)
+
+ // For bounding rectangles that span 180 degrees or less in longitude, the
+ // maximum cap size is achieved at one of the rectangle vertices. For
+ // rectangles that are larger than 180 degrees, we punt and always return a
+ // bounding cap centered at one of the two poles.
+ if math.Remainder(r.Lng.Hi-r.Lng.Lo, 2*math.Pi) >= 0 && r.Lng.Hi-r.Lng.Lo < 2*math.Pi {
+ midCap := CapFromPoint(PointFromLatLng(r.Center())).AddPoint(PointFromLatLng(r.Lo())).AddPoint(PointFromLatLng(r.Hi()))
+ if midCap.Height() < poleCap.Height() {
+ return midCap
+ }
+ }
+ return poleCap
+}
+
+// RectBound returns itself.
+func (r Rect) RectBound() Rect {
+ return r
+}
+
+// Contains reports whether this Rect contains the other Rect.
+func (r Rect) Contains(other Rect) bool {
+ return r.Lat.ContainsInterval(other.Lat) && r.Lng.ContainsInterval(other.Lng)
+}
+
+// ContainsCell reports whether the given Cell is contained by this Rect.
+func (r Rect) ContainsCell(c Cell) bool {
+ // A latitude-longitude rectangle contains a cell if and only if it contains
+ // the cell's bounding rectangle. This test is exact from a mathematical
+ // point of view, assuming that the bounds returned by Cell.RectBound()
+ // are tight. However, note that there can be a loss of precision when
+ // converting between representations -- for example, if an s2.Cell is
+ // converted to a polygon, the polygon's bounding rectangle may not contain
+ // the cell's bounding rectangle. This has some slightly unexpected side
+ // effects; for instance, if one creates an s2.Polygon from an s2.Cell, the
+ // polygon will contain the cell, but the polygon's bounding box will not.
+ return r.Contains(c.RectBound())
+}
+
+// ContainsLatLng reports whether the given LatLng is within the Rect.
+func (r Rect) ContainsLatLng(ll LatLng) bool {
+ if !ll.IsValid() {
+ return false
+ }
+ return r.Lat.Contains(ll.Lat.Radians()) && r.Lng.Contains(ll.Lng.Radians())
+}
+
+// ContainsPoint reports whether the given Point is within the Rect.
+func (r Rect) ContainsPoint(p Point) bool {
+ return r.ContainsLatLng(LatLngFromPoint(p))
+}
+
+// CellUnionBound computes a covering of the Rect.
+func (r Rect) CellUnionBound() []CellID {
+ return r.CapBound().CellUnionBound()
+}
+
+// intersectsLatEdge reports whether the edge AB intersects the given edge of constant
+// latitude. Requires the points to have unit length.
+func intersectsLatEdge(a, b Point, lat s1.Angle, lng s1.Interval) bool {
+ // Unfortunately, lines of constant latitude are curves on
+ // the sphere. They can intersect a straight edge in 0, 1, or 2 points.
+
+ // First, compute the normal to the plane AB that points vaguely north.
+ z := Point{a.PointCross(b).Normalize()}
+ if z.Z < 0 {
+ z = Point{z.Mul(-1)}
+ }
+
+ // Extend this to an orthonormal frame (x,y,z) where x is the direction
+ // where the great circle through AB achieves its maximium latitude.
+ y := Point{z.PointCross(PointFromCoords(0, 0, 1)).Normalize()}
+ x := y.Cross(z.Vector)
+
+ // Compute the angle "theta" from the x-axis (in the x-y plane defined
+ // above) where the great circle intersects the given line of latitude.
+ sinLat := math.Sin(float64(lat))
+ if math.Abs(sinLat) >= x.Z {
+ // The great circle does not reach the given latitude.
+ return false
+ }
+
+ cosTheta := sinLat / x.Z
+ sinTheta := math.Sqrt(1 - cosTheta*cosTheta)
+ theta := math.Atan2(sinTheta, cosTheta)
+
+ // The candidate intersection points are located +/- theta in the x-y
+ // plane. For an intersection to be valid, we need to check that the
+ // intersection point is contained in the interior of the edge AB and
+ // also that it is contained within the given longitude interval "lng".
