diff options
author | 2021-08-12 21:03:24 +0200 | |
---|---|---|
committer | 2021-08-12 21:03:24 +0200 | |
commit | 98263a7de64269898a2f81207e38943b5c8e8653 (patch) | |
tree | 743c90f109a6c5d27832d1dcef2388d939f0f77a /vendor/github.com/golang/geo/s1/interval.go | |
parent | Text duplication fix (#137) (diff) | |
download | gotosocial-98263a7de64269898a2f81207e38943b5c8e8653.tar.xz |
Grand test fixup (#138)
* start fixing up tests
* fix up tests + automate with drone
* fiddle with linting
* messing about with drone.yml
* some more fiddling
* hmmm
* add cache
* add vendor directory
* verbose
* ci updates
* update some little things
* update sig
Diffstat (limited to 'vendor/github.com/golang/geo/s1/interval.go')
-rw-r--r-- | vendor/github.com/golang/geo/s1/interval.go | 462 |
1 files changed, 462 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s1/interval.go b/vendor/github.com/golang/geo/s1/interval.go new file mode 100644 index 000000000..6fea5221f --- /dev/null +++ b/vendor/github.com/golang/geo/s1/interval.go @@ -0,0 +1,462 @@ +// Copyright 2014 Google Inc. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package s1 + +import ( + "math" + "strconv" +) + +// An Interval represents a closed interval on a unit circle (also known +// as a 1-dimensional sphere). It is capable of representing the empty +// interval (containing no points), the full interval (containing all +// points), and zero-length intervals (containing a single point). +// +// Points are represented by the angle they make with the positive x-axis in +// the range [-π, π]. An interval is represented by its lower and upper +// bounds (both inclusive, since the interval is closed). The lower bound may +// be greater than the upper bound, in which case the interval is "inverted" +// (i.e. it passes through the point (-1, 0)). +// +// The point (-1, 0) has two valid representations, π and -π. The +// normalized representation of this point is π, so that endpoints +// of normal intervals are in the range (-π, π]. We normalize the latter to +// the former in IntervalFromEndpoints. However, we take advantage of the point +// -π to construct two special intervals: +// The full interval is [-π, π] +// The empty interval is [π, -π]. +// +// Treat the exported fields as read-only. +type Interval struct { + Lo, Hi float64 +} + +// IntervalFromEndpoints constructs a new interval from endpoints. +// Both arguments must be in the range [-π,π]. This function allows inverted intervals +// to be created. +func IntervalFromEndpoints(lo, hi float64) Interval { + i := Interval{lo, hi} + if lo == -math.Pi && hi != math.Pi { + i.Lo = math.Pi + } + if hi == -math.Pi && lo != math.Pi { + i.Hi = math.Pi + } + return i +} + +// IntervalFromPointPair returns the minimal interval containing the two given points. +// Both arguments must be in [-π,π]. +func IntervalFromPointPair(a, b float64) Interval { + if a == -math.Pi { + a = math.Pi + } + if b == -math.Pi { + b = math.Pi + } + if positiveDistance(a, b) <= math.Pi { + return Interval{a, b} + } + return Interval{b, a} +} + +// EmptyInterval returns an empty interval. +func EmptyInterval() Interval { return Interval{math.Pi, -math.Pi} } + +// FullInterval returns a full interval. +func FullInterval() Interval { return Interval{-math.Pi, math.Pi} } + +// IsValid reports whether the interval is valid. +func (i Interval) IsValid() bool { + return (math.Abs(i.Lo) <= math.Pi && math.Abs(i.Hi) <= math.Pi && + !(i.Lo == -math.Pi && i.Hi != math.Pi) && + !