+
+ // Compute the range of theta values spanned by the edge AB.
+ abTheta := s1.IntervalFromPointPair(
+ math.Atan2(a.Dot(y.Vector), a.Dot(x)),
+ math.Atan2(b.Dot(y.Vector), b.Dot(x)))
+
+ if abTheta.Contains(theta) {
+ // Check if the intersection point is also in the given lng interval.
+ isect := x.Mul(cosTheta).Add(y.Mul(sinTheta))
+ if lng.Contains(math.Atan2(isect.Y, isect.X)) {
+ return true
+ }
+ }
+
+ if abTheta.Contains(-theta) {
+ // Check if the other intersection point is also in the given lng interval.
+ isect := x.Mul(cosTheta).Sub(y.Mul(sinTheta))
+ if lng.Contains(math.Atan2(isect.Y, isect.X)) {
+ return true
+ }
+ }
+ return false
+}
+
+// intersectsLngEdge reports whether the edge AB intersects the given edge of constant
+// longitude. Requires the points to have unit length.
+func intersectsLngEdge(a, b Point, lat r1.Interval, lng s1.Angle) bool {
+ // The nice thing about edges of constant longitude is that
+ // they are straight lines on the sphere (geodesics).
+ return CrossingSign(a, b, PointFromLatLng(LatLng{s1.Angle(lat.Lo), lng}),
+ PointFromLatLng(LatLng{s1.Angle(lat.Hi), lng})) == Cross
+}
+
+// IntersectsCell reports whether this rectangle intersects the given cell. This is an
+// exact test and may be fairly expensive.
+func (r Rect) IntersectsCell(c Cell) bool {
+ // First we eliminate the cases where one region completely contains the
+ // other. Once these are disposed of, then the regions will intersect
+ // if and only if their boundaries intersect.
+ if r.IsEmpty() {
+ return false
+ }
+ if r.ContainsPoint(Point{c.id.rawPoint()}) {
+ return true
+ }
+ if c.ContainsPoint(PointFromLatLng(r.Center())) {
+ return true
+ }
+
+ // Quick rejection test (not required for correctness).
+ if !r.Intersects(c.RectBound()) {
+ return false
+ }
+
+ // Precompute the cell vertices as points and latitude-longitudes. We also
+ // check whether the Cell contains any corner of the rectangle, or
+ // vice-versa, since the edge-crossing tests only check the edge interiors.
+ vertices := [4]Point{}
+ latlngs := [4]LatLng{}
+
+ for i := range vertices {
+ vertices[i] = c.Vertex(i)
+ latlngs[i] = LatLngFromPoint(vertices[i])
+ if r.ContainsLatLng(latlngs[i]) {
+ return true
+ }
+ if c.ContainsPoint(PointFromLatLng(r.Vertex(i))) {
+ return true
+ }
+ }
+
+ // Now check whether the boundaries intersect. Unfortunately, a
+ // latitude-longitude rectangle does not have straight edges: two edges
+ // are curved, and at least one of them is concave.
+ for i := range vertices {
+ edgeLng := s1.IntervalFromEndpoints(latlngs[i].Lng.Radians(), latlngs[(i+1)&3].Lng.Radians())
+ if !r.Lng.Intersects(edgeLng) {
+ continue
+ }
+
+ a := vertices[i]
+ b := vertices[(i+1)&3]
+ if edgeLng.Contains(r.Lng.Lo) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Lo)) {
+ return true
+ }
+ if edgeLng.Contains(r.Lng.Hi) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Hi)) {
+ return true
+ }
+ if intersectsLatEdge(a, b, s1.Angle(r.Lat.Lo), r.Lng) {
+ return true
+ }
+ if intersectsLatEdge(a, b, s1.Angle(r.Lat.Hi), r.Lng) {
+ return true
+ }
+ }
+ return false
+}
+
+// Encode encodes the Rect.
+func (r Rect) Encode(w io.Writer) error {
+ e := &encoder{w: w}
+ r.encode(e)
+ return e.err
+}
+
+func (r Rect) encode(e *encoder) {
+ e.writeInt8(encodingVersion)
+ e.writeFloat64(r.Lat.Lo)
+ e.writeFloat64(r.Lat.Hi)
+ e.writeFloat64(r.Lng.Lo)
+ e.writeFloat64(r.Lng.Hi)
+}
+
+// Decode decodes a rectangle.
+func (r *Rect) Decode(rd io.Reader) error {
+ d := &decoder{r: asByteReader(rd)}
+ r.decode(d)
+ return d.err
+}
+
+func (r *Rect) decode(d *decoder) {
+ if version := d.readUint8(); int8(version) != encodingVersion && d.err == nil {
+ d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion)
+ return
+ }
+ r.Lat.Lo = d.readFloat64()
+ r.Lat.Hi = d.readFloat64()
+ r.Lng.Lo = d.readFloat64()
+ r.Lng.Hi = d.readFloat64()
+ return
+}
+
+// DistanceToLatLng returns the minimum distance (measured along the surface of the sphere)
+// from a given point to the rectangle (both its boundary and its interior).
+// If r is empty, the result is meaningless.
+// The latlng must be valid.
+func (r Rect) DistanceToLatLng(ll LatLng) s1.Angle {
+ if r.Lng.Contains(float64(ll.Lng)) {
+ return maxAngle(0, ll.Lat-s1.Angle(r.Lat.Hi), s1.Angle(r.Lat.Lo)-ll.Lat)
+ }
+
+ i := s1.IntervalFromEndpoints(r.Lng.Hi, r.Lng.ComplementCenter())
+ rectLng := r.Lng.Lo
+ if i.Contains(float64(ll.Lng)) {
+ rectLng = r.Lng.Hi
+ }
+
+ lo := LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(rectLng) * s1.Radian}
+ hi := LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(rectLng) * s1.Radian}
+ return DistanceFromSegment(PointFromLatLng(ll), PointFromLatLng(lo), PointFromLatLng(hi))
+}
+
+// DirectedHausdorffDistance returns the directed Hausdorff distance (measured along the
+// surface of the sphere) to the given Rect. The directed Hausdorff
+// distance from rectangle A to rectangle B is given by
+// h(A, B) = max_{p in A} min_{q in B} d(p, q).
+func (r Rect) DirectedHausdorffDistance(other Rect) s1.Angle {
+ if r.IsEmpty() {
+ return 0 * s1.Radian
+ }
+ if other.IsEmpty() {
+ return math.Pi * s1.Radian
+ }
+
+ lng := r.Lng.DirectedHausdorffDistance(other.Lng)
+ return directedHausdorffDistance(lng, r.Lat, other.Lat)
+}
+
+// HausdorffDistance returns the undirected Hausdorff distance (measured along the
+// surface of the sphere) to the given Rect.
+// The Hausdorff distance between rectangle A and rectangle B is given by
+// H(A, B) = max{h(A, B), h(B, A)}.
+func (r Rect) HausdorffDistance(other Rect) s1.Angle {
+ return maxAngle(r.DirectedHausdorffDistance(other),
+ other.DirectedHausdorffDistance(r))
+}
+
+// ApproxEqual reports whether the latitude and longitude intervals of the two rectangles
+// are the same up to a small tolerance.
+func (r Rect) ApproxEqual(other Rect) bool {
+ return r.Lat.ApproxEqual(other.Lat) && r.Lng.ApproxEqual(other.Lng)
+}
+
+// directedHausdorffDistance returns the directed Hausdorff distance
+// from one longitudinal edge spanning latitude range 'a' to the other
+// longitudinal edge spanning latitude range 'b', with their longitudinal
+// difference given by 'lngDiff'.
+func directedHausdorffDistance(lngDiff s1.Angle, a, b r1.Interval) s1.Angle {
+ // By symmetry, we can assume a's longitude is 0 and b's longitude is
+ // lngDiff. Call b's two endpoints bLo and bHi. Let H be the hemisphere
+ // containing a and delimited by the longitude line of b. The Voronoi diagram
+ // of b on H has three edges (portions of great circles) all orthogonal to b
+ // and meeting at bLo cross bHi.