(i.Hi == -math.Pi && i.Lo != math.Pi)) +} + +// IsFull reports whether the interval is full. +func (i Interval) IsFull() bool { return i.Lo == -math.Pi && i.Hi == math.Pi } + +// IsEmpty reports whether the interval is empty. +func (i Interval) IsEmpty() bool { return i.Lo == math.Pi && i.Hi == -math.Pi } + +// IsInverted reports whether the interval is inverted; that is, whether Lo > Hi. +func (i Interval) IsInverted() bool { return i.Lo > i.Hi } + +// Invert returns the interval with endpoints swapped. +func (i Interval) Invert() Interval { + return Interval{i.Hi, i.Lo} +} + +// Center returns the midpoint of the interval. +// It is undefined for full and empty intervals. +func (i Interval) Center() float64 { + c := 0.5 * (i.Lo + i.Hi) + if !i.IsInverted() { + return c + } + if c <= 0 { + return c + math.Pi + } + return c - math.Pi +} + +// Length returns the length of the interval. +// The length of an empty interval is negative. +func (i Interval) Length() float64 { + l := i.Hi - i.Lo + if l >= 0 { + return l + } + l += 2 * math.Pi + if l > 0 { + return l + } + return -1 +} + +// Assumes p ∈ (-π,π]. +func (i Interval) fastContains(p float64) bool { + if i.IsInverted() { + return (p >= i.Lo || p <= i.Hi) && !i.IsEmpty() + } + return p >= i.Lo && p <= i.Hi +} + +// Contains returns true iff the interval contains p. +// Assumes p ∈ [-π,π]. +func (i Interval) Contains(p float64) bool { + if p == -math.Pi { + p = math.Pi + } + return i.fastContains(p) +} + +// ContainsInterval returns true iff the interval contains oi. +func (i Interval) ContainsInterval(oi Interval) bool { + if i.IsInverted() { + if oi.IsInverted() { + return oi.Lo >= i.Lo && oi.Hi <= i.Hi + } + return (oi.Lo >= i.Lo || oi.Hi <= i.Hi) && !i.IsEmpty() + } + if oi.IsInverted() { + return i.IsFull() || oi.IsEmpty() + } + return oi.Lo >= i.Lo && oi.Hi <= i.Hi +} + +// InteriorContains returns true iff the interior of the interval contains p. +// Assumes p ∈ [-π,π]. +func (i Interval) InteriorContains(p float64) bool { + if p == -math.Pi { + p = math.Pi + } + if i.IsInverted() { + return p > i.Lo || p < i.Hi + } + return (p > i.Lo && p < i.Hi) || i.IsFull() +} + +// InteriorContainsInterval returns true iff the interior of the interval contains oi. +func (i Interval) InteriorContainsInterval(oi Interval) bool { + if i.IsInverted() { + if oi.IsInverted() { + return (oi.Lo > i.Lo && oi.Hi < i.Hi) || oi.IsEmpty() + } + return oi.Lo > i.Lo || oi.Hi < i.Hi + } + if oi.IsInverted() { + return i.IsFull() || oi.IsEmpty() + } + return (oi.Lo > i.Lo && oi.Hi < i.Hi) || i.IsFull() +} + +// Intersects returns true iff the interval contains any points in common with oi. +func (i Interval) Intersects(oi Interval) bool { + if i.IsEmpty() || oi.IsEmpty() { + return false + } + if i.IsInverted() { + return oi.IsInverted() || oi.Lo <= i.Hi || oi.Hi >= i.Lo + } + if oi.IsInverted() { + return oi.Lo <= i.Hi || oi.Hi >= i.Lo + } + return oi.Lo <= i.Hi && oi.Hi >= i.Lo +} + +// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary. +func (i Interval) InteriorIntersects(oi Interval) bool { + if i.IsEmpty() || oi.IsEmpty() || i.Lo == i.Hi { + return false + } + if i.IsInverted() { + return oi.IsInverted() || oi.Lo < i.Hi || oi.Hi > i.Lo + } + if oi.IsInverted() { + return oi.Lo < i.Hi || oi.Hi > i.Lo + } + return (oi.Lo < i.Hi && oi.Hi > i.Lo) || i.IsFull() +} + +// Compute distance from a to b in [0,2π], in a numerically stable way. +func positiveDistance(a, b float64) float64 { + d := b - a + if d >= 0 { + return d + } + return (b + math.Pi) - (a - math.Pi) +} + +// Union returns the smallest interval that contains both the interval and oi. +func (i Interval) Union(oi Interval) Interval { + if oi.IsEmpty() { + return i + } + if i.fastContains(oi.Lo) { + if i.fastContains(oi.Hi) { + // Either oi ⊂ i, or i ∪ oi is the full interval. + if i.ContainsInterval(oi) { + return i + } + return