+ // E1: (bLo, bLo cross bHi)
+ // E2: (bHi, bLo cross bHi)
+ // E3: (-bMid, bLo cross bHi), where bMid is the midpoint of b
+ //
+ // They subdivide H into three Voronoi regions. Depending on how longitude 0
+ // (which contains edge a) intersects these regions, we distinguish two cases:
+ // Case 1: it intersects three regions. This occurs when lngDiff <= π/2.
+ // Case 2: it intersects only two regions. This occurs when lngDiff > π/2.
+ //
+ // In the first case, the directed Hausdorff distance to edge b can only be
+ // realized by the following points on a:
+ // A1: two endpoints of a.
+ // A2: intersection of a with the equator, if b also intersects the equator.
+ //
+ // In the second case, the directed Hausdorff distance to edge b can only be
+ // realized by the following points on a:
+ // B1: two endpoints of a.
+ // B2: intersection of a with E3
+ // B3: farthest point from bLo to the interior of D, and farthest point from
+ // bHi to the interior of U, if any, where D (resp. U) is the portion
+ // of edge a below (resp. above) the intersection point from B2.
+
+ if lngDiff < 0 {
+ panic("impossible: negative lngDiff")
+ }
+ if lngDiff > math.Pi {
+ panic("impossible: lngDiff > Pi")
+ }
+
+ if lngDiff == 0 {
+ return s1.Angle(a.DirectedHausdorffDistance(b))
+ }
+
+ // Assumed longitude of b.
+ bLng := lngDiff
+ // Two endpoints of b.
+ bLo := PointFromLatLng(LatLng{s1.Angle(b.Lo), bLng})
+ bHi := PointFromLatLng(LatLng{s1.Angle(b.Hi), bLng})
+
+ // Cases A1 and B1.
+ aLo := PointFromLatLng(LatLng{s1.Angle(a.Lo), 0})
+ aHi := PointFromLatLng(LatLng{s1.Angle(a.Hi), 0})
+ maxDistance := maxAngle(
+ DistanceFromSegment(aLo, bLo, bHi),
+ DistanceFromSegment(aHi, bLo, bHi))
+
+ if lngDiff <= math.Pi/2 {
+ // Case A2.
+ if a.Contains(0) && b.Contains(0) {
+ maxDistance = maxAngle(maxDistance, lngDiff)
+ }
+ return maxDistance
+ }
+
+ // Case B2.
+ p := bisectorIntersection(b, bLng)
+ pLat := LatLngFromPoint(p).Lat
+ if a.Contains(float64(pLat)) {
+ maxDistance = maxAngle(maxDistance, p.Angle(bLo.Vector))
+ }
+
+ // Case B3.
+ if pLat > s1.Angle(a.Lo) {
+ intDist, ok := interiorMaxDistance(r1.Interval{a.Lo, math.Min(float64(pLat), a.Hi)}, bLo)
+ if ok {
+ maxDistance = maxAngle(maxDistance, intDist)
+ }
+ }
+ if pLat < s1.Angle(a.Hi) {
+ intDist, ok := interiorMaxDistance(r1.Interval{math.Max(float64(pLat), a.Lo), a.Hi}, bHi)
+ if ok {
+ maxDistance = maxAngle(maxDistance, intDist)
+ }
+ }
+
+ return maxDistance
+}
+
+// interiorMaxDistance returns the max distance from a point b to the segment spanning latitude range
+// aLat on longitude 0 if the max occurs in the interior of aLat. Otherwise, returns (0, false).
+func interiorMaxDistance(aLat r1.Interval, b Point) (a s1.Angle, ok bool) {
+ // Longitude 0 is in the y=0 plane. b.X >= 0 implies that the maximum
+ // does not occur in the interior of aLat.
+ if aLat.IsEmpty() || b.X >= 0 {
+ return 0, false
+ }
+
+ // Project b to the y=0 plane. The antipodal of the normalized projection is
+ // the point at which the maxium distance from b occurs, if it is contained
+ // in aLat.
+ intersectionPoint := PointFromCoords(-b.X, 0, -b.Z)
+ if !aLat.InteriorContains(float64(LatLngFromPoint(intersectionPoint).Lat)) {
+ return 0, false
+ }
+ return b.Angle(intersectionPoint.Vector), true
+}
+
+// bisectorIntersection return the intersection of longitude 0 with the bisector of an edge
+// on longitude 'lng' and spanning latitude range 'lat'.
+func bisectorIntersection(lat r1.Interval, lng s1.Angle) Point {
+ lng = s1.Angle(math.Abs(float64(lng)))
+ latCenter := s1.Angle(lat.Center())
+
+ // A vector orthogonal to the bisector of the given longitudinal edge.
+ orthoBisector := LatLng{latCenter - math.Pi/2, lng}
+ if latCenter < 0 {
+ orthoBisector = LatLng{-latCenter - math.Pi/2, lng - math.Pi}
+ }
+
+ // A vector orthogonal to longitude 0.
+ orthoLng := Point{r3.Vector{0, -1, 0}}
+
+ return orthoLng.PointCross(PointFromLatLng(orthoBisector))
+}
+
+// Centroid returns the true centroid of the given Rect multiplied by its
+// surface area. The result is not unit length, so you may want to normalize it.
+// Note that in general the centroid is *not* at the center of the rectangle, and
+// in fact it may not even be contained by the rectangle. (It is the "center of
+// mass" of the rectangle viewed as subset of the unit sphere, i.e. it is the
+// point in space about which this curved shape would rotate.)
+//
+// The reason for multiplying the result by the rectangle area is to make it
+// easier to compute the centroid of more complicated shapes. The centroid
+// of a union of disjoint regions can be computed simply by adding their
+// Centroid results.
+func (r Rect) Centroid() Point {
+ // When a sphere is divided into slices of constant thickness by a set
+ // of parallel planes, all slices have the same surface area. This
+ // implies that the z-component of the centroid is simply the midpoint
+ // of the z-interval spanned by the Rect.
+ //
+ // Similarly, it is easy to see that the (x,y) of the centroid lies in
+ // the plane through the midpoint of the rectangle's longitude interval.
+ // We only need to determine the distance "d" of this point from the
+ // z-axis.
+ //
+ // Let's restrict our attention to a particular z-value. In this
+ // z-plane, the Rect is a circular arc. The centroid of this arc
+ // lies on a radial line through the midpoint of the arc, and at a
+ // distance from the z-axis of
+ //
+ // r * (sin(alpha) / alpha)
+ //
+ // where r = sqrt(1-z^2) is the radius of the arc, and "alpha" is half
+ // of the arc length (i.e., the arc covers longitudes [-alpha, alpha]).
+ //
+ // To find the centroid distance from the z-axis for the entire
+ // rectangle, we just need to integrate over the z-interval. This gives
+ //
+ // d = Integrate[sqrt(1-z^2)*sin(alpha)/alpha, z1..z2] / (z2 - z1)
+ //
+ // where [z1, z2] is the range of z-values covered by the rectangle.
+ // This simplifies to
+ //
+ // d = sin(alpha)/(2*alpha*(z2-z1))*(z2*r2 - z1*r1 + theta2 - theta1)
+ //
+ // where [theta1, theta2] is the latitude interval, z1=sin(theta1),
+ // z2=sin(theta2), r1=cos(theta1), and r2=cos(theta2).
+ //
+ // Finally, we want to return not the centroid itself, but the centroid
+ // scaled by the area of the rectangle. The area of the rectangle is
+ //
+ // A = 2 * alpha * (z2 - z1)
+ //
+ // which fortunately appears in the denominator of "d".
+
+ if r.IsEmpty() {
+ return Point{}
+ }
+
+ z1 := math.Sin(r.Lat.Lo)
+ z2 := math.Sin(r.Lat.Hi)
+ r1 := math.Cos(r.Lat.Lo)
+ r2 := math.Cos(r.Lat.Hi)
+
+ alpha := 0.5 * r.Lng.Length()
+ r0 := math.Sin(alpha) * (r2*z2 - r1*z1 + r.Lat.Length())
+ lng := r.Lng.Center()
+ z := alpha * (z2 + z1) * (z2 - z1) // scaled by the area
+
+ return Point{r3.Vector{r0 * math.Cos(lng), r0 * math.Sin(lng), z}}
+}
+
+// BUG: The major differences from the C++ version are:
+// - Get*Distance, Vertex, InteriorContains(LatLng|Rect|Point)