FullInterval() + } + return Interval{i.Lo, oi.Hi} + } + if i.fastContains(oi.Hi) { + return Interval{oi.Lo, i.Hi} + } + + // Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint. + if i.IsEmpty() || oi.fastContains(i.Lo) { + return oi + } + + // This is the only hard case where we need to find the closest pair of endpoints. + if positiveDistance(oi.Hi, i.Lo) < positiveDistance(i.Hi, oi.Lo) { + return Interval{oi.Lo, i.Hi} + } + return Interval{i.Lo, oi.Hi} +} + +// Intersection returns the smallest interval that contains the intersection of the interval and oi. +func (i Interval) Intersection(oi Interval) Interval { + if oi.IsEmpty() { + return EmptyInterval() + } + if i.fastContains(oi.Lo) { + if i.fastContains(oi.Hi) { + // Either oi ⊂ i, or i and oi intersect twice. Neither are empty. + // In the first case we want to return i (which is shorter than oi). + // In the second case one of them is inverted, and the smallest interval + // that covers the two disjoint pieces is the shorter of i and oi. + // We thus want to pick the shorter of i and oi in both cases. + if oi.Length() < i.Length() { + return oi + } + return i + } + return Interval{oi.Lo, i.Hi} + } + if i.fastContains(oi.Hi) { + return Interval{i.Lo, oi.Hi} + } + + // Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint. + if oi.fastContains(i.Lo) { + return i + } + return EmptyInterval() +} + +// AddPoint returns the interval expanded by the minimum amount necessary such +// that it contains the given point "p" (an angle in the range [-π, π]). +func (i Interval) AddPoint(p float64) Interval { + if math.Abs(p) > math.Pi { + return i + } + if p == -math.Pi { + p = math.Pi + } + if i.fastContains(p) { + return i + } + if i.IsEmpty() { + return Interval{p, p} + } + if positiveDistance(p, i.Lo) < positiveDistance(i.Hi, p) { + return Interval{p, i.Hi} + } + return Interval{i.Lo, p} +} + +// Define the maximum rounding error for arithmetic operations. Depending on the +// platform the mantissa precision may be different than others, so we choose to +// use specific values to be consistent across all. +// The values come from the C++ implementation. +var ( + // epsilon is a small number that represents a reasonable level of noise between two + // values that can be considered to be equal. + epsilon = 1e-15 + // dblEpsilon is a smaller number for values that require more precision. + dblEpsilon = 2.220446049e-16 +) + +// Expanded returns an interval that has been expanded on each side by margin. +// If margin is negative, then the function shrinks the interval on +// each side by margin instead. The resulting interval may be empty or +// full. Any expansion (positive or negative) of a full interval remains +// full, and any expansion of an empty interval remains empty. +func (i Interval) Expanded(margin float64) Interval { + if margin >= 0 { + if i.IsEmpty() { + return i + } + // Check whether this interval will be full after expansion, allowing + // for a rounding error when computing each endpoint. + if i.Length()+2*margin+2*dblEpsilon >= 2*math.Pi { + return FullInterval() + } + } else { + if i.IsFull() { + return i + } + // Check whether this interval will be empty after expansion, allowing + // for a rounding error when computing each endpoint. + if i.Length()+2*margin-2*dblEpsilon <= 0 { + return EmptyInterval() + } + } + result := IntervalFromEndpoints( + math.Remainder(i.Lo-margin, 2*math.Pi), + math.Remainder(i.Hi+margin, 2*math.Pi), + ) + if result.Lo <= -math.Pi { + result.Lo = math.Pi + } + return result +} + +// ApproxEqual reports whether this interval can be transformed into the given +// interval by moving each endpoint by at most ε, without the +// endpoints crossing (which would invert the interval). Empty and full +// intervals are considered to start at an arbitrary point on the unit circle, +// so any interval with (length <= 2*ε) matches the empty interval, and +// any interval with (length >= 2*π - 2*ε) matches the full interval. +func (i Interval) ApproxEqual(other Interval) bool { + // Full and empty intervals require special cases because the endpoints + // are considered to be positioned arbitrarily. + if i.IsEmpty() { + return other.Length() <= 2*epsilon + } + if other.IsEmpty() { + return i.Length() <= 2*epsilon + } + if i.IsFull() { + return other.Length() >= 2*(math.Pi-epsilon) + } + if other.IsFull() { + return i.Length() >= 2*(math.Pi-epsilon) + } + + // The purpose of the last test below is to verify that moving the endpoints + // does not invert the interval, e.g. [-1e20, 1e20] vs. [1e20, -1e20]. + return (math.Abs(math.Remainder(other.Lo-i.Lo, 2*math.Pi)) <= epsilon && + math.Abs(math.Remainder(other.Hi-i.Hi, 2*math.Pi)) <= epsilon && + math.Abs(i.Length()-other.Length()) <= 2*epsilon) + +} + +func (i Interval) String() string { + // like "[%.7f, %.7f]" + return "[" + strconv.FormatFloat(i.Lo, 'f', 7, 64) + ", " + strconv.FormatFloat(i.Hi, 'f', 7, 64) + "]" +} + +// Complement returns the complement of the interior of the interval. An interval and +// its complement have the same boundary but do not share any interior +// values. The complement operator is not a bijection, since the complement +// of a singleton interval (containing a single value) is the same as the +// complement of an empty interval. +func (i Interval) Complement() Interval { + if i.Lo == i.Hi { + // Singleton. The interval just contains a single point. + return FullInterval() + } + // Handles empty and full. + return Interval{i.Hi, i.Lo} +} + +// ComplementCenter returns the midpoint of the complement of the interval. For full and empty +// intervals, the result is arbitrary. For a singleton interval (containing a +// single point), the result is its antipodal point on S1. +func (i Interval) ComplementCenter() float64 { + if i.Lo != i.Hi { + return i.Complement().Center() + } + // Singleton. The interval just contains a single point. + if i.Hi <= 0 { + return i.Hi + math.Pi + } + return i.Hi - math.Pi +} + +// DirectedHausdorffDistance returns the Hausdorff distance to the given interval. +// For two intervals i and y, this distance is defined by +// h(i, y) = max_{p in i} min_{q in y} d(p, q), +// where d(.,.) is measured along S1. +func (i Interval) DirectedHausdorffDistance(y Interval) Angle { + if y.ContainsInterval(i) { + return 0 // This includes the case i is empty. + } + if y.IsEmpty() { + return Angle(math.Pi) // maximum possible distance on s1. + } + yComplementCenter := y.ComplementCenter() + if i.Contains(yComplementCenter) { + return Angle(positiveDistance(y.Hi, yComplementCenter)) + } + + // The Hausdorff distance is realized by either two i.Hi endpoints or two + // i.Lo endpoints, whichever is farther apart. + hiHi := 0.0 + if IntervalFromEndpoints(y.Hi, yComplementCenter).Contains(i.Hi) { + hiHi = positiveDistance(y.Hi, i.Hi) + } + + loLo := 0.0 + if IntervalFromEndpoints(yComplementCenter, y.Lo).Contains(i.Lo) { + loLo = positiveDistance(i.Lo, y.Lo) + } + + return Angle(math.Max(hiHi, loLo)) +} + +// Project returns the closest point in the interval to the given point p. +// The interval must be non-empty. +func (i Interval) Project(p float64) float64 { + if p == -math.Pi { + p = math.Pi + } + if i.fastContains(p) { + return p + } + // Compute distance from p to each endpoint. + dlo := positiveDistance(p, i.Lo) + dhi := positiveDistance(i.Hi, p) + if dlo < dhi { + return i.Lo + } + return i.Hi +} |